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THE CONVEX CONE OF ̂ -MONOTONE FUNCTIONS

R. M. RAKESTRAW

A reformulation of the Krein-Milman Theorem is used to
obtain an integral representation of each function in a
certain class of real monotonic functions defined on [0, 1].

Let {%u Ϊ2f i&9 } denote a fixed sequence all of whose
terms are either 0 or 1, and let Mi be the set of real non-
negative functions / on [0, 1] such that

(-l)<H>4/(αO = (-l)«i> [fix + A) ~f(x)] έ 0 ,

h > 0, for [x, x + h[ c [0, 1]. Let Mn9 n>l, be the set of
functions belonging to JlfΛ-i such that

i-iy^jtfix) = (-i)« > [jrι/(» + A) - ^r1/^)] ̂  o

for O, x + nh]<z [0, 1]. If feMn9 then / is said to be an w-
monotone function. Since the sum of two w-monotone func-
tions is in Mn and since a nonnegative real multiple of an
%-monotone function is an %-monotone function, the set Mn

is a convex cone. It is the purpose of this paper to give
the extremal elements (i.e., the generators of extreme rays)
of this cone, and to show that for the ^-monotone functions
an integral representation in terms of extremal elements is
possible.

A portion of this work appears in the author's Ph. D. dissertation
written at Oklahoma State University under the direction of Profes-
sor E. K. McLachlan at which time the author was an NDEA Graduate
Fellow. The proof of Proposition 3 was suggested by the referee.
The author gratefully acknowledges the guidance given by Professor
McLachlan and the assistance of the referee's comments.

1* Extremal elements of AfΛ* Let / be a function in Mx which
assumes exactly one positive value in [0,1]. If f = fι + f29 where
/i and f2 e Mί9 then /i and f2 are zero where / is zero and fx and f2

are constant where / is constant. Therefore, fx and f2 are propor-
tional to / and / is an extremal element of Mt. On the other hand,
if / assumes at least two positive values in [0,1], then a nonpropor-
tional decomposition can be given by taking

A(x) = min {f{x), (1/2) [/(0) + /(I)]}

and f2=f — fx. Therefore, the extremal elements of M1 are precisely
the functions in M1 which assume exactly one positive value in [0,1].

Let feMn, n>l, and let α0 = 0 if it = 0 and a0 = 1 if i, = 1.
If /(α0) > 0 and / is not constant, then take /^/(oo) and f2 = f-fί.
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736 R. M. RAKESTRAW

In so doing, fγ and f2 e Mn and fx and f2 are not proportional to /.
Therefore, the only extremal elements / of Mn with /(α0) > 0 are the
positive constant functions.

Let feMn, n>l, and define a[ — 1 — α0, if ί2 = 0 and a[ ~ a0 if
i2 = 1, where α0 is defined above. It can be shown that if feMn,
then / must be continuous on [0,1] except at a[ [9, p. 148]. It follows
that the only extremal elements of Mί that are in Mn are those
which are continuous on [0, 1] except, possibly, at αj, and these functions
are again extremal elements of Mn.

If i2 = 0,feMn, n > 1, / is not constant on (0, 1) and / is dis-
continuous at αj = 1 — α0, then take fx(x) = 0 for x e [0, 1] and x Φ a[,

fM) = / ( O - limit f{x) > 0
x-+a'Q

and f2 = / — fim In so doing, fx and /2 e Mn and /2 and f2 are not
proportional to /. Hence, whenever i2 = 0, the only extremal elements
of Mn that are discontinuous at αj = 1 — α0 are the functions which
are positive at a[ and zero elsewhere on [0,1].

On the other hand, if ί2 = 1, feMn9 n > 1, / is not constant
on (0, 1) and / is discontinuous at a0 = a0, then let

fx{x) = limit f(x) > 0 ,
x->a0

x e [0,1] and x Φ αό, Λ(αί) = 0 and /2 = / — / lβ Then /x and /2 are in
Mn and /j. and /2 are not proportional to /. Therefore, whenever
ί2 = 1, the only extremal elements of Mn that are discontinuous at
aΌ = a0 are the functions which are zero at a[ and equal to a positive
constant elsewhere on [0,1].

Consequently, the extremal elements of Mny n >1, which are not
extremal elements of Mλ must be zero at α0 and continuous on [0,1]
It will be shown that these extremal elements of Mn are indefinite
integrals of the extremal elements of a cone which is similar to Mx.
This cone is given in Definitions 1 and 2.

