CUT LOCI OF POINTS AT INFINITY

George M. Lewis

Abstract

In a G-space R if B is a co-ray to A then the union of all co-rays to A that contain B is either a straight line or a co-ray to A maximal in that it is properly contained in no other co-ray to A. In the latter case, the initial point of the maximal co-ray is a copoint to A. The concept of co-point is an analogue to that of minimum point in a sense made precise. On certain non-compact G-surfaces of finite connectivity, including those with non-positive curvature, we characterize the locus of co-points to a given ray and obtain bounds for the number of components of this locus, the number of co-rays emanating from a co-point and the number of co-points that are origins of more than two co-rays.

1. Introduction. A G-space can be described as a metric space any two of whose points can be joined by a segment, and in which any segment may be prolonged uniquely to a geodesic. The theory of G-spaces is found in Busemann [1] hereafter quoted as $G G$.

In a G-space, as in a Riemannian space, a minimum point m of a point p may be defined as a point for which no segment $T(p, m)$ can be prolonged beyond m. We shall be concerned with the analog to m when p lies at infinity in the sense made precise below.

A co-ray B from a point p to a ray A is the limit of a converging sequence of segments $T\left(p_{n}, z_{n}\right)$ where $p_{n} \rightarrow p$ and z_{n} tends to infinity on A. Obviously B is also a co-ray to any ray contained in or containing A as a sub-ray. Furthermore, the limit of a converging sequence of co-rays to a ray A is likewise a co-ray to A. Less trivial is the fact (see $G G, \mathrm{p}$. 136) that the co-ray to A from any point of B other than p is unique and a sub-ray of B.

Given a ray A in a straight space and a co-ray B to A, the union of all co-rays to A containing B is an asymptote to the oriented straight line containing A as a positive sub-ray. In an arbitrary non-compact G-space such a union is either an oriented straight line, any positive sub-ray of which is a co-ray to A, or it is a co-ray to A that is not a proper sub-ray of any co-ray to A. This leads to the following terminology in non-compact G-spaces.

Definition 1. Given a ray A in a G-space
(a) An asymptote to A is an oriented straight line any positive sub-ray of which is a co-ray to A.
(b) A maximal co-ray to A is a co-ray to A that is not a proper sub-ray of any co-ray to A.
(c) A co-point to A is the origin of a maximal co-ray to A. We denote by $C(A)$ the set of co-points to A.

A point p_{∞} at infinity in a G-space is a maximal set of rays such that a co-ray to one ray in p_{∞} is a co-ray to each ray in p_{∞}. For $A, B \in p_{\infty}, C(A)=C(B)$; hence the locus of co-points depends only on p_{∞}. Nevertheless it is convenient to retain the notation $C(A)$. The concept of co-point is thus a natural analog to the concept of minimum point in the finite case.

The study of $C(A)$ was initiated by Nasu [4, 5, 6], who by "asymptote" means "maximal co-ray or asymptote" and uses "asymptotic conjugate point" instead of "co-point".

It is our purpose to extend and clarify much of Nasu's work. In $\S 6$ we characterize $C(A)$ on certain G-surfaces of finite connectivity (including those with nonpositive curvature) obtaining bounds for the number of components of $C(A)$, the number of co-rays emanating from a point and the number of points that are origins of more than two co-rays to A.
2. Preliminaries. This section consists of results used in later proofs. We begin with a proposition of Nasu [4].

Proposition 2. Given a ray A in a G-space and a point $p \in$ $C(A)$, there exists for each $\delta>0$ a positive $\varepsilon \leqq \delta$ such that each co-ray to A with origin exterior to $S(p, \delta)$ fails to intersect $S(p, \varepsilon)$. In particular, there is an $\varepsilon^{\prime}>0$ such that no asymptote to A intersects $S\left(p, \varepsilon^{\prime}\right)$.

Proof. Otherwise there is a $\delta>0$ and a sequence $p_{n} \rightarrow p$ such that each p_{n} lies on a co-ray B_{n} to A whose origin $q_{n} \notin S(p, \delta)$.

There is an index N such that $p p_{n}<\delta / 2$ for $n \geqq N$. Thus for $n \geqq N, q_{n} p_{n} \geqq q_{n} p-p p_{n}>\delta / 2$. Choose $q_{n}^{\prime} \in B_{n}$ such that $\left(q_{n} q_{n}^{\prime} p_{n}\right)$ and $q_{n}^{\prime} p_{n}=\delta / 4$. The co-ray B_{n}^{\prime} from q_{n}^{\prime} to A is unique and a sub-ray of B_{n}. A sub-sequence of B_{n}^{\prime} converges to a co-ray B to A containing p in its interior-a contradiction.

What follows is a modification of a theorem of Busemann [2, p. 18].
Proposition 3. For each $x \in S\left(p, \rho_{o}\right)$ let a ray $A(x)$ with origin x be defined which depends continuously on x. If the spheres $K(p, \rho)$, $0<\rho<\rho(p)$, are not contractible then, for some $x \in S\left(p, \rho_{0}\right), x \neq p$ and $p \in A(x)$.

Proof. Let $0<\delta<\min \left(\rho_{0}, \rho(p)\right) . \quad A(p)$ intersects $K=K(p, \delta)$ in exactly one point w the antipode of which on K we denote by $w^{\text {. }}$.

Let $u \in A(p)$ with $u p=\delta / 2$. The projection P of $S(u, \delta / 4)$ on K
by segments from p is a proper sub-set of K and in particular does not include w^{\prime}.

For $0<\varepsilon<\delta$, let $K_{\varepsilon}=(p, \varepsilon)$. Let $V=\left\{A(v): v \in K_{\varepsilon}\right\}$ and let $z(t$, v) represent $A(v)$ with $z(0, v)=v$. Choose $\varepsilon>0$ so small that for $v \in V, z(\delta / 2, v) \in S(u, \delta / 4)$ and $T(z(\delta / 2, v), v)$ lies in $S(p, \delta)$.

If $z(t \delta / 2, v) \neq p$ for $0 \leqq t \leqq 1$, define v_{t} by $\left(p z(t \delta / 2, v) v_{t}\right)$ and $v_{t} p=\delta$.
For $t=0$ we have ($p v v_{0}$) and if $p \in V$ then v_{0} traverses K as v traverses K_{e}. For $t=1$ we have $\left(p z(\delta / 2, v) v_{1}\right)$ and $z(\delta / 2, v) \in S(u, \delta / 4)$. Hence $v_{1} \in P$.

The point $z(t \delta / 2, v)$ depends continuously on both t and v. Thus if $p \notin V$ then v_{t} defines a deformation of K onto a proper sub-set of itself. This in turn can be deformed to a point thus contradicting the non-contractibility of K.

It follows that $p \in V$ yet $p \notin K_{\varepsilon}$ which proves the assertion.
Although it is not presently known whether the non-contractibility of small spheres holds in general, it is shown in Busemann [2] to hold in finite dimensional G-spaces.

The set $C(A)$ is not necessarily closed (see Nasu [4]). In the event that $C(A)$ is closed we have the following:

Proposition 4. Let A be a ray in a G-space R such that $C(A)$ is closed. Let $x_{n} \rightarrow x_{0}$ where x_{n} and x_{0} lie on maximal co-rays to A. If x_{n}^{\prime} and x_{0}^{\prime} are the co-points to A determined by x_{n} and x_{0} respectively, then $x_{n}^{\prime} \rightarrow x_{0}^{\prime}$.

