APPROXIMATION BY HOLOMORPHIC FUNCTIONS ON CERTAIN PRODUCT SETS IN C^N

BARNET M. WEINSTOCK

In this paper we prove several theorems concerning approximation by holomorphic functions on product sets in C^n where each factor is either a compact plane set or the closure of a strongly pseudoconvex domain. In particular we show that every continuous function which is locally approximable by holomorphic functions on such a set is globally approximable. Our results depend on a generalization of a theorem of Andreotti and Stoll on bounded solutions of the inhomogeneous Cauchy-Riemann equations on certain product domains.

1. Statement of results. If K is a compact set in C^n let C(K) denote the Banach space of continuous complex-valued functions on K with the uniform norm, and let H(K) denote the closure in C(K) of the space of functions which are holomorphic in some neighborhood of K. When n = 1, each function in H(K) is the uniform limit of a sequence of rational functions which are finite on K and the spaces H(K) (usually denoted R(K) in this instance) have been extensively studied. In particular, the following properties of H(K) are well-known in the case n = 1 (cf. Chapter 3 of [2]):

(1) If U is a neighborhood of K, $f \in C^1(U)$, and $\partial f / \partial \overline{z} \equiv 0$ on K, then $f | K \in H(K)$.

(2) If $f \in C(K)$ and if for each $x \in K$ there is a neighborhood U_x of x in C such that $f \in H(K \cap \overline{U}_x)$, then $f \in H(K)$.

(3) If μ is a complex Borel measure on K, then $\mu = \partial \hat{\mu} / \partial \bar{z}$ where

$$\hat{\mu}(z) = -\frac{1}{\overline{\pi}} \int_{\kappa} (\zeta - z)^{-1} d\mu(\zeta)$$

is locally integrable on C. A measure μ is an annihilating measure for $H(K)(\text{i.e.}, \int f d\mu = 0$ for all $f \in H(K))$ if and only if $\hat{\mu}$ is supported on K.

Properties (1)-(3) are not valid for arbitrary compact sets of C^* , even if one restricts one's attention to holomorphically convex, or even polynomially convex sets. A celebrated example of Kallin [6] shows that (2) fails in general for polynomially convex compact sets. Also, Chirka [3], by modifying her example, has shown that for each positive integer s there is a compact holomorphically convex set K^* in C^3 and a function $f_s \in C^{\infty}(K^*)$ such that $f_s \notin H(K^*)$ although $\overline{\delta}f_s$ vanishes on K^s to order s^{1} .

In this paper we consider compact sets $K \subset C^n$ of the form $K = K_1 \times \cdots \times K_r$ where each K_i is either a compact set in C or the closure of a strongly pseudo-convex domain in C^{n_i} . For such K we prove the following theorems:

THEOREM 1.1. If U is a neighborhood of K, $f \in C^{r+1}(U)$, and $\partial^{\alpha} f/\partial \bar{z}^{\alpha} \equiv 0$ on K for all $\alpha = (\alpha_1, \dots, \alpha_n)$ with $\sum \alpha_j \leq r$, then $f \in H(K)$.

THEOREM 1.2. If $f \in C(K)$ and if for each $x \in K$ there is a neighborhood U_x such that $f \in H(K \cap \overline{U}_x)$, then $f \in H(K)$.

THEOREM 1.3. A measure μ on K is an annihilating measure for H(K) if and only if there exist distributions $\lambda_1, \dots, \lambda_n$ of order $\leq r-1$ with support in K such that $\mu = \sum \partial \lambda_j / \partial \overline{z}_j$.

It is possible that Theorem 1.1 remains valid if f is merely required to satisfy $\partial f/\partial \bar{z}_j \equiv 0$ on K, $1 \leq j \leq n$. We know of no counterexample.

Theorem 1.2 implies an approximation theorem of the Keldysh-Mergelyan type if, in addition to the above hypotheses, K has the "segment property", i.e., if there is an open cover $\{U_i\}$ of ∂K and corresponding vectors $\{w_i\}$ such that for 0 < t < 1 $z + tw_i$ lies in the interior of K whenever $z \in K \cap U_i$. In this case every function which is continuous on K and holomorphic in the interior of K satisfies the hypotheses of Theorem 1.2 so lies in H(K). In particular, if K is a product of smoothly bounded domains, then K has the segment property. The case r = 1 when K is the closure of a strongly pseudoconvex domain in C^n has been treated by Lieb [8] and Kerzman [7]. We use their method to prove Theorem 1.2.

