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SLICES, MULTIPLICITY, AND LEBESGUE AREA

W. D. P E P E AND WILLIAM P. ZIEMER

For a large class of ft dimensional surfaces, S, it is
shown that the Lebesgue area of S can be approximated by
the integral of the ft—1 area of a family, F, of ft—1 dimen-
sional surfaces that cover S. The family F is regarded as
being composed of the slices of the surface S. In addition,
a topological characterization of a certain multiplicity func-
tion is given. This multiplicity function when integrated
with respect to ft dimensional Ήausdorff measure, yields the
Lebesgue area of /.

Suppose X is a smooth compact ft dimensional manifold and let
f:X-+En be a continuous map into Euclidean w-space, k ^ n, which
has finite Lebesgue area. Let u: En —> E1 be a Lipshitz function
with Lipschitz constant no greater than one. In [7], it was shown
that if k = 2 or if the k + 1 Hausdorff measure of f(X) is zero, then
the Lebesgue area of/, Jtf(f), can be approximated by the integral of
the k—1 area of / restricted to the boundary of {x: u <>f(χ) < t), pro-
vided that the function u has been chosen appropriately. Of course, the
important element of this problem is to give a reasonable interpreta-
tion to the concept of the ft —1 area of / restricted to the boundary
of our open set. In [7], this was expressed in terms of the theory
developed by H. Federer [4]. It is the purpose of this paper to show
that a definition given by J. Cecconi in [1] can be used to obtain
results similar to those found in [7].

During the development of this paper, we were able to provide
a topological characterization of the multiplicity function which was
shown, in [4], to yield the Lebesgue area when integrated with
respect to k dimensional Hausdorff measure. It turns out that this
characterization is not needed to prove the main theorem of this
paper, but we include its proof because of its independent interest.

2* Slices and Cecconi area* In this section we will give a defini-
tion of the ft—1 area of / restricted to the boundary of an open set.
This definition is a slight modification of the one given by Cecconi
in [1]. The modification is desirable since our domain is taken to be
a smooth oriented compact ft-manifold, X. Our development relies
heavily on the work of Federer [4] and consequently the notation
of that paper will be used here without change. Thus, a continuous
map / : X—>En has a monotone-light factorization / = /f © mf where
the light factor sf is defined on the middle space Mf. Moreover, if
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k = 2 or Hk+1 [f(X)] = 0, (Hk+1 denotes k + 1 dimensional Hausdorff
measure) then there is current-valued measure μf defined on the
Borel sets of Mf whose total variation \\μf\\ is equal to Jίf(f). If
T is a current, we will denote by:

M(T), the mass of T

F(T), the flat norm of T

dT, the boundary of T.

Finally, Lk will denote Lebesgue measure on Ek, and B(x, r) will be
the closed ball with center x and radius r.

DEFINITION 2.1. Let U be an open set in X. Then, the k — 1
area of f restricted to the boundary of U, C(f, U) is defined as fol-
lows. Let {TΓJ be a sequence of open subsets of U whose boundaries
are smooth manifolds- Assume also that every compact subset of U
is eventually in every πim Let fi be a sequence of smooth maps
defined on X that converge uniformly to / . Then

C(f, U) = inf {lim inf jδf (/«| bdry π,)}

where the infimum is taken over all {π^ and {/J as described above.
Here, J*?(f\ bdry π%), is used to denote the Lebesgue area of /4 res-
tricted to the boundary of π^

DEFINITION 2.2. Let u: En —> E1 be a Lipschitz function. Then
C(f; u, t) is defined to be C(f, Ut) where Ut is the open set

{x: u o f(χ) < t] .

LEMMA 2.3. Let UΪ. En —> E1 i = 0, 1, 2, be a sequence of
Lipschitzian maps such that u^u2^ and l i m ^ ut = uQ. Then

C(f; uQ, t) S lim inf C(f; uiy t)
i—>co

for every t e EK

Proof. For t e E1 observe that the sets Vitt = {%- u>i ° /(«) < t)
i = 1, 2, •••, are nested and that their union is equal to VOtt. For
each positive i, select a smooth map fζ and an open set TΓ^CF,^ with
smooth boundary such that

( i ) \f,{x) - f(x) I < i-1 for all x e X
(ii) I J5f (/41 bdry π<) - C(f; uif t))\< i~ι

(iii) dist (closure πi9 X — Vitt) < i"1.
Now, the sequences {πj and {/J will be admissible in the definition
of C(f; u0, t). Hence,
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C(f; u0, t) ̂  lim inf £? (ft | bdry π{) = lim inf C(f; ut, t) .
ί-»0O i-KX3

The following theorem was proved in [1], but for completeness,
we will exhibit a different and perhaps simpler proof here.