Proof. We show first that the sequence x_{n}^{\prime} is bounded. Otherwise there is a sub-sequence x_{m}^{\prime} such that $x_{m} x_{m}^{\prime} \rightarrow \infty$. Then there are, for sufficiently large m, co-rays B_{m} to A containing x_{m} whose initial points q_{m} satisfy $x_{0} x_{0}^{\prime}+2>x_{m} q_{m}>x_{0} x_{0}^{\prime}+1$.

Since q_{m} is bounded, a sub-sequence B_{i} of B_{m} converges to a coray B_{0} to A containing x_{0} with initial point q_{0} satisfying $x_{0} q_{0} \geqq x_{0} x_{1}^{0}+$ 1. This, however, is impossible since $x_{0}^{\prime} \in C(A)$. Therefore x_{n}^{\prime} is bounded.

If x_{n}^{\prime} does not converge to x_{0}^{\prime} then there is a sub-sequence x_{j}^{\prime} of x_{n}^{\prime} and a $\delta>0$ such that each $x_{j}^{\prime} \notin S\left(x_{c}^{\prime}, \delta\right)$. Let H_{j} be a maximal coray to A containing x_{j}. Since x_{n}^{\prime} is bounded, a sub-sequence H_{k} of H_{j} converges to a co-ray H to A containing x_{0}. Hence the corresponding sequence x_{k}^{\prime} of co-points converges to the initial point of H which, since $C(A)$ is closed, must be $x_{0}^{\prime-}$ a contradiction.

We conclude this section with the following separation property.
Proposition 5. Let A be a ray. The complement of $C(A)$ has no bounded component, and no compact, sub-set of $C(A)$ separates the space.

Proof. Let $p \notin C(A)$ and let B be the co-ray from p to A. Then $B \cap C(A)=\varnothing$ and the component determined by p contains B.

Suppose a compact sub-set K of $C(A)$ separates the space R. Then all points of $A-\{p\}$ lie in the same component of $R-K$. Let p lie in a different component. Consider a sequence x_{n} on A with $p x_{n} \rightarrow$ ∞ such that a sequence of segments $T\left(p, x_{n}\right)$ converges to a co-ray B from p to A. Each $T\left(p, x_{n}\right)$ intersects K in a point y_{n}, and, since K is compact, K contains an accumulation point y_{0} of y_{n}. It follows that $y_{0} \in K \cap B$ which is impossible.
3. The universal covering surface. While the preceding section concerned arbitrary G-spaces the remainder of this article is concerned with G-surfaces. In this section we generalize results of Nasu [5, 6] proved under the stronger hypothesis of nonpositive curvature.

A tube in a G-surface R is a closed domain bounded by a geodesic polygon P and homeomorphic to a disk punctured at one point. A ray A in R is said to ultimately lie in a tube T if A or some subray of A lies in T.

Theorem 6. Let R be a G-space surface and A a ray in R. If the universal covering surface \bar{R} is straight and if A ultimately lies in a tube T then the number of co-rays to A from any point p is finite.

Proof. Assume without loss of generality that the initial point q of A is on P, the polygon bounding T, and is the only point in which A intersects P. Assume further that p is exterior to T. Let $\lambda=$ length of $P, \gamma=\max \{p x: x \in P\}$ and $0<\varepsilon<p P$. Consider the class of oriented geodesic polygons of the form $T(q, p) \cup T(p, x) \cup$ $T(x, z) \cup T(z, q)$ where $T(q, p)$ is fixed, $z \in A-\{q\}$ and $x \in S(p, \varepsilon)$. We show that the class of such polygons determines only a finite number of homotopy classes in R.

Given such a polygon, there is a last point y in which $T(x, z)$ intersects P. Because T is homeomorphic to a punctured disk, there is a sub-arc $P^{\prime}(q, y)$ of P from q to y such that $p^{\prime}(q, y) \cup T(y, z) \cup$ $T(z, q)$ is null homotopic. It follows that $T(q, p) \cup T(p, x) \cup T(x, z) \cup$ $T(z, q)$ is homotopic to $T(q, p) \cup T(p, x) \cup T(x, y) \cup P^{\prime}(y, q)$.

Fix $\bar{p} \in \bar{R}$ over p, and hence fix $T(\bar{q}, \bar{p})$ over $T(q, p)$. Let $T(\bar{p}, \bar{x})$ be the unique segment from \bar{p} over $T(p, x), T(\bar{x}, \bar{y})$ the unique segment from \bar{x} over $T(x, y)$ and $\bar{P}^{\prime}\left(\bar{y}, \bar{q}^{*}\right)$ the unique geodesic polygon from \bar{y} over $\bar{P}^{\prime}(\underline{y, q})$. The end-point \bar{q}^{*} of $\bar{P}^{\prime}(\bar{y}, \bar{q})$ then lies over q and $\overline{p q} \leqq \overline{p x}+\overline{x y}+$ length $\bar{P}^{\prime}(\bar{y}, \bar{q})=p x+x y+$ length $P^{\prime}(y, q) \leqq p x+p x+$ $p y+\lambda<2 \varepsilon+\gamma+\lambda$.

The point \bar{q}^{*} so construted are in one-to-one correspondence with the number of homotopy classes determined by the above class of geodesic polygons and are finite in number since they are all interior to $S(\bar{p}, 2 \varepsilon+\gamma+\lambda)$.

Let $x_{n} \rightarrow p$ and let $z_{n} \in A-\{q\}$ be a sequence with $q z_{n} \rightarrow \infty$. Assume without loss of generality that $x_{n} p<\varepsilon$. Let $\Gamma_{1}, \cdots, \Gamma_{k}$ be the homotopy classes determined by the geodesic polygons $T(q, p) \cup$ $T\left(p, x_{n}\right) \cup T\left(x_{n}, z_{n}\right) \cup T\left(z_{n}, q\right)$ where $T(q, p)$ is fixed, and let $\bar{q}_{1}, \cdots, \bar{q}_{c} \in$ \bar{R} over q be constructed as above. The end-points \bar{z}_{n} of the unique geodesic polygons from \bar{p} over $T\left(p, x_{n}\right) \cup T\left(x_{n}, z_{n}\right)$ then lie on one of the rays $\bar{A}_{1}, \cdots, \bar{A}_{k}$ over A originating from $\bar{q}_{1}, \cdots, \bar{q}_{k}$.

If $T\left(x_{n}, z_{n}\right)$ converges to a co-ray B to A then B is the image of a co-ray \bar{B} from \bar{p} to one of the rays $\bar{A}_{1}, \cdots, \bar{A}_{k}$. Since \bar{R} is straight, the co-ray from \bar{p} to any given ray is unique and the theorem follows.

We saw in the preceding proof that given $\bar{p} \in \bar{R}$ over p, the co-rays from p to A are the images of the co-rays from \bar{p} to certain rays $\bar{A}_{1}, \cdots, \bar{A}_{k}$ over A. The following tells us that the choice of \bar{A}_{i} is, to an extent, uniform.

Theorem 7. (Nasu [5]). Under the hypothesis of (6), if the asymptote relation in \bar{R} is transitive and the co-rays from p to A are images of co-rays from $\bar{p} \in \bar{R}$ to rays $\bar{A}_{1}, \cdots, \bar{A}_{m}$ over A then there is a positive $\beta_{p}<\rho(p) / 2$ such that each co-ray to A from $x \in S\left(p, \beta_{p}\right)$ is the image of a co-ray from $\bar{x} \in S\left(\bar{p}, \beta_{p}\right)$ over x to one of the rays \bar{A}_{1}, \cdots, \bar{A}_{m}.