If we consider Theorem 1.3 in the case r = 1 we conclude that each annihilating measure for H(K) where K is the closure of a strongly pseudo-convex domain is the \bar{z} -divergence of an *n*-tuple of measures supported on K (distributions of order 0). This implies the following localization theorem for annihilating measures which is wellknown in case n = 1 [2, Lemma 3.2.11] and which is a sort of dual version of Theorem 1.2, which it clearly implies.

THEOREM 1.4. Let K be the closure of a strongly pseudoconvex domain in \mathbb{C}^n . Let μ be an annihilating measure for H(K). If $\{U_i\}$ is a finite open covering of K there exist annihilating measures

¹ The referee has pointed out that Kallin, in an unpublished remark and without knowledge of Chirka's paper, observed that her counterexample could be made to yield this additional property.

 μ_i for $H(K \cap \overline{U}_i)$ (in particular each μ_i is supported in U_i) such that $\mu = \sum \mu_i$.

All of our results are derived from an estimate (Theorem 2.2 below) for Cauchy-Riemann operator in certain product domains. This theorem is a generalization of a theorem of Andreotti and Stoll [1] for the case of a polycylinder. Our proof, like theirs, follows the induction procedure used in the proof of the familiar Dolbeaut-Grothendieck lemma, but we make essential use of the representation theorem of Grauert and Lieb [5] for bounded solutions of the Cauchy-Riemann equations in strongly pseudo-convex domains.

2. The basic estimate.

DEFINITION 2.1. An open set G in C^n is called admissible if (a) n = 1 and G is a bounded open set or (b) n > 1 and G is a strongly pseudo-convex domain with C^{∞} boundary.

The following theorem is due to Grauert and Lieb [5] in the case n > 1, and is simply a restatement of known properties of the Cauchy kernel when n = 1.

THEOREM 2.1. Let G be an admissible open set in C^n . Then there exists a differential form $\Omega(\zeta, z)$ of type (n, n-1) in ζ , of type (0, 0) in z, defined in a neighborhood of $\overline{G} \times \overline{G}$ such that

(i) Ω is of class C^{∞} off the diagonal of $G \times G$:

(ii) there is a neighborhood of $\partial G \times G$ in $\overline{G} \times G$ in which $\overline{\partial}_z \Omega = 0$;

(iii) if g is a bounded (0, 1) form of class C^{∞} such that $\bar{\partial}g = 0$ on G, and if

$$f(z) = -\int_{a} g(\zeta) \wedge \Omega(\zeta, z)$$

then $f \in C^{\infty}(G)$ and $\overline{\partial}f = g$ in G;

(iv) there is a constant $\Delta(G)$, independent of z such that

$$\int_{_{G}} |a(\zeta, z)| dm \ (\zeta) \leq rac{arDeta(G)}{n}$$

where $a(\zeta, z)$ is any coefficient of Ω and dm is Lebesgue measure on G;

(v) \overline{G} has a sequence $\{G_{\nu}\}$ of admissible neighborhoods whose intersection is \overline{G} such that $\{\Delta(G_{\nu})\}$ is a constant sequence.

Also, G is the union of an increasing sequence of admissible open sets $\{G_{\nu}\}$ for which $\{\Delta(G_{\nu})\}$ is a constant sequence. B. M. WEINSTOCK

If G is an open set in C^n we denote by $BC^{\infty}(G)$ the space of functions on G whose derivatives of all orders are bounded and continuous on G. We will need the following corollary of Theorem 2.1.

COROLLARY. Let G be an admissible open set in C^n . Let U_k be open in C^{n_k} , k = 1, 2. Suppose that

$$g_1(z, x, w), \ldots, g_n(z, x, w) \in BC^{\infty}(G \times U_1 \times U_2)$$

and that $g = \sum g_j d\bar{z}_j$ satisfies $\bar{\partial}_z g = 0$ in $G \times U_1 \times U_2$. Then there exists $f \in BC^{\infty}(G \times U_1 \times U_2)$ such that

(i) $ar{\partial}_z f = g \ in \ G imes U_1 imes U_2;$

(ii) $||f|| \leq \Delta(G) \max_{1 \leq j \leq n} ||g_j||;$

(iii) if D is a differential operator on $C^{n_1} \times C^{n_2}$ with constant coefficients, then

$$||Df|| \leq \varDelta(G) \max_{1 \leq j \leq n} ||Dg_j||$$
.

(In particular, if each g_j is holomorphic in U_2 for fixed $(z, x) \in G \times U_1$, then f has the same property.)