DEFINITION 1. If g is a real function monotonic on (0,1) and
n > 1, then define the (possibly extended real-valued) function / (g,
n — 1; ) by the equation

S x Cti [t%— 3 Ctn—2

\ \ I g(t) dt dtn_2 dt2 dtx

for xe(0,1), where a0 = (1/2) [1 - (-l) ( ί l )] and

α, = (1/2) [1 - (—l)<*J+*i+i>], 1 ^ i ^ w - 2 .



THE CONVEX CONE OF %-MONOTONE FUNCTIONS 737

DEFINITION 2. Let Kn, n > 1, denote the convex cone of real
functions g on (0,1) such that

(a) g is right-continuous;
(b) (-ly^gix) ^ 0, for x e (0,1);
(c) {-iγ^Ai g(x) ^ 0, for 0 < x < x + h < 1;
(d) I{g, n — 1; x) is finite, for xe (0, 1); and
(e) limit I(g, n — 1; x) exists and is finite.

Note. If g e Kn, n > 1, then I{gy n — 1; ) will denote the
function which is the continuous extension to [0, 1] of the function
given in Definition 1.

DEFINITION 3. Let a and b be two distinct numbers in the in-
terval [0, 1] and define the function χ(a>b) on (0, 1) by

X(α,&)0&) — 1> if x is between a and b or 0 < x — min {a, b};

Zcα,&)(β) — 0, otherwise.

DEFINITION 4. If m is a nonzero real number, ξ e [0,1] and
n > 1, then define the function β(m, ξ, n — 1; ) by the equation

e(m, f, w - 1; α) = mJ(χ(e,1_αn_ l), u - 1; α;)

for 0 ^ α? ^ 1, where an^ = (1/2) [1 - ( - l y ' - i + ^ J .

The principal theorem of this section can now be stated and the
remainder of the section will be devoted to its proof. The key results
are Lemma 3 and Proposition 2.

THEOREM 1. The extremal elements of Mλ are the functions in
Mx which assume exactly one positive value in [0,1]. The positive
constant functions and the extremal elements of Mί which are dis-
continuous at a[ = (1/2) [1 + ( —1) { 1 I + * 2 ) ] are extremal elements of Mn,
n > 1. The functions e(m, ξ, n — 1; ), where ( —l) ( ^- l } m > 0 and
ξ G (0, 1) or ξ = αΛ_i are extremal elements of Mn, n > 1. There are
no other extremal elements of Mz. The only other extremal elements
of Mn, n > 2, are those functions e(m, ak, k; ), where (—l)(ί/e) m > 0
and 1 ^ k ^ n — 2.

In the same manner that the extremal elements of M1 were found,
it can be shown that the extremal elements of Kn are precisely those
functions in Kn which assume exactly one nonzero value in (0, 1).
Before determining the extremal elements of Mn, it is shown in the
following three lemmas how the ^-monotone functions are related to
the functions in Kn, where n > 1.
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LEMMA 1. If feMn, then f[n~ι) e Kn, where n > 1.

Proof. Since {-iyin)An

h f{x) ^ 0 for 0 ̂  x < x + nh ̂  1, then
y(*>-2) e x i s t s a n ( j is continuous on (0,1) and (—1)<*»>/<»-2> is convex
[1]. Therefore (—l)(^/(w-2) has a right-continuous, nondecreasing
right-hand derivative [4, p. 10]. It follows that (-1)(< } A\fin-ι){x) ^ 0
for 0 < x + h < 1. If / e l , , then (-l)(4«-i>j -i /(&) ^ 0 for
0 ^ # < # + (w — I) h ̂ 1, which implies that

for 0 ̂  x < x + δ, + δ2 + + δn_, ̂  1 [1]. It then follows that
(_l)(V-i)/j*-i)(£) ^ o for 0 < x < 1, since f[n~ι) exists on (0,1). It
remains to show that

limit I{fin~ι\n~ 1; x)

exists and is finite and this proof will be by induction on n.
If feM2, then

f{x) = Γ f[(t) dt + limit f{x) ,

which implies that

limit Iifί, 1; x) - limit fix) - limit /(a)

and this latter limit exists and is finite since / is monotonic on [0,1]
[4, Theorem 1.1]. Now assume that feMn implies that

limit Iifin-γ\n~ 1; x)
x-*l~aQ

exists and is finite and let feMn+1. Then feMn and it follows from
the first part of the proof that (—l)(*V-i>ŷ -i) is nonnegative and
monotonic on (0,1) and

= inf {(-ly^f^ix): 0 < x < 1} .