Proof. Assume otherwise. There is then a sequence $p_{n} \rightarrow p$ with $p p_{n}<\min (\rho(p) / 2, p P / 2)$ such that each p_{n} is the origin of a co-ray B_{n} to A which is not the image of a co-ray from $\bar{p}_{n} \in S(\bar{p}, \rho(p) / 2)$ over p_{n} to any of the rays $\bar{A}_{1}, \cdots \bar{A}_{m}$.

Assume without loss of generality that the co-rays B_{n} converge to a co-ray B from p to A. Let $\gamma_{n}=\max \left\{p_{n} x: x \in P\right\}$. Each B_{n} is the image of a co-ray from \bar{p}_{n} to a ray \bar{A}_{n}^{\prime} over A with initial point \bar{q}_{n}^{\prime} satisfying $\bar{p}_{n} \bar{q}_{n}^{\prime} \leqq \gamma_{n}+\lambda$ (since ε in the proof of (6) can be made arbitrarily small). Also $\gamma_{n} \leqq \gamma+p p_{n}$ hence $\bar{p} \bar{q}_{n}^{\prime} \leqq \bar{p} \bar{p}_{n}+\bar{p} \bar{q}_{n}^{\prime} \leqq \bar{p} \bar{p}_{n}+$ $\gamma+p p_{n}+\lambda=\gamma+\lambda+2 p p_{n}$. It follows that there are only a finite number of distinct points \bar{q}_{n}^{\prime} We can therefore assume, by selecting an appropriate sub-sequence, that each B_{n} is the image of the co-ray from \bar{p}_{n} to $\bar{A} \neq \bar{A}_{1}, \cdots, \bar{A}_{m}$ over A.
B is then the image of the co-ray \bar{B} from \bar{p} to $\bar{A} . \quad \bar{B}$ is also a co-ray to one of the rays \bar{A}_{i}, say \bar{A}_{1}. It follows from the transitivity (and implied symmetry) of the asymptote relation that \bar{A} and \bar{A}_{1} are co-rays to each other. Then \bar{B}_{n} is a co-ray to \bar{A}_{1}-a contradiction.

We note that an example due to Busemann (GG, pp. 265-66) shows the hypothesis that A ultimately lie in a tube to be essential.

Corollary 8. Under the hypothesis of (7), if $p \in C(A)$ then p is the origin of at least two co-rays to A. Furthermore, $C(A)$ is closed.

Proof. Assume that the co-ray B from $p \in C(A)$ to A is unique. It follows from (7) that the co-ray from each $x \in S\left(p, \beta_{p}\right)$ is unique. By (3) there is an $x \in S\left(p, \beta_{p}\right)$ such that $x \neq p$ and p lies on the coray from x to A-a contradiction.

On the other hand if $p \notin C(A)$ then the co-ray from p to A is unique and is thus unique for each $x \in S\left(p, \beta_{p}\right)$. Hence $S\left(p, \beta_{p}\right) \cap C(A)=$ \varnothing and the complement of $C(A)$ is open.
4. The local structure of $C(A)$. In this section we describe the local topological structure of $C(A)$. As in the previous section our results generalize results of Nasu [5, 6].

Lemma 9. Under the hypothesis of (7), if $p \in C(A)$ then there is a $\gamma_{p}>0$ such that no point of $\bar{S}\left(p, \gamma_{p}\right)$, with the possible exception of p, is the origin of more than two co-rays to A.

Proof. Choose $\gamma_{p}>0$ such that $\gamma_{p}<\beta_{p}$, no asymptote to A intersects $\bar{S}\left(p, \gamma_{p}\right)$ and $\bar{S}\left(p, \gamma_{p}\right)$ is homeomorphic to the closed unit disk in E^{2}. Denote by $B_{i}, 1 \leqq i \leqq m$, the maximal co-rays to A from p and by x_{i} the intersection of B_{i} with $K\left(p, \gamma_{p}\right)=\left\{x \mid p x=\gamma_{p}\right\}$. Let the indexing be such that x_{i+1} follows x_{i} where $x_{m+1}=x_{1}$. The points x_{i} partition $K\left(p, \gamma_{p}\right)$ into sub-arcs $K_{i}, 1 \leqq i \leqq m$, where K_{i} has end-points x_{i} and x_{i+1}. These arcs with the co-rays B_{i} partition $\bar{S}\left(p, \gamma_{p}\right)$ into closed simply connected regions D_{1}, \cdots, D_{m} with nonempty mutually disjoint interiors such that each D_{i} is bounded by $B_{i} \cap \bar{S}\left(p, \gamma_{p}\right), K_{i}$ and $B_{i+1} \cap \bar{S}\left(p, \gamma_{p}\right)$.

Choose $\bar{p} \in \bar{R}$ over p. Since $\gamma_{p}<\beta_{p} \leqq \rho(p) / 2$, the covering map sends $\bar{S}\left(\bar{p}, \gamma_{p}\right)$ isometrically onto $\bar{S}\left(p, \gamma_{p}\right)$. Let \bar{B}_{i} with initial point \bar{p} lie over $B_{i} . \quad \bar{B}_{i}$ is then a co-ray to a ray \bar{A}_{i} over $A . \bar{S}\left(\bar{p}, \gamma_{p}\right)$ is partitioned into closed simply connected regions \bar{D}_{i} over D_{i} where \bar{D}_{i} is bounded by $\bar{B}_{i} \cap \bar{S}\left(\bar{p}, \gamma_{p}\right), \bar{K}_{i}$ over K_{i} and $\bar{B}_{i+1} \cap \bar{S}\left(\bar{p}, \gamma_{p}\right)$.

For each $x \in S\left(p, \gamma_{p}\right)$ a co-ray from x to A is the image of a co-ray from $\bar{x} \in \bar{S}\left(\bar{p}, \gamma_{p}\right)$ over x to one of the rays $\bar{A}_{i}, 1 \leqq i \leqq m$. Since \bar{R} has a transitive and hence symmetric asymptote relation, we can say that a co-ray from x to A is the image of the co-ray from \bar{x} to one of the rays $\bar{B}_{i}, 1 \leqq i \leqq m$.

Consider $x \in D_{i}, x \neq p$. We assert that if γ_{p} is sufficiently small then any co-ray from x to A is the image of the co-ray from $\bar{x} \in \bar{D}_{i}$
over x to one of the rays \bar{B}_{i} or \bar{B}_{i+1}. Assume otherwise and fix $\gamma_{p}<$ β_{p}. There is then a sequence of points $x_{n} \rightarrow p$ in the interior of D_{i} such that each x_{n} is the origin of a co-ray H_{n} to A where H_{n} is the image of \bar{H}_{n}, the co-ray from $\bar{x}_{n} \in D$ over x_{n} to some $\bar{B}_{j}, j \neq i, i+1$ (we can assume without loss of generality that each \bar{H}_{n} is a co-ray to the same \bar{B}_{j}). A sub-sequence of the \bar{H}_{n} then converges to \bar{B}_{j} which is impossible since $\bar{B}_{i} \cup \bar{B}_{i+1}$ separates \bar{B}_{j} from each \bar{H}_{n}. The assertion thus follows and hence the lemma.