THEOREM 2.4. Let u: En —> E1 be a Lipschitzian map with Lip-
schitz constant K > 0. Then

K5f(f) ^ Γ C(f; u,
J-oo

Proof. It is easy to see using the techniques of Lemma 2.3 that
C(f; u, t) is lower-semicontinuous in t and, hence, Lx integrable. Now
select a sequence of C°° maps {/J such that ft converge to / uniformly
on X and such that ^f(fi) —+£?(f). Choose a sequence of C°° maps
{Ui} decreasing to u with the Lipschitz constant of t&< less or equal
to iΓ + i"1. Fixing i, then with Oi = swpxex\uiofi(χ) — uiof(χ)\y and
with gm{x) = Ui o fm(χ) + σiy {gm} converges uniformly to ut o f on X
and each gm is smooth and greater than u{ o / . Thus, for every t,

Vm>t = {x: gm(x) <t}aVt = {x: u< <>f(x) < t}

and for every compact subset K of Vu Vm>t contains K for m suf-
ficiently large. In addition, for almost every t, Vm,t is a C°° manifold
so the pairs fm and VmΛ approximate / and Vt for almost every t and

C(f;uiyt)^ljmC(fm,Vm,t)
(1)

= limC(/m; ui9t- σm) .

However, it is immediate that for smooth functions, fmf on open sets
with smooth boundaries, Vm,t, that

(2) C(fmiVm,t)^^(fUyymίt).

From [3, Theorem 6.18] with N(y,f) denoting the number of points
in /^(y) (possibly oo) follows

(3) Sf(fn U v m , t ) = \uϊht_am) N(y, fm)dH*-\y) .

Combining (1), (2), and (3) and using Fatou's lemma gives

(4) Γ C(f; ut, t)d A ^ lim Γ ( N(y, fm)dH^{y)d L,(t)
J —oo m-»oo J —oo JPt

with Pt = mι{t — σm). However, [5, Theorem 3.2.12] gives
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(5) ί~ f N{y,fm)dH"-1(y)dL1(t) = \ N(y,fm)|gradui\Qm\dHk

where Qm is the image of x under /m. As the Lipschitz constant of
Ui dominates the gradient of ut \ Qm, (4) and (5) give

Γ C (f; uh t)dL,^ lim (K+i^Λ N{yJm)dHk

J - c o m-+oo J En

= lim (K + ί"

The result now follows from Lemma 2 3.
In [7] if was shown that with λ(/; u, t) = X M[dμf(V)]> where

the summation is taken over all components V of /fι({x: u(x)<t}),
that an inequality holds which is similar to 2.2 where C(f; u, t) is
replaced by λ(/; u, t). Moreover, it was also shown that if k = 2 or
i P + 1 [/GST)] = 0, then

sup j j λ(/; u,

where the supremum is taken over all Lipschitz functions u: En —> Eι

whose Lipschitz constants are no greater than one. We will show in
Theorem 2.8 below that this result is valid with λ(/; u, t) replaced
by C(f; u, t).

In the case k = 2, it was show that Cesari's definition of length
[2, 20.2] also worked satisfactorily in this theory. In [1], Cecconi
showed that C (/; u, t) agreed with Cesari's definition. Thus, in
Theorem 2.8, it will be only necessary to consider k > 2.

DEFINITION 2.5. Let X be a compact oriented ά-manifold and
suppose / : X—>Ek is continuous. For each zeMf, let Δ{z, r) be the
component of SΓx\B{/f{z),r)\ that contains z. Consider the induced
homomorphism on Cech cohomology groups,

Hk(E\ Ek- B {/f{z), r)) -^ Hk{X, X - m~f

ι{Δ{z, r))) .

We assume the generators of these groups chosen to agree with the
orientations on X and Ek. Then, /* maps a generator of one group
onto a multiple of the second. Call this integer df(z, r). Let

df(z) = lim df(z, r)
r-*0+

if this limit exists and is finite. If not, let df(z) — ©o.

DEFINITION 2.6. Let W be an open connected set in X and let
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f:X—>Ek. Suppose ye Ek - /(bdry W), and choose 0 < r < 1 so
that f(W)aB(y, τ~ι) and /(bdry W) n B(y, r) = 0. Then d(f, W, y)
is defined as in 2.5 when the following is considered:

Hk[B(y, r-1), B(y, r"1) - B(y, r)] — iP(TF, bdry TΓ) .

Observe, that

(6) d(f, W,y) = Σ>df(z)

where the summation is taken over all z in the set s/~ι(y) Π mf(W).
This equation is valid if ye Ek—f(bdτγ W) and if each df{z) < oo.

REMARK 2.7. Let / : X-+En be a continuous map with

Jδf (/) < - .