Therefore,

limit I(fin),n; x)

= limit K/"1-" - /'-"(α.-,), n-l x)

= limit I (/<"-", n-l x)- / ' - " ( α , ^ / (1, w - 1; »)
aj-»l-α0

exists and is finite by the induction hypothesis.
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LEMMA 2. If g e Kn, then I (g, n — 1; ) e Mn, where n > 1.

Proof. The proof will be by induction on n. If ge K2, then

I(flr,l;s) = Γ 9®dt

for x e [0,1], and since (~iy^g(t) ^ 0, ί e (0,1), and

t h e n I {g, 1 ; a?) ^ 0 . I f O ^ a ? < » + A ^ l , t h e n

+ \(-iy^Jι

hI(g, 1; x) = (-l)"ι)l7(<) dt ^ 0 .

Since (—iyi2)g is nondecreasing, then J ((—l)(*2)flr, 1; •) is convex [4,
p 13]. I t follows t h a t {-iy^A\I(g9l;x)^0 for 0^,x<x + 2h£l,

and hence, /(g, 1; ) eΛf8. Assume that I(g, n — 1; )eMn for g e Kn

and ^ > 1. If g e KΛ+l9 then let

f(x) = j] flr(ί)dί,

for α?e(0,1). Since (—l){in)g is nonnegative and

it is easily seen that feKn and it follows from the induction hy-
pothesis that I(g, n; •) = /(/, n — 1; •) eΛfΛ. By a repeated applica-
tion of the mean value theorem for a Riemann integral, it can be
shown that

for 0^x<ξ<x + (n — l)h^l. Since (—ly^+ύg i s nondecreasing,
then (—iy^+^f is convex on (0,1) [4, p. 13]. It follows that

; a?) - (- l )^^ !^- 1 /^, Λ; X)

for 0 ̂  a? < a? + (w + l)h ^ 1, and this inequality, together with the
fact that I(g, n; )eMn implies that I(g, n; ) eMn+1.

In the proofs that follow, f{k){ak) should be interpreted as

f*\ah) = limit f<»(x) ,
x-+ak

where feMn, n > 2, and 1 ̂  & ̂  ̂  - 2. Since /(&) e iΓ^+i, this limit
will always exist and be finite. It is a consequence of Lemmas 1 and
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2 that / = I(fίn~ί], n - 1; .) whenever feMn, n>l, and f{k)(ak) = 0
for 0 ίg k ^ n — 2. It is shown in the following lemma that extremal
elements of Mn can be obtained directly from the extremal elements
of Kn.

LEMMA 3. If g e Kn and f — I(g, n — 1; ), then f is an extremal
element of Mn if, and only if, g is an extremal element of Kn, where

l

Proof. Suppose that / is an extremal element of Mn. If g1 and
g2 e Kn such that g = g1 + g2, then

/ = I(g, n - 1; ) = I{g1 + g2, n - 1; )

= I(gu n — l; ) + I(g2, n - 1; ) •

If fs = I(gi9n- 1; ) , i = 1,2, then f, and f2eMn and / = / 1 + / a .
Since / is an extremal element of M"n, there are numbers λ̂  ̂  0 such
that fj = λ,/, i = 1, 2, which implies that gά = λy/j*-" = λ^, i = 1, 2,
and g is therefore an extremal element of Kn.

Conversely, if g is an extremal element of Kn and fx and f2 e Mn

such that / = Λ + / 2 , then ^ and # 2e iΓu and ^ + g2 = fl"-" = gr,
where ^ is the (w — 1) th right derivative of fj9 j = 1, 2. This
implies there are constants \3- ̂  0, j = 1, 2, such that gr5 = λ3 gr. It is
evident from the definition of / that f{k){ak) — 0, where 0 ^ k <^ n — 2.
This, together with the fact that f{

3

k) e Kk+1 for 1 <^ k ^ n — 2, implies
that / f >(%) = 0, j = 1, 2 and 0 ^ ifc ̂  w - 2.

Hence,

for y = 1, 2, and / is therefore an extremal element of Mn.

PROPOSITION 1. The function e{m, ξ, n — 1; •) is an extremal
element of Mn, n>l, where ( —l)14*-^ m > 0 απd f 6 (0, 1) or ξ = αn_ lβ

Proof. Since mχ(ζfl_an_l} is an extremal element of iΓw whenever
)(^-i) m > o and f e (0* 1) or £ = α ^ , and

e(m, ξ,n-l; ) = I ( m χ ^ ^ ^ , , ^ - 1; ) ,

the result follows immediately from Lemma 3.