Continuing in this manner, we prove the following result.
Theorem 10. Let R be a G-surface and A a ray in R. If \bar{R} is straight and has a transitive asymptote relation, and if A ultimately lies in a tube, then for each $p \in C(A)$ there is a closed region V containing p in its interior that is homeomorphic to a closed disk D in such a way that p corresponds to the center of D and $C(A) \cap V$ to the union of a number of radii of D equal to the number of co-rays from p to A.

Proof. We begin where the proof of (9) ends. Each $x \in K_{i}$ determines a unique co-point $\phi(x)$ to A. It follows from (4) that the map $\phi: K_{i} \rightarrow \phi\left(K_{i}\right)$ is continuous.

On K_{i} choose y_{i} so close to x_{i} that no point of the sub-arc $K\left(x_{i}\right.$, y_{i}) of K_{i} joining x_{i} and y_{i} is a co-point to A and so that $L_{i}=\phi\left[K\left(x_{i}\right.\right.$, $\left.y_{i}\right)$] is, with the exception of $p=\phi\left(x_{i}\right)$, interior to D_{i}. This is possible since ϕ is continuous and $C(A)$ is closed.

Let $\bar{y}_{i} \in D_{i}$ lie over y_{i} and $\bar{K}\left(\bar{x}_{i}, \bar{y}_{i}\right)$ over $K\left(x_{i}, y_{i}\right)$ be the subarc of \bar{K}_{i} joining \bar{x}_{i} and \bar{y}_{i}. By (7) if y_{i} if chosen sufficiently close to x_{i} then the co-ray from each $\bar{x} \in \bar{K}\left(\bar{x}_{i}, \bar{y}_{i}\right)$ to \bar{B}_{i} lies over a co-ray to A. Let \bar{H}_{i} be the co-ray from $\bar{\phi}\left(\bar{y}_{i}\right)$ over $\phi\left(y_{i}\right)$ to \bar{B}_{i}. Then \bar{H}_{i} lies over a co-ray to A from $\phi\left(y_{i}\right)$.
$\phi\left(y_{i}\right)$ is the origin of exactly two maximal co-rays to A. Let U_{i} denote the remaining maximal co-ray to A. Since \bar{H}_{i} is the co-ray from $\bar{\phi}\left(y_{i}\right)$ to \bar{B}_{i}, the ray \bar{U}_{i} over U_{i} from $\bar{\phi}\left(\bar{y}_{i}\right)$ is a co-ray to \bar{B}_{i+1}.

Denote by z_{i} the intersection of U_{i} with K_{i}. The choice of y_{i} guarantees that $z_{i} \notin K\left(x_{i}, y_{i}\right)$. Let $K\left(z_{i}, x_{i+1}\right)$ be the sub-arc of K_{i} joining z_{i} and x_{i+1}. It follows that $K\left(x_{i}, y_{i}\right)$ and $K\left(z_{i}, x_{i+1}\right)$ have no points in common. Let x be an interior point of $K\left(x_{i}, y_{i}\right) . \phi(x)$ is the origin of exactly two maximal co-rays to A. If $\bar{\phi}(x) \in \bar{D}_{i}$ lies over $\phi(x)$ then the co-ray \bar{H}_{x} from $\bar{\phi}(x)$ to \bar{B}_{i} and the co-ray \bar{U}_{x} from $\bar{\phi}(x)$ to \bar{B}_{i+1} lie over the maximal co-rays to A from $\phi(x)$. y_{i} was chosen so that \bar{U}_{x} cannot intersect $\bar{K}\left(\bar{x}_{i}, \bar{y}_{i}\right)$. Neither can \bar{U}_{x} intersect $\bar{B}_{i}, \bar{B}_{i+1}, \bar{H}_{i}$ or $\bar{U}_{i} . \quad \bar{U}_{x}$ must then intersect $\bar{K}\left(\bar{z}, \bar{x}_{i+1}\right)$ over $K\left(z_{i}, x_{i+1}\right)$ and U_{x} intersects $K\left(z_{i}, x_{i+1}\right)$. It follows that ϕ restricted to $K\left(x_{i}, y_{i}\right)$ is one-to-one and $L_{i}=\phi\left[K\left(x_{i}, y_{i}\right)\right]$ is an arc joining p and $\phi\left(y_{i}\right)$.

We know that each $x \in L_{i}$ is the origin of exactly two maximal co-rays to A. One of these, H_{x}, intersects $K\left(x_{i}, y_{i}\right)$ and the other, U_{x}, intersects $K\left(z_{i}, x_{i+1}\right)$. With $x \in L_{i}$ associate $\sigma(x)=U_{x} \cap K\left(z_{i}, x_{i+1}\right)$. The continuity of the map $\sigma: L_{i} \rightarrow K\left(z_{i}, x_{i+1}\right)$ can be shown by a standard argument. $\sigma\left(L_{i}\right)$ is then a connected sub-set of $K\left(z_{i}, x_{i+1}\right)$ that contains both z_{i} and x_{i+1}. Thus $\sigma\left(L_{i}\right)=K\left(z_{i}, x_{i+1}\right)$ and $L_{i}=$ $\phi\left[K\left(z_{i}, x_{i+1}\right)\right]$.

Consider the closed region V_{i} bounded by $B_{i} \cap \bar{S}\left(p, \gamma_{p}\right), K\left(x_{i}, y_{i}\right)$, $H_{i} \cap \bar{S}\left(p, \gamma_{p}\right), U_{i} \cap \bar{S}\left(p, \gamma_{p}\right), K\left(z_{i}, x_{i+1}\right)$ and $B_{i+1} \cap \bar{S}\left(p, \gamma_{p}\right) . \quad V_{i} \cap C(A)=$ L_{i} and $V=V_{1} \cup \cdots \cup V_{m}$ is then the desired closed region.

We note that since $\gamma_{p}>0$ can be arbitrarily small we can find such a V contained in any neighborhood of p. This implies that $C(A)$ is locally arc-wise connected and that the arc-wise connected components of $C(A)$ are closed in $C(A)$ and hence are closed in R.

We conclude this section with some remarks on the applicability of the preceding results.

A G-surface R of finite connectivity can be regarded as a subspace of a compact manifold M of finite genus γ. As such, it is obtained from M by excluding a finite number of points a_{i}. There are simple closed pairwise disjoint geodesic polygons P_{i} in R each of which bounds a closed region M_{i} in M homeomorphic to a disk and containing a_{i}, but no other a_{j}, in its interior. The set $T_{i}=M_{i}-\left\{a_{i}\right\}$ is then a tube in R.

Each ray in R must ultimately lie in one of the tubes T_{i} and the preceding results apply to the extent that the universal covering surface has the appropriate properties. For example, if R has convex capsules then the universal covering surface \bar{R} is straight. If in addition \bar{R} has the divergence property then the asymptote relation is transitive. In particular this is the case when R has nonpositive curvature (see GG, pp. 249-50).
5. The covering map and the co-ray relation. In view of (7) it is natural to ask when a co-ray to \bar{A} in \bar{R} over A lies over a co-ray to A in R. In this section we present some partial answers to this question primarily for use in establishing our principal results in the following section.