Suppose that p: En —>Ek is an orthogonal projection and consider the
following diagram:

po/ \

\

It follows from [4, 3.8] that with Cp = {̂ : Λ""1^) is a non-degenerate
continuum},

( 7 ) lli"/ll(A-1(C,)) = 0 and Lk(spof(CP)) = 0

for almost all p: En —> ^*. For such projections, it is easily seen
that the current valued measure corresponding to pof is h$(p$ o μf).
Thus, it follows from [4, 2.1 and 4.1] that for any Borel set EczMf,

( 8 ) λ»(pt o /i) [Λ(#)J K ) = ( Σ dpof(z) d Lk(y)
JEk A(y)

where A(y) = {z: ze sp7f(y) Π A(-K)} and where wk — p\dxx Λ Λ dxk).
However, in view of (7), it follows that for Lk almost all yeEk,

(9) Σidp.f(z) = Σdp.f[h(z)]
A(y) B(y)

where B(y) = {z: ze (p o /f)~\y) Π JK}. Observe that if E is an open
connected set, W= mγ{E), and if I/ft [p ° /(bdry TF)] = 0, then (6)



706 W. D. PEPE AND WILLIAM P. ZIEMER

implies

(10) d(pof, W,y) = Σdpof(z)
Λ(y)

for Lk almost all yeEk.

THEOREM 2.8. Let f: X—>En be a continuous map with finite
Lebesgue area and let k > 2 with Hk+1(f(X)) = 0 then

sup Γ C (ί; /, u)d£^ = Sf{f, X)
ueU J-oo

where U is the set of all real valued Lipschitzian maps on En with
constant less or equal to one.

Proof. In [7], it was shown that for every ε > 0, there is a
function u: En —> E1 with Lipshitz constant one such that

(11) Γ
J — C

; u,

The function u was obtained in the following manner: a certain
family of closed disjoint w-balls, Bi = Bi(yi, r<) with center yi and
radius r<, was produced and u was defined by

u(x) - Σ ut(x)

where u{(x) = — dist(^, En — B^. Thus,

Mf; u, t) - Σ Mf; ui91), o < t < ̂  ,
ΐ = l

and the same equality holds with λ replaced by C. At each point
yi there is a ^-dimensional plane P^ containing ^ that describes the
essential tangential behavior of the set f(X). Let p ί : £ ' % ~ > P ί be
the orthogonal projection. Let Z(t) be the set of components of
//^[{x: u(x) <t}]. In order to establish (11) it was shown in the
proof of [7, Theorem 3.3] that

Σ M[dPi§μf(V)]dLι(t)>Sf(f)-e.

Thus, in order to prove our theorem, it will suffice to show that for
almost every t,

(12) C(/, W)*>M[dP#f(V)\.

Here it is understood that V is a component of Sf\B) where B is
an %-ball of radius t in En whose center is at y and that p: Έ% —> P
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is the orthogonal projection where P is an approximate tangent
λ-plane at y as desctibed in (11) of [7]. Also, W = mγ{V) and for
simplicity, take y = 0.

To this end, we will consider only those t for which

(13) Hk [{y: dist {y, 0) = ί} n f(x)\ = 0 .

From [5, Theorem 2.10.25] it follows that this will be true for almost
all t. From the definition of C (f, W) it follows that there is a
sequence of regions ττmc W and Lipshitzian maps fm: X—*En such
that

lim &{fm I bdry πm) = C(/, W) .
m-*oo

Let Tm denote the integral ^-current fm$(πm) and observe that

(14)

since Sf{fm | bdry πm) can be expressed as the integral of an elemen-
tary counting function, [3, Theorem 6.18]. Without loss of generality,
we may assume that C(f,W)<°°, and therefore, there is a constant
K > 0 such that

(15) M(dTm)^K, m = l,2, . . . .

If the orthogonal projection p: En ~+P does not satisfy the con-
ditions of Remark 2.7, select a projection p*: En—>P that does. Let
Sm = vt{Tm) and observe that (15) implies that M(dSm) is a bounded
sequence, since Sm is an integral ά-current in Ek, the isoperimetric
inequality [5, Theorem 4.5.9(32)] is applicable and we can conclude
that N(Sm) is a bounded sequence. Hence, by the compactness
theorem for integral currents [5, Theorem 4.2.17] there is an integral
current S and a subsequence of the Sm such that F(Sm— S)—>0.
But for Λ-currents in Ek, the flat norm agrees with the mass norm
and thus

(16) M(Sm - S) > 0 .

Since S is an integral /b-current in Ek, there is an integer valued
density function s: Ek-+E1 such that for each C°° differential Λ-form
φ with compact support,

S(φ) = ί s φ .