PROPOSITION 2. The function e(m, akf k; ) is an extremal element
of Mn, n > 2, where (-l)(ik) m > 0 and 1 ^ k ^ n - 2.

Proof. Since Mw is a subcone of Λίfe+1 and e(m, aky k; ) is an
extremal element of Mk+19 it is sufficient to show that
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e(m, ak, k; )eMn.

If / = e{m, ak, k; ), then f = I (f{k), k; ), where

fik)(x) = mχ{akΛ_ak){x) = mχ{Otl)(x) = m

for 0 < x < l Since f{k) is constant on (0,1), it follows from a
repeated application of the mean value theorem for a Riemann integral
that

4l+1f(x) = A\Alf{x) = h*Jlf<k)(ξ) = 0

for 0^x<x + (k + ϊ)h^l, where x < ξ < x + kh and thus,
Alf.(x) = 0 for 0^x<x + ph^l and j> ^ fe + 1. Hence, / e Mn9 for
every n, which implies that / is an extremal element of Mp, for

It will follow, as a consequence of the next three lemmas, that
no other functions in Mn are extremal elements of Mn, n > 2.

LEMMA 4. Le£ / e Mn, n > 2, si6cfe ίfeαί /(α0) = 0, / is continuous
on [0, 1] and f Φ e(m, ak, k; ) for (-l){ik)m > 0 and l ^ k ^ n -2.

If there is an integer k such that 1 ^ k fg n — 2 cmcϋ f{k)(a>k) ^ 0,

/ is πoί αw extremal element of Mn.

Proof. Let Jfc denote the smallest integer such that fιk)(ak) Φ 0.
Then feMnczMk+2 implies that f^+1)eKk+2, and it follows from
Lemma 2 that I(/ΐ+ 1 ), k + 1; ) e M*+2. Since f(a0) = 0 and /(2))(αp) = 0
for 1 <: p < k, then

υ, * + l; ) = i(fw, *; ) - /(fe)

where m = fik)(ak). Since

JJe(m, αΛ, ife; a?) = 0

for 0 ^ α? < x + p/& ̂  1 and k + 1 <£ p ^ π and / € Λfw, it follows that

( - l ) ( < ^ ί J(/?+ 1 ), k + l;x) = {-iy^Alf{x) ^ 0

for 0 <£ α? < a? + p/̂  ̂  1 and k + 1 ^ p <L n. Hence,

f- e(m,ak, k; )eMn ,

where m = fw(ak), and a nonproportional decomposition of / can be
given by taking fx = e(m, ak, k; ) and f2=f — f19 Thus / is not an
extremal element.

LEMMA 5. Let feMn, n>% such that f Φ 0, f(aQ) = 0, f is
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continuous on [0,1] and f Φ e(m, ak, ft; ) for ( — l)iik)m>0 and
1 ^ ft ^ n - 2. 1/ /ΐ1"1) = 0 o% (0, 1), then f is not an extremal
element of Mn.

Proof. Iΐfin~1} = 0, then there is a positive integer k <; n — 2 such
that /(&) =£ 0 and f{k) is constant on (0,1). Thus, f{k)(ak) Φ 0 and it
follows from Lemma 4 that / is not an extremal element.

It follows from Lemmas 4 and 5 that if / is an extremal element
of Mn9 n > 2 such that f(a0) = 0, / is continuous on [0,1] and either
fp-i) = o or f{k)(ak) Φ 0 for some ft, 1 ̂  k ^ n - 2, then / =
e(m, αfc, ft; ), where ( - l ) w m > 0 and 1 ̂  ft ^ ^ - 2.

LEMMA 6. Let fe Mn, n^2, such that f is continuous on [0,1],
y u-i) ^ o and fW(μk) = 0 for Q ̂  k <, n - 2. If f is an extremal
element of Mn, then f = e(m, f, ^ — 1; •)> wfcere ( — l)***-^ m > 0

f e (0,1) or ξ = α%_!

Proof. Since / ( * } (α 4 ) = 0 for 0 ^ ft ^ tι - 2, t h e n

and it follows from Lemma 3 that /|%~1) is an extremal element of
Kn. Thus, /i—υ - mχ ( f ) 1^_ l } for (-ljί*-^ m > 0 and ξ e (0,1) or ξ =
αΛ_!, which implies that / = /(/ΐ1"1^ w — 1; ) = e(my ξ, ̂  — 1; )•
This completes the proof of Theorem 1.

2* Integral representations* The set of functions Mn — Mn,
n^l, forms the smallest linear space containing the convex cone
ΛfΛ. With the topology of simple convergence, Mn — Mn is a Haus-
dorίϊ locally convex space such that for each xe[0,1], the linear
functional Lx defined by Lx(f) = f(x) is continuous.