Here $||f|| = \sup_{G \times U_1 \times U_2} |f|$.

Proof. Let $f(z, x, w) = -\int_{G} g(\zeta, x, w) \wedge \Omega(\zeta, z)$, where Ω is as in Theorem 2.1. Since all the derivatives of g are bounded we may differentiate under the integral sign as often as we wish. The corollary then follows immediately from Theorem 2.1.

Let $G = G_1 \times \cdots \times G_r$ be an open set in C^n where each G_i is an open set in C^{n_i} . If f is a function on G and $g = \sum g_j d\overline{z}_j$ is a (0, 1) form on G we will use the following notation:

$$\|f\|_{G} = \sup_{G} |f|$$

 $\|f\|_{G^{(k,t)}} = \max_{\alpha \in A_{k,t}} \|\partial^{\alpha} f/\partial \overline{z}^{\alpha}\|_{G}$

(where $\alpha = (\alpha_1, \dots, \alpha_n)$ is an *n*-tuple of nonnegative integers, $|\alpha| = \sum \alpha_j$,

$$\partial^{lpha} f/\partial \overline{z}^{lpha} = \partial^{|lpha|} f/\partial \overline{z}_1^{lpha_1} \cdots \partial \overline{z}_n^{lpha_n}$$
 ,

and

$$egin{aligned} A_{k,t} &= \{lpha = (lpha_1, \, \cdots, \, lpha_n) \colon |lpha| \leq k \quad ext{and} \quad lpha_j = 0 \ & ext{if} \quad j > n_1 + \cdots + n_i \}) \ &\||f||_G^{(k)} &= \||f||_G^{(k,r)} \ &\||g||_G^{(k,t)} &= \max_{1 \leq j \leq n} \||g_j||^{(k,t)} \ &\|g\|_G^{(k)} &= \||g\|_G^{(k,r)} \ . \end{aligned}$$

814

We can now state our basic result.

THEOREM 2.2. Let $G = G_1 \times \cdots \times G_r$ be an open set in C^n where each G_i is an admissible open set in C^{n_i} . Let g be a $C^{\infty}(0, 1)$ form in G such that $\overline{\partial}g = 0$ in G and $||g||_G^{(r-1)} < \infty$. Then there exists $f \in C^{\infty}(G)$ such that

(i) $\bar{\partial}f = g$ in G

(ii) $||f||_{G} \leq (3\varDelta)^{r} ||g||_{G}^{(r-1)}$.

Here Δ is any number ≥ 1 such that $\Delta \geq \Delta(G_i)$ as defined in Theorem 2.1.

Proof. We first prove the theorem in the case when each coefficient of g is in $BC^{\infty}(G)$.

If g is a (0, 1) form on G, then $g = \sum g^i$ where each g^i is a (0, 1) form on G_i with coefficients depending only on the other variables as parameters. For each $k, 1 \leq k \leq r$ we consider the following Assertion k:

Let $G = G_1 \times \cdots \times G_r$ be as above. Let g be a (0, 1) form on G whose coefficients lie in $BC^{\infty}(G)$ and such that $\overline{\partial}g = 0$ in G. Suppose that

$$g = \sum_{i=1}^k g^i$$

where each g^i is a (0, 1) form on G_i , (with coefficients depending also on the other variables). Then there exists $f \in BC^{\infty}(G)$ such that

(i) $\bar{\partial}f = g$

(ii) $||f||_{G} \leq (3\varDelta)^{k} ||g||^{(k-1,k-1)}$.

We shall prove Assertion 1 and then show that for $k = 1, 2, \dots, r - 1$, Assertion k implies Assertion k + 1. (Of course Assertion r implies Theorem 2.2 in the case g is of class BC^{∞} .)

If g satisfies the hypotheses of Assertion 1, then g is a $\bar{\partial}$ -closed (0, 1) form in G_1 whose coefficients are holomorphic functions in $G_2 \times \cdots \times G_r$ for fixed z in G_1 . Assertion 1 thus follows directly from the Corollary to Theorem 2.1.

Suppose now that Assertion k is true and that g satisfies the hypotheses of Assertion (k + 1). Then

$$g=\sum\limits_{i=1}^{k+1}g^i$$
 .