The density function sm associated with Sm is sm(y) = d(p* o /m j 7ΓW, T/)
and (16) implies
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\sm- s\dLk > 0

In view of (13), it follows [6, p. 131] that as m—> o

\

sjy) >d(p* of, w,y)

for Lk almost all y. Thus,

s(y) = d(p* o /, W, y) for Lk almost all y .

Consequently, by Remark 2.7,

S = h,{pί o μf)[h(V)] =

Let λ* be the Lipschitz constant of p*. Then, from (14) and the
lower semi-continuity of mass,

C(f, bdry W) ^ lim sup M(dTm) ^ (λ*)~* lim sum M(dSm)

Now, in order to establish (12), note that a sequence of projections
pi: En —> P can be selected that satisfy the conditions of 2.7 and
that converge to the orthogonal projection p. Then, λ*—>1 and

limmfM[dp*tμf(V)] ^ M[dP,μf(V)] .

This completes the proof of the theorem.

3* Multiplicity and topological degree* Let f:X-+En have
finite Lebesgue area and suppose that k — 2 or Hk+1 [f(X)] = 0.
Then, it follows from [4, 2.1] that there is a Hausdorff &-rectifiable
set RczEn and a Baire function v defined on Mf, such that for \\μf\\
almost all z e Mf, v{z) is a simple k-vector that lies in the approximate
tangent &-plane to R at sf(z). For Hk almost all yeR, let τ(y) be
a simple fc-vector of unit norm that lies in the approximate tangent
plane to R at y. It can be assumed that τ is a Hk measurable
function. Further, for \\μf\\ almost all zeMf, \v(z)\ is an integer
and

\\μf\\(A) = \ \v(z)\dHk(z)

for every Borel set AczMf. The following theorem shows that \v(z)\
can be described topologically.

THEOREM 3.1. For almost all projections p: En —> Ek

9
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\dr.f[h(z)]\ = \v(z)\

for WfΛfW almost all zeMf.

Proof. Choose p: En -* Ek as in 2.7 and define

ψ(z)=d»flh(z)]\p[τ(s,(z))]\

for \\μf\\ almost all zeMf. Let D be the set where v(z) Φ 0 and A
any Borel subset of D. Let

F(v)=ΣΛd9.f[h(z)]

where the summation is taken over all z e Sf\y) Π A. An application
of [5, Theorem 13.2.22] yields

( F(y) I p [τ(y)] I dH\y) = ( Σ F{y)dLk{w)

= \ Σ dp.f[h(z)]dLk(w)

where B(w) — {z: ze An (p ° <f)~1(w)} However, [4, 2.2] implies

F(y) I p [τ{y)\ \ dHk{y) -

= ( ψ(z)dH*(z)
JA

where C(y) = {2;: i s G / ^ n A } . By appealing to 2.7, it is clear that

(17) h*(p* o μf) [h(A)\ (wk) -

where w4 is the orienting unit k form for Ek. However,

hs(pt o μf) [h(A)](wk) =p*°μf [h~\h(A))] (wk)

\ \ . v{z)dHk .
JA

Combining this with (17) yields

f(z)dHk = [ p*wk[sf{z)] v(z)dHk

A JA

and since A is arbitrary,

(18) ψ(z) =tfwk[sf(z)\ - v ( z ) ,

Hk almost everywhere in D. As \\μf\\(Mf — D) — 0 and \\μf\\ is
absolutely continuous with respect to Hk in D, (18) and the defini-
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tion of ψ(z) gives

(19) dpof [h(z)\ I p [τ{sβ(z))\ I = &Wk ['A*)] Φ) ,

\\μf\\ almost everywhere. As v(z) and τ(sf(z)) are parallel k-vectors,

(20) I p*wk [•,(*)] v(z) I = \v(z) I I p [τ(sAz))] I .

The result follows from (19) and (20) provided \p[τ(sf(z))] | Φ 0, H/̂ H
almost everywhere for almost all p.

To this end, observe that for Hk almost all y e R, τ(y) exists
and, thus, for almost all p, p[τ(y)] Φ 0. However, the set of pairs
(y, p) so that yeR and p[τ(y)] = 0 is a Borel set. Thus, Fubini's
theorem gives for almost all p, p [τ(y)] Φ 0 for Hk almost all yeR.
Further, if BaDc:Mf and H*[sf(B)] = 0 then [4,2.2] gives
II j«/1|(2?) = 0. So for almost all p, p[τ{/Az))\ ^ ° f o r Hi"/11 almost all
zeMf, and the result follows.

REMARK 3.2. It is interesting to note that an application of
Fubini's theorem gives the following conclusion to Theorem 3.1: for
\\μf\\ almost zeMf,

\dpof[h(z)] I = \v(z) I for almost every p .
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