PROPOSITION 3. The set Mn is closed in Mn — Mn for n ^1.

Proof. The linear functional F defined on Mn - Mn by F(f) =
Δl f(x), for [α;, a? + nh] c [0, 1], is continuous in the topology of simple
covergence. By definition, Mn is the intersection of a collection of
closed half-spaces corresponding to such functionals.

Since Mn is closed and every ^-monotone function / is nonnegative
and bounded by /(I — α0), Tychonoff s theorem implies that the nor-
malized ^-monotone functions, namely
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form a compact base for Mn, n^zl. Thus, every nonzero ^-monotone
function can be uniquely expressed as a positive multiple of some /
in Cn and / is an extreme point of the convex set Cn if, and only
if, / is an extremal element of Mn which lies in Cn.

DEFINITION 5. For n ^ 2, let mξ denote the number which
satisfies the equation e(rnξ, ζ, n — 1; 1 — α0) — 1, where ξ e (0,1) or
ξ = αΛ_! For n > 2, let mk denote the constant which satisfies the
equation e(mk, ak, k; 1 — α0) = 1, where 1 ^ k ^ n — 2. Let ext Cw

denote the set of extreme points of Cn, n ^ 1, and let β(m0, α0, 0; )
denote the unique function in ext CΛ, w ^ 2, which is discontinuous
at αί = (1/2) [1 + (-l)<Ί+'»>]; that is, β(m0, α0, 0; x) - (1/2)[1 - (-1)^1
for 0 < x < 1, β(m0, α0, 0; α0) = 0 and e(m0, α0, 0; 1 - α0) = 1.

The principal theorem of this section can now be stated and the
remainder of the section will be devoted to its proof.

THEOREM 2. To each fe Cn, n^2, there correspond unique non-
negative regular Borel measures v and μ on [0, 1] and

{e(mk, ak, k; ): 0 ^ k ^ n — 2} ,

respectively, such that

K[0,1]) + f(a0) + Σμle(mk9 akf k; .)] - 1
kφk0

and

S I n—2

e(mξ, ξ,n — l;x) dv{ξ) + /(α 0 ) + Σ α*β(m, % , fe; a?)
o fc=o

for each xe [0, 1], where ak — μ[e(mk, ak, k; )] for each k and

denotes the function which is the pointwise limit of the functions
e(mζ, ξ, n — 1; ) as ξ approaches 1 — aΛ-i Thus, each n-monotone
function is a scalar multiple of such a representation.

Theorem 2 will be proved by using an integral reformulation of
the Krein-Milman theorem. In order to apply this result, it must
first be demonstrated that extC% is closed.

PROPOSITION 4. The set of extreme points of Cn is closed in Cn,
n>2.
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Proof. Since Cn with the relative topology is a subspace of a
first countable space, it will suffice to show that if {/<} is a sequence
of functions in ext Cn which converges pointwise to the function /,
then / e e x t Cn [3, p. 164]. Since all except a finite number of the
functions in extCn are of the form e(mζ, ξ, n — 1; •), where ξe (0,1)
or ξ = α n - 1 , it can be assumed without loss of generality that ft =
#(mf., &, w — 1; ) for each i.

If α0 = ax — = αΛ_!, then the function in CΛ are convex and

for xe (0,1). If the sequence {fj of real numbers converges to 1 —α0,

then it is easily seen that

limit fi(x) = 0

for x e (0,1) or x — α0. Since the topology of simple convergence is
a Hausdorίf topology, it follows that / ( I — α0) = 1 and f(x) = 0,
otherwise, which implies that / = β(m0, α0, 0; •) and / e e x t C n . On
the other hand, if {fj does not converge to 1 — α0, then there is a
real number £0 Φ 1 — α0 and a subsequence {£3 } of {fj such that
converges to ξ0. Hence,

limit fM - limit ( x~^ V"1 χ(ffy>lββ0)(a?)

_ / %- So
"" VI ^

v -L — Mo —

for each α?e(0,1). Therefore, since the topology is a Hausdorff
topology, / = e(mh, ξ0, n — 1; ) and it follows that fe ext CΛ.