Notice that $\bar{\partial}g = 0$ implies $\bar{\partial}_{k+1}g^{k+1} = 0$ (where $\bar{\partial}_{k+1}$ differentiates only with respect to the variables from G_{k+1}) and that the coefficients of g are holomorphic in $G_{k+2} \times \cdots \times G_r$. Applying the corollary to Theorem 2.1 we conclude the existence of $u \in BC^{\infty}(G)$ such that $\bar{\partial}_{k+1}u = g^{k+1}$ and such that u is holomorphic in $G_{k+2} \times \cdots \times G_r$. Let $s = g - \bar{\partial}u$. Then $\bar{\partial}s = \bar{\partial}g = 0$ and s is clearly a sum of (0, 1)-forms involving only differentials in the variables from G_1, \dots, G_k . By Assertion k there exists $t \in BC^{\infty}(G)$ such that $\bar{\partial}t = s$.

Let f = u + t. Then $\overline{\partial} f = g$. Also,

$$\|f\| \le \|u\| + \|t\|$$

 $\le \Delta \|g\| + (3\Delta)^{k} \|s\|^{(k-1,k-1)}$

But

$$\begin{split} ||s||^{(k-1,k-1)} &\leq \left\|\sum_{i=1}^{k} g^{i}\right\|^{(k-1,k-1)} \\ &+ \max_{1 \leq j \leq n_{k}} ||\partial u/\partial \overline{z}_{j}||^{(k-1,k-1)} \\ &\leq ||g||^{(k-1,k-1)} + ||u||^{(k,k)} \\ &\leq ||g||^{(k-1,k-1)} + d||g||^{(k,k)} \\ &\leq (2d) ||g||^{(k,k)} . \end{split}$$

Hence

$$egin{aligned} ||f|| &\leq (arDelta+(2arDelta)(3arDelta)^k)||g||^{(k,k)} \ &\leq (3arDelta)^{k+1}||g||^{(k,k)} \ . \end{aligned}$$

This concludes the proof in the case when g is of class BC^{∞} .

Suppose now that g satisfies the hypotheses of Theorem 2.2. By Theorem 2.1 and what has been proved so far, we can find a sequence of open sets $\{G_{\nu}\}$ and a constant C independent of ν such that

- (i) $\bar{G}_{\nu} \subset G_{\nu+1} \subset G$
- (ii) $G = \bigcup G_{\nu}$

(iii) there exists $f_{\nu} \in BC^{\infty}(G_{\nu})$ such that $\overline{\partial}f_{\nu} = g$ on G_{ν} and

$$||f_{
u}||_{G_{u}} \leq C \, ||g||_{G}^{(r-1)}$$
 .

For each μ let $S_{\mu} = \{f_{\nu} | G_{\mu}: \nu \geq \mu\}$. Since $f_{\nu} - f_{\mu}$ is holomorphic on G_{μ} for each ν , and $\{f_{\nu} - f_{\mu} | G_{\mu}\}$ is uniformly bounded, S_{μ} is relatively compact by Montel's theorem. Thus we may choose, for each μ , a subsequence $\{f_{\nu,\mu}\}$ of S_{μ} which converges uniformly on G_{μ} , such that $\{f_{\nu,\mu+1}\}$ is a subsequence of $\{f_{\nu,\mu}\}$. Then the diagonal sequence $\{f_{\mu,\mu}\}$ converges uniformly on each G_{μ} to a continuous function fdefined on all of G. But f is in fact in $C^{\infty}(G)$ since, if $\nu > \mu$, $f_{\nu\nu} - f_{\mu\mu}$ is holomorphic on G_{μ} and $f_{\nu\nu} - f_{\mu\mu} \rightarrow f - f_{\mu\mu}$ on G_{μ} . Thus $f - f_{\mu\mu}$ is holomorphic, hence in $C^{\infty}(G_{\mu})$ so $f \in C^{\infty}(G_{\mu})$ for each μ . This also shows that $\bar{\partial}f = g$ on G. Finally, if $z \in G$ then there exists μ such that $z \in G_{\nu}$ for $\nu \geq \mu$. This means that

$$|f_{\mu\mu}(z)| \leq C ||g||_{G}^{(r-1)}$$

816

but $f(z) = \lim f_{\mu\mu}(z)$ so

$$||f||_{_{G}} \leq C ||g||_{_{G}}^{_{(r-1)}}$$
 .

3. Proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. We may suppose that f has compact support in U. Choose $\phi \in C^{\infty}(\mathbb{C}^n)$ such that $\phi \ge 0$, $\int \phi = 1$ and $\phi = 0$ outside the closed unit ball. For each $\delta > 0$ define f_{δ} by

$$f_{\mathfrak{z}}(\pmb{z}) = \int f(\pmb{z} - \delta w) \phi(w) dw \; .$$

Then $f_{\delta} \in C^{\infty}(\mathbb{C}^n), f_{\delta} \to f$ uniformly as $\delta \to 0$ and for each α ,

$$(\partial^lpha f_{\delta}/\partial \overline{z}^lpha)(z) = \int (\partial^lpha f_{\delta}/\partial \overline{z}^lpha)(z - \delta w) \phi(w) dw$$

so if G is an open set in C^n ,

$$\||f_{\delta}\||_G^{(s)} \leq \|f\||_{G^{\delta}}^{(s)} \qquad s=1,\,2,\,\cdots$$

where $G^{\delta} = \{z - \delta w : z \in G, |w| \leq 1\}$.

For each $i, 1 \leq i \leq r$ we can find a sequence $\{G_i^{\iota}\}$ of admissible neighborhoods such that $K_i = \cap G_i^{\iota}$ and such that $\{\varDelta(G_i^{\iota})\}$ is a constant sequence. Let us denote the constant by \varDelta_i . Choose $\varDelta \geq 1$ such that $\varDelta \geq \varDelta_i$ for $1 \leq i \leq r$.

Let $\varepsilon > 0$ be given. Choose δ_0 such that $||f - f_{\delta}||_{\kappa} < \varepsilon/2$ if $\delta < \delta_0$. Choose ν such that if $G = G_1^{\nu} \times \cdots \times G_r^{\nu}$, then

$$||f||_{\scriptscriptstyle G}^{\scriptscriptstyle (r)} < (3\varDelta)^{-r}{\boldsymbol \cdot} {\varepsilon\over 4}$$
 .

Then there exists $\delta < \delta_0$ such that

$$||f||_{G^\delta}^{(r)} < (3\varDelta)^{-r} rac{arepsilon}{2}$$
 .

By Theorem 2.2 we can choose $u \in C^{\infty}(G)$ such that $\overline{\partial} u = \overline{\partial} f_{\delta}$ and

$$||u||_{G} \leq (3\varDelta)^{r} ||\overline{\partial}f_{\delta}||_{G}^{(r-1)}$$

Then $h = f_{\delta} - u$ is holomorphic in a neighborhood of K and

$$egin{aligned} ||f-h||_{\kappa} &\leq ||f-f_{\delta}||_{\kappa}+||f_{\delta}-h||_{\kappa} \ &$$

Proof of Theorem 1.2. (Here we follow Lieb [8].) Since K is compact we can choose finitely many neighborhoods U_{x_1}, \dots, U_{x_m} which cover K. Let $U = U_{x_1} \cup \dots \cup U_{x_m}$. Choose sequences $\{G_i^{\gamma}\}$ of admissible neighborhoods of K_i , $1 \leq i \leq r$ as in the proof of Theorem 1.1 and let \varDelta be as above.

Let $\varepsilon > 0$ be given. Choose ν such that $G^{\nu} = G_1^{\nu} \times \cdots \times G_r^{\nu}$ lies in U, and such that there exist holomorphic functions h_j on $U_{x_j} \cap G^{\nu}$ with $||f - h_j||_{U_{x_j} \cap K} < \varepsilon$. Notice that $|h_i - h_j| \leq |f - h_i| + |f - h_j| < 2\varepsilon$ on $U_{x_i} \cap U_{x_j} \cap K$. By choosing ν larger if necessary we may suppose that $|h_i - h_j| < 4\varepsilon$ on $U_{x_i} \cap U_{x_j} \cap G^{\nu}$.

Choose a C^{∞} partition of unity ϕ_1, \dots, ϕ_m subordinate to the cover $\{U_{x_i}\}$. Let $g_k = \sum_i \phi_i(h_k - h_i)$. Notice that $||g_k||_{Ux_k \cap K} < 2\varepsilon$. Also $g_j - g_k = h_j - h_k$ and $\overline{\partial}g_j - \overline{\partial}g_k = 0$ on $U_{x_j} \cap U_{x_k} \cap G^{\nu}$. Thus $\{\overline{\partial}g_j\}$ defines a (0, 1) form g on G^{ν} which satisfies $\overline{\partial}g = 0$ so by Theorem 2.2 we can find $u \in C^{\infty}(G^{\nu})$ that $\overline{\partial}u = g$ on G^{ν} and

$$||u||_{G^{\nu}} \leq (3\varDelta)^r ||g||_{G^{\nu}}^{(r-1)}$$

But

$$||g||_{G^{\nu}}^{(r-1)} \leq \max_{1 \leq k \leq n} ||g_{k}||_{G^{\nu} \cap U_{x_{k}}}^{(r)}$$

and

$$\partial^lpha g_{\,k}/\partial \overline{z}^lpha\,=\sum\limits_i\,(\partial^lpha \phi_i/\partial \overline{z}^lpha)(h_k\,-\,h_i)$$
 .