Let R be a G-surface whose universal covering surface \bar{R} is straight and let A with origin q be a ray in R which ultimately lies in a tube T. Fix p in R and \bar{A} in \bar{R} over A with origin \bar{q}. It can be seen from the proof of (6), by applying covering motions of \bar{R} to the rays \bar{A}_{i} if necessary, that if B is a co-ray from p to A then there is a sequence $x_{n} \rightarrow p$, a sequence z_{n} on A with $q z_{n} \rightarrow \infty$ and a sequence of segments $T\left(x_{n}, z_{n}\right) \rightarrow B$ such that if \bar{z}_{n} on \bar{A} lies over z_{n} then the segments $T\left(\bar{x}_{n}, \bar{z}_{n}\right)$ over $T\left(x_{n}, z_{n}\right)$ converge to a co-ray \bar{B} to \bar{A} over B.

If \bar{p} is the origin of \bar{B} then \bar{p} lies over p and since $\bar{x}_{n} \bar{z}_{n}=x_{n} z_{n}$ we have $\alpha(\bar{A}, \bar{p})=\alpha(A, p)$ (see $G G, \mathrm{p} .31$).

Lemma 11. Let A be a ray in a G-surface R. If the universal covering surface \bar{R} is straight and if A ultimately lies in a tube then for any $p \in R$ and any ray \bar{A} in \bar{R} over A there is no point $\bar{p}_{1} \in \bar{R}$ over p with $\alpha\left(\bar{A}, \bar{p}_{1}\right)<\alpha(A, p)$.

Proof. Assume otherwise. Let $\bar{p}, x_{n}, \bar{x}_{n}$ and \bar{z}_{n} be as above and let $\bar{t}_{n} \rightarrow \bar{p}_{1}$ where \bar{t}_{n} lies over x_{n}. For sufficiently large $n, \bar{t}_{n} \bar{z}_{n}<$ $\bar{x}_{n} \bar{z}_{n}$ which contradicts the assumption that $T\left(\bar{x}_{n}, \bar{z}_{n}\right)$ lies over a segment.

We present now a sufficient condition for a co-ray to \bar{A} in \bar{R} to lie over a co-ray to A in R.

Theorem 12. Let R be a G-surface whose universal covering surface is straight and let the ray A ultimately lie in a tube. For any $p \in R$ and any ray \bar{A} in \bar{R} over A, if $\bar{p} \in \bar{R}$ lies over p and $\alpha(\bar{A}, \bar{p})=$ $\alpha(A, p)$ then the co-ray \bar{B} from \bar{p} to \bar{A} lies over a co-ray B to A.

Proof. We show first that \bar{B} lies over a ray B. If $\bar{x} \in \bar{B}$ then \bar{p} is a foot of \bar{x} on the limit sphere $K_{\infty}(\bar{A}, \bar{p})$ (see $G G, \mathrm{p}$. 135). Since no points over p are interior to $K_{\infty}(\bar{A}, \bar{p}), T(\bar{p}, \bar{x})$ lies over a segment. Since $\bar{x} \in \bar{B}$ is arbitary, \bar{B} lies over a ray.

Let $x \neq p$ be any point of B and let \bar{x} on \bar{B} lie over x. Choose z_{n} on A with $q z_{n} \rightarrow \infty$ and let \bar{z}_{n} on \bar{A} lie over z_{n}. Since \bar{R} is straight, $T\left(\bar{p}, \bar{z}_{n}\right)$ converges to \bar{B}. For sufficiently large n we can choose \bar{x}_{n} in $T\left(\bar{p}, \bar{z}_{n}\right)$ such that $\bar{p} \bar{x}_{n}=\bar{p} \bar{x}=p x$. Then $\bar{x}_{n} \rightarrow \bar{x}$ and, letting \bar{x}_{n} lie over $x_{n}, x_{n} \rightarrow x$.

We then have the following:
(a) Limit $\left(\bar{p} \bar{z}_{n}-p z_{n}\right)=0$ since $\bar{z}_{n} \bar{q}=z_{n} q$ and $\operatorname{limit}\left(\bar{p} \bar{z}_{n}-\bar{z}_{n} \bar{q}\right)=$ $\alpha(\bar{A}, \bar{p})=\alpha(A, p)=\operatorname{limit}\left(p z_{n}-z_{n} q\right)$.
(b) Limit $\left(\bar{p} \bar{x}_{n}-p x_{n}\right)=0$ since $\bar{p} \bar{x}_{n} \rightarrow \bar{p} \bar{x}=p x$ and $p x_{n} \rightarrow p x$.
(c) $\bar{x}_{n} \bar{z}_{n}=\bar{p} \bar{z}_{n}-\bar{p} \bar{x}_{n}$ and $x_{n} z_{n} \geqq p z_{n}-p x_{n}$.

From (c) we have $0 \leqq \bar{x}_{n} \bar{z}_{n}-x_{n} z_{n}=\left(\bar{p} \bar{z}_{n}-\bar{p} \bar{x}_{n}-x_{n} z_{n}\right) \leqq \bar{p} \bar{z}_{n}-$ $\bar{p} \bar{x}_{n}-p z_{n}+p x_{n}=\left(\bar{p} \bar{z}_{n}-p z_{n}\right)-\left(\bar{p} \bar{x}_{n}-p x_{n}\right)$.

This inequality in conjunction with (a) and (b) yields limit ($\bar{x}_{n} \bar{z}_{n}-$ $\left.x_{n} z_{n}\right)=0$. We then have $\alpha(A, x)=\operatorname{limit}\left(x_{n} z_{n}-z_{n} q\right)=\operatorname{limit}\left[\left(\bar{x}_{n} \bar{z}_{n}-\right.\right.$ $\left.\left.z_{n} q\right)+\left(x_{n} z_{n}-\bar{x}_{n} \bar{z}_{n}\right)\right]=\operatorname{limit}\left(\bar{x}_{n} \bar{z}_{n}-z_{n} q\right)=\alpha(\bar{A}, \bar{x})=\alpha(\bar{A}, \bar{p})-\bar{p} \bar{x}=$ $\alpha(A, p)-p x$. The assertion then follows from a result of Busemann (see $G G, \mathrm{p} .136$).

In his thesis (University of Southern California, 1970) the author believed he had carried the above line of reasoning further and obtained, under the hypothesis of (12), a negative answer to a still unsolved problem of Busemann: can a maximal co-ray be a proper sub-ray of another ray? Unfortunately this assertion with its implica-
tion of transitive co-rays in a certain class of G-surfaces was reported in Busemann [2, p. 89 (13) and p. 90 (15)] before an error in the proof was discovered by the author.

Let P be a geodesic polygon that bounds T the tube containing A. We may assume without loss of generality that P contain q but no other points of A. Given \bar{q} in \bar{R} over q, there is exactly one ray \bar{A} over A with origin \bar{q} and exactly one geodesic polygon \bar{P} over P with initial point \bar{q}. The end-point \bar{q}^{\prime} of \bar{P} also lies over q and is the origin of exactly one ray \bar{A}^{\prime} over $A . \bar{A}, \bar{P}$ and \bar{A}^{\prime} bound a simply connected region \bar{T} over T on the interior of which the covering map is one-to-one.

Proposition 13. Let λ denote the length of P and hence of P. If \bar{p} lies in the interior of \bar{T} with $\bar{p} \bar{A}<\bar{p} \bar{P}-\lambda$ then the co-ray \bar{B} from \bar{p} to \bar{A}, the co-ray \bar{B}^{\prime} from \bar{p} to \bar{A}^{\prime} or both lie over a co-ray to A.