If αx = a2 = = αw_! and α0 Φ an__lf then the functions in Cn

are concave and

for α e (0,1). If the sequence {ζt} converges to α0, then

limit fi(x) = 1
i

for α e (0,1) or x = 1 — α0 and / = e(m0, α0, 0; •)• O n the other hand,
if there is a subsequence {£,-} of {&} which converges to f 0 ^ α0,
then
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l i m i t f3{x) = l i m i t Γ l - (x~ ^ Y * χi€i9aQ)(x)\
i-*« j-^oo L \ α 0 — Ci / J

Y i /y I — pi fyγι P /yj I * /y j

for each xe (0,1) and / = e{mh, ξ0, n — 1; •)• In either case, it follows
t h a t / e e x t C w

If there are exactly p > 0 integers ku , kp such that

l^kx<k2< < kp £n - 2

and α .̂ ^ α%_15 1 ^j^p, and α0 = αΛ_i, then

- α0 -

for a e (0,1), where

m - i _ (1 - α» - f i )- 1

£Λ ^r e i^i (n-fcir-l)!(Λ/r-fcirJ!

I f t h e r e is a s u b s e q u e n c e {ξj} of {fJ w h i c h c o n v e r g e s t o ξQΦl — a0,
t h e n i t is e a s i l y s e e n t h a t

f(x) = limit /y(α?) = e(mξQ, ξ0, n - 1; x)

for each xe(0,1). On the other hand, if {£<} converges to 1 — α0,
then

= e(mh, akp, kp; x)

for xe (0,1), where

+ Σ ( - i ) r Σ •••'

In either case, it follows t h a t / e e x t
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Finally if there are exactly p > 0 integers kL, , kp such that
l^kι<kz<- <kp^n-2 and akj Φ ακ_!, 1 ^ j g p and α0 =£ αM_1;

then

-m Γ (α° ~ g i )"~ l ( x ~ ^ ^ y M~ (i L ( W - 1 ) ! (W - 1)! X ( i ^» ) ( a ;

Σ ( - i ) r Σ
3f=Ί (w-A; J r -1)1(^-^^)1

y 'y (α 0- f<)»-^-1(2a,- l)K-*h(x-1 + a*)"h 1
% fe k ) l \ J-kjrj\ . (kh-kh)l(kh)\ J

for a; e (0, 1), where

(n - 1)!

y /_i)r f V

% in-kjr-l)\(kjr-kjrj\ .-• (kh-kh)\{kh)l '
If there is a subsequence {f5 } of {ξJ which converges to f0 ^ α0, then
it is evident that

f(x) = limit/, (a?) = e(mfo, ?0, n - 1; x)

for each XG (0,1). On the other hand, if {fj converges to α0, then

limit fi(x)
i

Γ (2a,-I)'**' (x - 1 + Op)'**'
°l (ft,)! (ft,)!

y 1 r _ i Y y 1 V (2«o-1)^"^[(2α 0 -i)* ' i
^ (ft,-fc ir)! ( fe J r -fc i r j ! (ft,,-ftΛ)! (ftix)!

= eίm^, % , ^ *)

for x e (0,1), where

_L y ( —Γf V . . . y ^α Q - l )
- i ^ ^ i (fcp- Λir)! (fc i r- k, rJ! (A?i2-

In either case it follows that / e ext Cn and this completes the
proof.
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DEFINITION 6 Let e0 denote the function in extCn which is
identically one and let e (w 1_β n - 1,1 — an_u n — 1; •) be the function
defined by

e(m^a , 1 - <&*_!, n — 1; x) = limit e{mζ, ξ,n — 1; a?)

for O ^ a ^ l and w > 1. Finally, let

e(mkQ, ako, ko; •) = e{m^a%__v 1 - an_l9 n - 1; )

and notice that &0 = 0 if at = a2 = = αw_i or &0 is the largest
positive integer such that akQ Φ an_x.

If the mapping φ: [0,1] —> ext Cn9 n ^ 2, is defined by

- e(mξ, ξ,n-l] -) for 0 ^ ξ g 1 ,

then it follows from the proof of Proposition 4 that ^ is continuous.
If E — ^([0,1]), then ^ is a homeomorphism from [0,1] onto E, since
[0,1] is a compact space and E is a Hausdorίϊ space. By the Krein-
Milman representation theorem, to each / in Cn there corresponds a
regular Borel probability measure μ on ext Cn such that

L(f)=\ Ldμ
Jext Cn

for each continuous linear functional L on ikίw — Mn9 since both Cn

and ext Cn are compact subsets of Mn — Mn, n^2. For 0 ^ α? ̂  1,
the evaluation functional .£* defined by Lx(f) = /(a?) is continuous
on Λfw — Mnf so that

/(a?) - ( Lxdμ

= 1 Lxdμ -t μ(e0)
n-2

fcfe

for each x e [0, 1]. Define v on each Borel subset B of [0,1] by

v{B) = μ[^(J3)]; i.e., v = μφ .