Hence $||g||_{\mathcal{C}^{\nu-1}}^{(r-1)} \leq 4\varepsilon C$ where C is a constant depending only on the partition of unity $\{\phi_i\}$.

Let $b_j = g_j - u$. Then $\overline{\partial} b_j = 0$ on $U_{x_j} \cap G^{\nu}$ and $b_j - b_k = g_j - g_k = h_j - h_k$. Thus $\{h_j - b_j\}$ defines a holomorphic function h on G^{ν} and

$$egin{aligned} ||f-h||_{\scriptscriptstyle{K}} &\leq \max_{1 \leq j \leq m} \left(||f-h_j||_{\scriptscriptstyle{K}} + ||g_j||_{\scriptscriptstyle{K}}
ight) + ||u||_{\scriptscriptstyle{K}} \ &\leq arepsilon + 2arepsilon + 4C(3arepsilon)^r arepsilon \ , \end{aligned}$$

where C and \varDelta are independent of ε . Since ε was arbitrary, this completes the proof.

4. Annihilating Measures for H(K). If G is an open set in \mathbb{C}^n we denote by $A^{(0,1)}(G)$ the space of differential forms of type (0, 1) on G of class \mathbb{C}^{∞} . We topologize $A^{(0,1)}(G)$ as the direct sum of n copies of the Frechet space $\mathbb{C}^{\infty}(G)$ with the topology of uniform convergence on compact subsets of G of derivatives of all orders. The dual space of $\mathbb{C}^{\infty}(G)$ is the space of distributions on \mathbb{C}^n whose support is a compact subset of G. We will identify the dual space of $A^{(0,1)}(G)$ with the space of distributions with compact support in G. LEMMA 4.1. Let G be a domain of holomorphy in \mathbb{C}^n , K a compact subset of G, and μ an annihilating measure for H(K). Then there exist distributions $\lambda_1, \dots, \lambda_n$ with compact support in G such that $\mu = -\sum \partial \lambda_j / \partial \overline{z}_j$.

Proof. $C^{\infty}(G)$ and $A^{(0,1)}(G)$ are Frechet spaces. Since G is a domain of holomorphy, $\bar{\partial}$ maps $C^{\infty}(G)$ onto the closed subspace of (0, 1) forms g satisfying $\bar{\partial}g = 0$. The measure μ , considered as a continuous linear functional on $C^{\infty}(G)$, annihilates the kernel of $\bar{\partial}$, so by a theorem of Dieudonné and Schwartz [4], μ is in the image of the adjoint, $\bar{\partial}^*$, of $\bar{\partial}$. But if $\lambda = (\lambda_1, \dots, \lambda_n)$ is an *n*-tuple of distributions with compact support in G and $f \in C^{\infty}(G)$, then

$$egin{aligned} & (ar{\partial}^*\lambda)(f) = \lambda(ar{\partial}f) = \sum \lambda_j (\partial f/\partialar{z}_j) \ &= -\sum (\partial \lambda_j/\partialar{z}_j)(f) \;. \end{aligned}$$

Thus for some $\lambda_1, \dots, \lambda_n$ we have $\mu = -\sum \partial \lambda_j / \partial \overline{z}_j$.

We will also consider, for a bounded open set G in C^n , the Banach space $C^r(\overline{G})$ of continuous functions on \overline{G} whose derivatives of order $\leq r$ are bounded and continuous on G, with the norm

$$||f||_G^r = \max_{|lpha| \leq r} ||D^{lpha}f||_G$$

where α is a 2*n*-tuple of non-negative integers and

$$D^{lpha}=(\partial/\partial z_{\scriptscriptstyle 1})^{lpha_{\scriptscriptstyle 1}}\cdots (\partial/\partial z_{\scriptscriptstyle n})^{lpha_n}(\partial/\partial \overline{z}_{\scriptscriptstyle 1})^{lpha_{n+1}}\cdots (\partial/\partial \overline{z}_{\scriptscriptstyle n})^{lpha_{2n}}$$
 .