Proof. Let z_{n} be a sequence on A with $q z_{n} \rightarrow \infty$ and let \bar{z}_{n} on \bar{A} lie over z_{n}. Assume that $\bar{z}_{n}^{\prime \prime}$ exterior to \bar{T} also lies over z_{n} and that $T\left(\bar{p}, \bar{z}_{n}^{\prime \prime}\right)$ lies over a segment. $T\left(\bar{p}, \bar{z}_{n}^{\prime \prime}\right)$ can intersect neither \bar{A} nor \bar{A}^{\prime} and so must intersect \bar{P}. Since $T\left(\bar{z}_{n}, \bar{q}\right)$ lies over the unique segment $T\left(z_{n}, q\right), \bar{p}_{n}^{\prime \prime} \geqq \bar{z}_{n}^{\prime \prime} \bar{P}+p \bar{P} \geqq \bar{z}_{n}^{\prime \prime} \bar{q}-\lambda+\bar{p} \bar{P}>\bar{z}_{n} \bar{q}-\lambda+\bar{p} \bar{P}$ for all n. On the other hand for sufficiently large $n, \bar{p} \bar{z}_{n} \leqq \bar{p} \bar{A}+\bar{z}_{n} \bar{q}<\bar{p} \bar{P}-\lambda+\bar{z}_{n} \bar{q}$. Thus for sufficiently large $n, T\left(\bar{p}, \bar{z}_{n}^{\prime \prime}\right)$ does not lie over a segment.

Let \bar{z}_{n}^{\prime} on \bar{A}^{\prime} lie over z_{n}. For sufficiently large n either $T\left(\bar{p}, \bar{z}_{n}\right)$, $T\left(\bar{p}, \bar{z}_{n}^{\prime}\right)$ or both lie over a segment. It follows that $\alpha(A, p)=\alpha(\bar{A}$, $\bar{p}), \alpha(A, p)=\alpha\left(\bar{A}^{\prime}, \bar{p}\right)$ or both. The proposition then follows from (12).

Observe that the conflicting inequalities arise because $T\left(\bar{p}, \bar{z}_{n}^{\prime \prime}\right)$ intersects \bar{P}. This means that if $T\left(\bar{p}, \bar{z}_{n}^{\prime}\right)$ lies over a segment then, for sufficiently large n, it does not intersect \bar{P}. Thus if \bar{B}^{\prime} lies over a co-ray to A, then \bar{B}^{\prime} does not intersect \bar{P}. Likewise if \bar{B} lies over a co-ray to A then \bar{B} lies in \bar{T}.

Definition 14. The distance from co-ray to ray is weakly bounded if for a co-ray B from p to A there is a sequence x_{n} on B with $x_{n} p \rightarrow \infty$ such that $x_{n} A$ is bounded.

In particular the distance from co-ray to ray is weakly bounded in a straight space with convex capsules where, in fact, both $x A$ and $y B$ are bounded for $x \in B$ and $y \in A$. An example of Busemann ($G G$, p. 137) shows that the latter do not necessarily follow from the distance from co-ray to ray being weakly bounded.

Proposition 15. Let R be a G-surface whose universal covering surface \bar{R} is straight and has the distance from co-ray to ray weakly bounded. Let $A, \bar{A}, q, \bar{q}, T$ and \bar{T} be as in (13). Let \bar{B} be a co-ray to \bar{A} in \bar{R} such that a sub-ray of \bar{B} lies in \bar{T}. If \bar{B} lies over a co-ray
to A then there is a point \bar{x}_{0} on \bar{B} and a point \bar{z}_{0} on \bar{A} such that the sub-ray of \bar{B} from \bar{x}_{0}, the sub-ray of \bar{A} from \bar{z}_{0} and $T\left(\bar{x}_{0}, \bar{z}_{0}\right)$ bound a sub-region of \bar{T} the co-ray from each point of which to \bar{A} lies over a co-ray to A.

Proof. We may assume without loss of generality that the origin \bar{p} of \bar{B} is exterior to \bar{T}. There is a sequence \bar{x}_{n} in \bar{B} with $\bar{x}_{n} \bar{p} \rightarrow \infty$ and a constant $M>0$ such that $\bar{x}_{n} \bar{A}<M$ for all n. Let \bar{z}_{n} be a foot of \bar{x}_{n} on \bar{A}. Then $\bar{z}_{n} \bar{q} \rightarrow \infty$ and $\bar{q} \bar{T}\left(\bar{x}_{n}, \bar{z}_{n}\right) \rightarrow \infty$.

Choose N such that for $n \geqq N$ if $\bar{y} \in T\left(\bar{x}_{n}, \bar{z}_{n}\right)$ then $M<\bar{y} \bar{p}-\lambda$. For each $n \geqq N$, if $\bar{y} \in T\left(\bar{x}_{n}, \bar{z}_{n}\right)$ then the co-ray \bar{H} from \bar{y} to \bar{A} lies over a co-ray to A. Otherwise the co-ray \bar{H}^{\prime} from \bar{y} to \bar{A}^{\prime} lies over a co-ray to A in which case \bar{H}^{\prime} would either co-incide with \bar{H} or intersect \bar{B}, which is impossible.

Consider the sub-region of \bar{T} bounded by $T\left(\bar{x}_{N}, \bar{z}_{N}\right)$, the sub-ray of \bar{B} from \bar{x}_{N} and the sub-ray of \bar{A} from \bar{z}_{N}. Let \bar{y} be any point in the interior of this sub-region. For sufficiently large $n>N, \bar{y}$ is in the interior of the region bounded by $T\left(\bar{x}_{N}, \bar{z}_{N}\right), T\left(\bar{x}_{N}, \bar{x}_{n}\right), T\left(\bar{z}_{N}, \bar{z}_{n}\right)$ and $T\left(\bar{x}_{n}, \bar{z}_{n}\right)$. Any ray \bar{H} from \bar{y} that lies over a co-ray A must intersect one of these segments and so must be a co-ray to \bar{A}.

Slight modification of the preceding proof yields the following:
Proposition 16. Under the assumptions of (15), if \bar{R} has a transitive asymptote relation and \bar{A} and \bar{A}^{\prime} are co-rays to each other then there are points \bar{z} and \bar{z}^{\prime} on \bar{A} and \bar{A}^{\prime} respectively such that the subray of \bar{A} from \bar{z}, the sub-ray of \bar{A}^{\prime} from \bar{z}^{\prime} and $T\left(\bar{z}, \bar{z}^{\prime}\right)$ bound a sub-region of \bar{T} the co-ray from any point of which to \bar{A} lies over a co-ray to A.

We also obtain a result of Nasu [5].
Corollary 17. Under the assumptions of (16), if \bar{A} and \bar{A}^{\prime} are co-rays to each other then there is a sub-tube of T disjoint from $C(A)$. If \bar{A} and \bar{A}^{\prime} are not co-rays to each other then no sub-tube of T is disjoint from $C(A)$.

Proof. The first assertion is a direct consequence of (8) and (16). To prove the second assertion let $\bar{x}(t), 0 \leqq t \leqq 1$, be any curve in \bar{T} with $\bar{x}(0)$ in \bar{A} and $\bar{x}(1)$ in \bar{A}^{\prime}. There is then a largest value of t, t_{0}, such that for $0 \leqq t \leqq t_{0}$ the co-ray from $\bar{x}(t)$ to \bar{A} lies over a co-ray to A. Since \bar{A} and $\bar{A}^{\prime \prime}$ are not co-rays to each other $0<t_{0}<1$. Then $\bar{x}\left(t_{0}\right)$ is the origin of two rays lying over co-rays to A.
6. The structure of $C(A)$ in a class G-surfaces. In this section
we analyze $C(A)$ in case R is a G-surface of finite connectivity with a straight universal covering surface with a transitive asymptote relation and the distance from co-ray to ray weakly bounded. We have mentioned previously that this includes all G-surfaces of finite connectivity whose universal covering surface has transitive asymptotes, and hence includes all G-surfaces of finite connectivity with nonpositive curvature.