Since LJ^(f)] = e(mί5 f, ^ — 1; aj), then

\ Lxdμ = \ Lxφd(μφ) = Γ e(we, f, w - 1 ; a?) dv(f)
JE JΦ~ί(E) JO

for 0 ^ a? ̂  1. Finally, by observing that μ(e0) = f(a0), since e0 is
the only function in extC % which is positive at α0, Equation (1) can
be written as
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f1

f(x) = e ( m ξ , ξ,n-l; x
Jo

% 2

+ / ( O + Σ e(mfc, αfc, k; x)μ[e(mk, ak, k; )] .
7

It remains to prove that μ is unique. Since μ is supported by
ext Cny then μ is a maximal measure in Choquet's ordering [6, pp. 24,
70]. Thus, by the Choquet-Meyer uniqueness theorem, it suffices to
prove that Cn is a simplex [6, p. 66].

LEMMA 7. Suppose feMn — Mn and n >̂ 2. T%ew £λere is α
function g e Kn such that g — /|%~υ G iΓw cmeZ i/ h is any function
in Kn such that h — / + 1 " 0 G ίΓ^, ίfee^ iί must follow that h — g e Kn.

Proof. First assume that in^ = iw = 0. Since / i π " υ e iΓn — ίΓn,
then /|ϊl"~1) is of bounded variation on every interval [0, x], where
0 < x < 1. Define g(x) = /f-]) (0) + PQ

X {fin~ι)), where Po'C/f"1^) denotes
the positive variation of fin~ι} over [0, β], 0 ^ x < 1 [8, p. 85]. Then
both # and # — fίn~1} are nonnegative, nondecreasing and right-con-
tinuous on [0, 1). If he Kn such that h — f[n~ι) e Kn, then it follows
that h — g is nonnegative, nondecreasing and right-continuous on
[0, 1). Therefore,

0 ^ limit I(h — g, n — 1; x) ΐg limit I(h, n — 1; x) ,
a?->l—ΰί0 <ε-»l~α0

which implies that both g and h — g are in ϋΓ%.
If in_j and iΛ are not both zero, then define

y - (1/2) [1 - (-iy%-i+^(l - 2a?)]

and

F(x) = (-I) ί ί"- I7ίw"1 )(l/) for 0 ^ x < 1 .

Let G(a?) = ̂ (0) + P0

3;(F) for 0 ̂  OJ < 1 and define g(x) = (-lγ
Then g and ^ — fln~1] e Kn and it follows from the first part of the
proof that if h and h — / j w ~ υ 6 ϋΓΛ, then h — ge Kn.

DEFINITION 7. If ^ is a function in ikίw — Mn, n^2, then define
the functions uk, 0 ^ k ^ n — 2, by

uQ(x) = u(aQ) a n d

wΛ(α?) = I(uik)(ak), k; x) ίoτ l^k ^n - 2

where x e [0, 1].

LEMMA 8. Suppose feMn — Mn and n^2. Then there is a
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funtion g e Mn such that g — fe Mn and if h is any n-monotone
function such that h — fe Mn, then it must follow that h — g e Mn.

Proof. First assume that fik)(ak) = 0 for 0 ^ k ^ n - 2 and let
g{+~1] denote the function in Kn guaranteed by Lemma 7. Define g =
/(f/?""1', n - 1; •); then ^ e l , and

ίir - / = I{g{rι) - f r ι \ n - 1 ; )eMn.

If Λ is an ^-monotone function such that h — feMn, then h{+~1} and
ft?"1' -/f*~1} € iΓw and it follows that A?"" - g{Γι) e iΓ.. If / ^ } ( O - 0
for 0 ^ A; ̂  w - 2, then

λ - βr = J ( A ? - 1 } - g{Γ1], n - 1 ; -)eMn.