A continuous linear functional on $C^r(\overline{G})$ is easily seen to define a distribution on C^n with support in \overline{G} . In addition, we will denote by $B_r^{(0,1)}(\overline{G})$ the space of (0, 1) forms on G with coefficients in $C^r(\overline{G})$, topologized as the direct sum of n copies of $C^r(\overline{G})$ with the norm

$$||\sum g_j d\overline{z}_j||_G^r = \max_{1 \leq j \leq n} ||g_j||_G^r$$
 .

If $G_1 \subset G_2$ are two bounded open sets in C^n let $R: B_r^{(0,1)}(G_2) \to B_r^{(0,1)}(G_1)$ be the operator which restricts forms in G_2 to G_1 . Then R^* is a norm-decreasing embedding of the dual space of $B_r^{(0,1)}(G_1)$ into $B_r^{(0,1)}(G_2)^*$ since, if $\lambda \in B_r^{(0,1)}(G_1)^*$, and $g = \sum g_j d\overline{z}_j$ is in $B_r^{(0,1)}(G_2)$,

$$egin{aligned} |(R^*\lambda)(g)| &= |\lambda(Rg)| \leq ||\lambda|| \, ||Rg||_{\mathcal{G}_1}^r \ &\leq ||\lambda|| \, ||g||_{\mathcal{G}_2}^r \, , \end{aligned}$$

so $||R^*\lambda|| \leq ||\lambda||$.

With these preliminaries we can proceed to the proof of Theorem 1.3.

Proof of Theorem 1.3. Let $\{G_{\nu}\}$ be a sequence of bounded open

neighborhoods of K such that

- (i) $\overline{G}_{\nu} \subset G_{\nu-1}$
- (ii) $K = \cap G_{\nu}$

(iii) there exists a constant C independent of ν such that if $g \in A^{(0,1)}(G_{\nu})$, $\bar{\partial}g = 0$ in G_{ν} , and $||g||_{G^{\nu-1}}^{(r-1)} < \infty$, then there exists $f \in C^{\infty}(G_{\nu})$ such that $\bar{\partial}f = g$ and

$$||f||_{G_{\nu}} \leq C ||g||_{G^{
u}}^{(r-1)}$$
 .

If μ is an annihilating measure for H(K) we can apply Lemma 4.1 to obtain, for each ν , an *n*-tuple $\lambda^{\nu} = (\lambda_{1}^{\nu}, \dots, \lambda_{n}^{\nu})$ of distributions with compact support in G_{ν} such that $\mu = -\sum \partial \lambda_{j}^{\nu} / \partial \overline{z}_{j}$. Let W_{ν} be the subspace of $C^{r-1}(\overline{G}_{\nu})$ consisting of restrictions to G_{ν} of C^{∞} functions on C^{n} . If $f \in W_{\nu}$ we can find $h \in C^{\infty}(G_{\nu})$ such that f - h is holomorphic on G_{ν} and $||h||_{G_{\nu}} \leq C ||\overline{\partial}f||_{G_{\nu}}^{(r-1)}$ where C is the constant in (iii) above. Thus

where $||\mu||$ is the total variation of μ . This means that λ^{ν} defines a continuous linear functional on the subspace $\bar{\partial} W_{\nu}$ of $B_{r-1}^{(0,1)}(G_{\nu})$ of norm $\leq C ||\mu||$. By the Hahn-Banach theorem there is an *n*-tuple, which we will continue to denote by λ^{ν} , of continuous linear functionals on $C^{r-1}(\bar{G}_{\nu})$ such that

- (a) $\lambda^{\nu}(\bar{\partial}f) = \int f d\mu$ for all $f \in C^{\infty}(C^n)$
- (b) $\|\lambda^{\nu}\| \leq C \|\mu\|$.

Now, by composing with the adjoint of the appropriate restriction operator we may consider each λ^{ν} so obtained as a continuous linear functional on $B_{r-1}^{(0,1)}(G_i)$. Then the sequence $\{\lambda^{\nu}\}$ constitutes a bounded sequence of elements in the dual space of a separable Banach space. Consequently, there is a subsequence $\{\lambda^{\nu'}\}$ and an *n*-tuple $\lambda =$ $(\lambda_1, \dots, \lambda_n)$ of continuous linear functionals on $C^{r-1}(\overline{G}_1)$ such that $\lambda^{\nu'} \to \lambda$ in the weak star topology. Since each $\lambda_j^{\nu'}$ is supported, as a distribution, on \overline{G}_{ν} , and since $K = \bigcap G_{\nu'}$ it follows that the support of each λ_j , as a distribution, lies in K. Moreover, if f is a C^{∞} function on C^n then

$$\lambda(ar\partial f) = \lim \lambda^{
u'}(ar\partial f) = \int f d\mu$$
 ,

i.e., $\mu = -\sum \partial \lambda_j / \partial \overline{z}_j$. Finally, it is clear that each λ_j is of order $\leq r - 1$.