The following consequence of (16) is basic to our analysis.
Proposition 18. Let R be a G-surface of the above type. If A is a ray in R then $C(A)$ does not separate R.

Proof. Since R has finite connectivity, A lies ultimately in a tube T. Assume that the proposition is false. $C(A)$ then separates R into at least two components. We consider two cases.
(i) The tube T or a sub-tube is contained in one of the components. Consider a point x in a different component. A co-ray B from x to A has a sub-ray contained in T. Thus B intersects $C(A)$ which is impossible.
(ii) None of the components of $R-C(A)$ contains a sub-tube of T. Assume without loss of generality that the initial point q of A is not in $C(A)$. Then A lies in one of the components. Choose $x \notin T$ in a component that does not contain A. Then the co-ray B from x to A has a sub-ray contained in T.

Let P be the simple closed geodesic polygon bounding T. We may assume that q is the initial point of P. Choose $\bar{q} \in \bar{R}$ over q and let \bar{A} and \bar{P}, each with initial point \bar{q}, lie over A and P. The endpoint \bar{q}^{\prime} of \bar{P} lies over q. Let \bar{A}^{\prime} with initial point \bar{q}^{\prime} lie over A. Then \bar{A}, \bar{P} and \bar{A}^{\prime} bound a simply connected region \bar{T} over T.

Let \bar{B} with a sub-ray in \bar{T} lie over $B . \bar{B}$ is a co-ray to \bar{A}^{\prime} or \bar{A}, say \bar{A} to be definite. It follows from (16) that there is a segment $T\left(\bar{x}_{0}, \bar{y}_{0}\right)$ in \bar{T} joining \bar{B} to \bar{A} no point of which lies over a co-ray to A. Thus $C(A)$ does not separate B and A which is a contradiction.

It was mentioned at the end of $\S 4$ that a G-surface of finite connectivity can be regarded as a sub-space of a compact manifold M of finite genus γ. As such it is obtained from M by the removal of a finite number of points $a_{i}, 1 \leqq i \leqq N$, each of which corresponds to a tube T_{i} bounded by P_{i}, a simple geodesic polygon in R.

Definition 19. Given a ray A in R, a G-surface of finite connectivity, denote by $C^{*}(A)$ the closure of $C(A)$ relative to $M . C(A)$ is said to occupy a tube T_{j} if the point a_{j} in M that determines T_{j} is in $C^{*}(A)$. Similarly a component $C_{i}^{*}(A)$ of $C^{*}(A)$ occupies T_{j} if a_{j} is in $C_{i}^{*}(A)$.

We note that $C^{*}(A)$ is obtained from $C(A)$ by adjoining those a_{j} that corresponds to tubes occupied by $C(A)$.

A sufficiently small deleted neighborhood of a_{j} in $C^{*}(A)$ can be thought of as a sub-tube of T_{j}. The next theorem extends (10) to include those a_{j} in $C^{*}(A)$. Ultimately this allows us to assert that $C^{*}(A)$ is triangulable as a one dimensional simplicial complex, a fact from which we derive the principal results of this section.

Theorem 20. Let R be a G-surface of finite connectivity with a straight universal covering surface \bar{R} having a transitive asymptote relation and the distance from co-ray to ray weakly bounded. Let A be a ray in R and let T be a tube occupied by $C(A)$. The geodesic polygon P bounding T can be chosen so that $C(A) \cap T$ consists of a finite number of disjoint unbounded arcs emanating from P.

Proof. We consider the case that T is not the tube that contains A or a sub-ray thereof. Let y_{n} be an unbounded sequence in T. Let B_{n} be a co-ray from y_{n} to A. Each B_{n} intersects P in a first point x_{n}. Since P is compact, the sequence x_{n} is bounded and a sub-sequence of B_{n} converges to an asymptote L^{+}to A. Let q be the first point in which L^{+}intersects P and let H be the negative sub-ray of L^{+} with origin q. We note that H is contained in T and has only q in common with P.

In \bar{R}, the universe covering surface, choose a simply connected region \bar{T} over T, bounded by \bar{H} and \bar{H}^{\prime} over H with initial points \bar{q} and \bar{q}^{\prime} respectively, and by \bar{P} over P with \bar{q} and \bar{q}^{\prime} as initial and final points. We note that the covering map is one-to-one on the interior of \bar{T}.

Assume without loss of generality that \bar{P} is a segment. Then any ray that lies over a co-ray to A can intersect \bar{P} at most once. Furthermore any ray lying over a co-ray to A that intersects \bar{P} must originate from \bar{T}. This, with (10), implies that \bar{P} contains at most a finite number of points that lie over co-points to A.

We show that \bar{P} can be replaced by a geodesic polygon \bar{P}^{\prime} bounding a sub-region \bar{T}^{\prime} of \bar{T} that lies over a sub-tube $T^{\prime \prime}$ of T and is such that those points of \bar{T}^{\prime} that lie over $C(A) \cap T^{\prime \prime}$ form a finite number of unbounded disjoint arcs emanating from \bar{P}^{\prime}.

Since \bar{P} is compact it can be covered by a finite number of neighborhoods of the type in (10). It follows that there are a finite number of rays $\bar{A}_{i}, 1 \leqq i \leqq m$, over A, none a co-ray to any other, to one of which any ray from a point of \bar{P} that lies over a co-ray to A must be a co-ray. Furthermore, if $\bar{x} \in \bar{P}$ does not lie over a co-point to A, and if the co-ray from \bar{x} to \bar{A}_{j} lies over a co-ray to A then by
(10) there is a sub-segment of \bar{P} the co-ray from any point of which to \bar{A}_{j} lies over a co-ray to A.

Hence \bar{P} can be partitioned into a finite number of non-overlapping segments I_{1}, \cdots, I_{k} whose end-points are either end-points of \bar{P} or lie over co-points to A. For each I_{i} there is an $\bar{A}_{j(i)}$ the co-ray to which from any point of I_{i} lies over a co-ray to A.

In I_{i} suppose two points \bar{x} and \bar{y} the asymptotes through which to $\bar{A}_{j(i)}$ lie over asymptotes to A and are denoted by $\bar{B}(\bar{x})$ and $\bar{B}(\bar{y})$ respectively. A ray lying over a co-ray to A in the strip bounded by $\bar{B}(\bar{x})$ and $\bar{B}(\bar{y})$ cannot intersect either $\bar{B}(\bar{x})$ or $\bar{B}(\bar{y})$. Such a ray must be a co-ray to $\bar{A}_{j(i)}$. Thus the asymptotes to $\bar{A}_{j(i)}$ through points of I_{i} between \bar{x} and \bar{y} lie over asymptotes to A. This implies that those points of I_{i} the asymptotes through which to $A_{j(i)}$ lie over asymptotes to A form a sub-segment of I_{i}. We note that this subsegment might consist of a single point or be empty.