If there is some integer p such that 0 ^ p ^ n — 2 and hip)(ap) Φ 0,
then let

where h0 = λ(α0) and ^ = I(h{k)(ak), k; •) for 1 ^ jfe ̂  w - 2. Then
h{k)(ak) ~ 0 for 0 ^ & ̂  w — 2 and /̂  and h — feMn9 since h and
h — fe Mn (cf proof of Lemma 4). It follows that h — ge Mn which
implies that

h- g = h- g +ΣihkeMn
k=Q

since hk is an ^-monotone function for 0 ^ k ^ n — 2.
On the other hand, if there is a nonnegative integer p <̂  n — 2

such that / ^ ( α , ) =£ 0, then let

Σ
fe=0

where /Λ is given by Definition 7. Since / e Mn —Mn and f(k)(ak) = 0
for 0 ^ fc ^ w — 2, it follows from the first part of the proof that
there is an ^-monotone function g such that g — fe Mn and if h is
an ^-monotone function such that h — feMn, then h — g e Mn. Let
kj, 0 <: j ^ p < n — 1, denote those integers for which

and define

Then ge Mn since
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Λy = i σ ^ ' K ), k,\ ) = e(/'*"K), %,, fc,; ) e Mn

for 0 sΞ j <Ξ p, and

since —fkeMn if & ̂  fe, . Suppose that fe is an ^-monotone function
such that h-feMn. Then

which implies that

A-/-Σ (h-f)k = h-f-nf>{h-f)k + ±(h-f)kjeMn

since (h — f)kj e Mn(cί. proof of Lemma 4). Since hk is an π-monotone
function for 0 ̂  k ^ n — 2, then

Σ
k

Therefore,

"3

Σ

and h - Σ?=oΛy € Mw since Jt - Σ?=o ^ e ikfΛ and

+ Σ (hkj-fkj) =h-±hk. + ± (h-f)k. .
i-o J J i=o ^ j=o J

It follows that h — Σ?=o Λ — ? € Mn, which implies that h — g e ilfn.

If the function ^ of Lemma 8 is denoted by / V 0, then the least
upper bound of two functions ft and f2e Mn — Mn can be given by
/i + (/2 — /i) V 0 a n ( i therefore Mu — M"Λ is a vector lattice. Thus,
Cn is a simplex and the proof of Theorem 2 is complete.

3* REMARKS. If ί2 = 0, then C2 is the set of functions / which
are monotonic and convex on [0, 1] such that max {f(x): 0^α;^l} = l .
If ίL = 0, then the C2 functions are nondecreasing and e(mξ, ξ, 1; x) = 0,
x e [0, ξ] and (a? - ξ)/(l - ξ) for x e [ξ, 1], where 0 ̂  ξ < 1. Thus, to
each / e C 2 there corresponds a unique nonnegative regular Borel
measure v on [0,1] such that

-ξ
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for 0 < x < 1. On the other hand, if it — 1, then these functions are
nonincreasing and e(mζ, ξ, 1; x) = 1 — (x/ξ), %€ [0, ξ] and 0 for
xe [ξ, 1], where 0 < ξ <̂  1. It follows from Theorem 2 that to each
/ in C2 there corresponds a unique nonnegative regular Borel measure
v on [0, 1] such that

f(x) = /(I) + [ [1 - (x/ξ)] dv{ξ)

for 0 < x < 1.
If %k = 0 for every k^n, then e(m€, f, w — 1; x) = 0, a? e [0, f]

and [(a; — ξ)/(l — £)]*~ι for xe [ξ, 1], where 0 <: f < 1, and

e(mk, 0, fc; a?) = xk

for a? [0,1], where 1 <: Λ ̂  n — 2. Thus, for each function / in Cn,
there exist unique nonnegative real numbers au , an_2 and a unique
nonnegative regular Borel measure v on [0,1] such that

Σ
fc=

=i Jo \ 1 —

for 0 < x < 1. In this case, the intersection of the Mn cones is the
class of absolutely monotonic functions on [0, 1]. It is well known that
if fe Cn for every n> then

/(») = Σ/ ( * } (0) (*•/»!)

for 0 ^ α? < 1. For a discussion of these cones see [5].
Lastly, if ik = (1/2) [1 + (-1)*] for 1 ^ & ̂  Λ, then

e(mς, f, Λ - 1; a?) = 1 - [1 -

α? G [0, f] and 1 for x e [ξ, 1], where 0 < ξ ^ 1, and

ft, 1, k; x) = 1 - (1 - x)k

for α?e [0,1], where l ^ k ^ n -2. It follows from Theorem 2 that
for each function / in Cn, there exist unique nonnegative real num-
bers au , an-2 and a unique nonnegative regular Borel measure v
on [0,1] such that

f(x) = l - g α * ( l - ^)fc - Γ [1 - (x/ξ)]-1 dv(ξ)
A? = l Jo;

for 0 < a? < 1. In this case, the Cn functions were called alternating
of order n by Choquet [2, p. 170]. It can be shown that if feCn

for every n, then

f{x) = ±f{n)(l)[(x-ir/nl]
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for 0 < x <; 1. For a proof of this fact together with a discussion
of these cones see [7]
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