Conversely, suppose μ is a measure on K, and $\mu = \sum \partial \lambda_j / \partial \bar{z}$, where $\lambda_1, \dots, \lambda_n$ are distributions with compact support on K. If f is holo-

820

morphic in a neighborhood of K, then $\partial f/\partial \bar{z}_j$, $1 \leq j \leq n$, are identically 0 in a neighborhood of K so

$$egin{aligned} \int f d\mu &= \sum \left(\partial \lambda_j / (\partial ar{z}_j) (f)
ight) \ &= - \sum \lambda_j (\partial f / \partial ar{z}_j) \ &= 0 \end{aligned}$$

since the λ_j are supported on K.

Proof of Theorem 1.4. Let $\{\phi_i\}$ be a C^{∞} partition of unity subordinate to the open covering $\{U_i\}$, i.e., suppose $\phi_i \in C^{\infty}(U_i), \phi_i$ has compact support, $0 \leq \phi_i \leq 1$, and $\sum \phi_i = 1$ on a neighborhood of K. If μ is an annihilating measure for H(K), then by Theorem 1.3 there exist measures $\lambda_1, \dots, \lambda_n$ on K such that

$$\begin{split} \mu &= -\sum \partial \lambda_j / \partial \overline{z}_j = -\sum_j \partial \left(\sum_i \phi_i \lambda_j \right) / \partial \overline{z}_j \\ &= -\sum_j \sum_i \phi_i (\partial \lambda_j / \partial \overline{z}_j) - \sum_j \sum_i (\partial \phi_i / \partial \overline{z}_j) \lambda_j \\ &= \sum_i \left\{ \phi_i \mu - \sum_j (\partial \phi_i / \partial \overline{z}_j) \lambda_j \right\} \\ &\equiv \sum_i \mu_i \end{split}$$

where each μ_i is a measure compactly supported on $U_i \cap K$. If h is holomorphic on $U_i \cap K$, then

$$\partial (h\phi_i)/\partial \overline{z}_j = h(\partial \phi_i/\partial \overline{z}_j)$$

for $1 \leq j \leq n$. Thus

$$egin{aligned} &\int\!\!hd\mu_i = \int\!\!h\phi_i d\mu - \sum_j\!\!\int\!\!h(\partial\phi_i/\partial\overline{z}_j)d\lambda_j \ &= \int\!\!h\phi_i d\mu - \sum_j\!\!\int\!(\partial/\partial\overline{z}_j)(\phi_ih)d\lambda_j \ &= 0 \;. \end{aligned}$$

References

 A. Andreotti and W. Stoll, The extension of bounded holomorphic functions from hypersurfaces in a polycylinder, Rice University Studies, 56 No. 2 (1970), 199-222.
 A. Browder, Introduction to Function Algebras, W. A. Benjamin, Inc., New York, 1969.

3. E. M. Chirka, Approximation by holomorphic functions on smooth manifolds in C^n , Math. USSR Sbornik 7 (1969), 95-114 (translated from Mat. Sbornik, **78** (120) (1969) No. 1). 4. J. Dieudonné and L. Schwartz, La dualité dans les espaces (F) et (LF), Annales Inst. Fourier, **1** (1949), 61-101.

B. M. WEINSTOCK

5. H. Grauert and I. Lieb, Das Ramirezsche Integral und die Lösung der Gleichung $\overline{\delta f} = a$ im Bereich der beschränkten Formen, Rice University Studies, **56** No. 2 (1970), 29-50.

6. E. Kallin, A non-local function algebra, Proc. Nat. Acad. Sciences, 49 (1963), 821-824.

7. N. Kerzman, Hölder and L^p estimaties for solutions of $\bar{\partial} u = f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math., **24** (1971), 301-379.

8. I. Lieb, Ein Approximationssatz auf streng pseudoconvexen Gebieten, Math. Ann., **184** (1969), 56-60.

Received September 22, 1971 and in revised form February 3, 1972. This research was supported by NSF Grants GP-11969 and GP-21326 at Brown University.

BROWN UNIVERSITY