It follows that \bar{P} contains a finite number of disjoint segments K_{0}, \cdots, K_{r} whose points are the points of \bar{P} that lie on straight lines that lie over asymptotes to A. Let \bar{x}_{i} and $\bar{y}_{i+1}, 0 \leqq i \leqq r$, denote the end-points of K_{i} indexed so that $\bar{q}=\bar{x}_{0}, \bar{q}^{\prime}=\bar{y}_{r+1}$ and K_{i+1} follows K_{i} on \bar{P}. Let $J_{i}, 1 \leqq i \leqq r$, denote the sub-segment of \bar{P} joining \bar{y}_{i} and \bar{x}_{i}. Then $\bar{P}=K_{0} \cup J_{1} \cup K_{1} \cup \cdots \cup J_{r} \cup K_{r}$.

We will alter \bar{P} by altering the segments J_{i}. Each point \bar{z} in J_{i} determines a unique point $\phi(\bar{z})$ in \bar{T} that lies over a co-point to A. By (4) ϕ is continuous. Consider in J_{i} a sequence $\bar{z}_{n} \rightarrow \bar{x}_{i}$. For sufficiently large n the co-ray \bar{B}_{n} from $\phi\left(\bar{z}_{n}\right)$ to $\bar{A}_{j(i)}$ lies over a co-ray to A, and the sequence \bar{B}_{n} converges to the asymptote to $\bar{A}_{j(i)}$ through \bar{x}_{i}. Furthermore, since $C(A)$ is closed in $R, \phi\left(\bar{z}_{n}\right) \bar{x}_{i} \rightarrow \infty$.
$\phi\left(\bar{z}_{n}\right)$ is the origin of at least one other ray \bar{B}_{n}^{\prime} that lies over a co-ray to A. Since $\phi\left(\bar{z}_{n}\right) \bar{x}_{i} \rightarrow \infty$, a sub-sequence of \bar{B}_{n}^{\prime} converges to an oriented straight line lying over an asymptote to A. The only possibility for the latter is the asymptote to $\bar{A}_{j(i-1)}$ through \bar{y}_{i}.

Thus if \bar{z}_{i} in J_{i} is chosen sufficiently close to x_{i} then $\phi\left(\bar{z}_{i}\right)$ is the origin of exactly two rays that lie over co-rays to A : the co-ray \bar{B}_{i} to $\bar{A}_{j(i)}$ and the co-ray \bar{B}_{j}^{\prime} to $\bar{A}_{j(i-1)}$. Let \bar{z}_{i}^{\prime} denote the intersection of \bar{B}_{i}^{\prime} with J_{i}. If \bar{z}_{i} is sufficiently close to \bar{x}_{i} then the image of $T\left(\bar{z}_{i}\right.$, $\left.\bar{x}_{i}\right)-\left\{\bar{x}_{i}\right\}$ under ϕ coincides with that of $T\left(\bar{y}_{i}, \bar{z}_{i}^{\prime}\right)-\left\{\bar{y}_{i}\right\}$ under ϕ, and their common image is an unbounded arc emanating from $\phi\left(\bar{z}_{i}\right)$.

We replace J_{i} with $J_{i}^{\prime}=T\left(\bar{y}_{i}, \bar{z}_{i}^{\prime}\right) \cup T\left(\bar{z}_{i}^{\prime}, \phi\left(\bar{z}_{i}\right)\right) \cup T\left(\phi\left(\bar{z}_{i}\right), \bar{z}_{i}\right) \cup T\left(\bar{z}_{i}\right.$, \bar{x}_{i}). When this is done for each $i, 1 \leqq i \leqq r$, we have the desired geodesic polygon \bar{P}^{\prime}.

The case in which T contains A or a sub-ray thereof is treated in a similar manner (although it involves a few more details).

Let $T_{i}=M_{i}-\left\{a_{i}\right\}$ where M_{i} is homeomorphic to a closed disk
and contains a_{i} in its interior. If T_{i} is occupied by $C(A)$ it is clear from (20) that P_{i} may be chosen so that M_{i} is homeomorphic to a closed disk in such a way that a_{i} corresponds to the center and $C^{*}(A) \cap$ M to a finite number of radii. On the other hand, if T_{i} is not occupied by $C(A)$ then, by (17), P_{i} may be chosen so that T_{i} is disjoint from $C(A)$. If Int T_{i} denotes the interior of T_{i} then $R-\cup \operatorname{Int} T_{i}$ is compact and $C(A) \cap\left(R-\cup\right.$ Int $\left.T_{i}\right)$ can be covered by a finite number of neighborhoods of the type in (10). The following then holds.

Corollary 21. Let A be a ray in $R . \quad C^{*}(A)$ is triangulable as a one dimensional simplicial complex.

Definition 22. Given a ray A in R and p a co-point to A denote by $m(p)$ the number of co-rays from p to A minus two. If $m(p)>$ 0 then p is called a multiple co-point to A.

It is clear that in any triangulation of $C^{*}(A)$ the multiple co-points will be vertices. In particular (20) implies that $C(A)$ contains only a finite number of such points. We now state the principal result of this section.

Theorem 23. Let R be an orientable (non-orientable) G-surface of finite connectivity with a straight universal covering surface \bar{R} having a transitive asymptote relation and the distance from co-ray to ray weakly bounded. If A is a ray in R, let $\pi(A)$ denote the number of components of $C(A), \mu(A)$ the number of multiple co-points to A, N the number of tubes in R and γ the genus of M, the compact surface of which R is a subspace. It then follows that $\mu(A) \leqq N-2+2 \gamma(\mu(A) \leqq$ $N-2+\gamma), \pi(A) \leqq N-1+2 \gamma(\pi(A) \leqq N-1+\gamma)$ and no co-point to A is the origin of more than $N+2 \gamma(N+\gamma)$ co-rays to A.

Proof. We assume that $C(A) \neq \varnothing$. Let β_{0} and β_{1} be the first two Betti numbers of $C^{*}(A)$. The Euler-Poincare characteristic of $C^{*}(A)$ is $\chi\left(C^{*}(A)\right)=\beta_{0}-\beta_{1}$.
$\beta_{0}=\sigma(A)$, the number of components of $C^{*}(A) . C^{*}(A)$ can be regarded as a subcomplex of M which is likewise triangulable. Since $C(A)$ does not separate $R, C^{*}(A)$ does not separate M and no one cycle in $C^{*}(A)$ bounds in M. Thus $\beta_{1} \leqq 2 \gamma$. In the non-orientable case a bounding one cycle in $C^{*}(A)$ would correspond to a torsion element in $H_{1}(M)$ and the inequality is $\beta_{1} \leqq \gamma$.

Consider a component $C_{i}^{*}(A)$ of $C^{*}(A)$. Let π_{i} be the number of components of $C(A)$ included in $C_{i}^{*}(A)$, let Δ_{i} be the number of tubes occupied by $C_{i}^{*}(A)$ and let $p(i, j), 1 \leqq j \leqq \delta_{i}$, be the multiple co-points in $C_{i}^{*}(A)$. The Euler-Poincaré characteristic of $C^{*}(A)$ is $\chi\left(C_{i}^{*}(A)\right)=$ $\left(\Delta_{i}+\delta_{i}\right)-\left(\delta_{i}+\pi_{i}+\sum_{j} m(p(i, j))\right), 1 \leqq j \leqq \delta_{i}$.

Summing over $i=1, \cdots, \sigma(A)$ we obtain $\chi\left(C^{*}(A)\right)=\sum_{i} \Delta_{i}-(\pi(A)+$ $\left.\sum_{i} \sum_{j} m(p(i, j))\right)=\beta_{0}-\beta_{1} \geqq \sigma(A)-2 \gamma$.

Then $2 \gamma+N \geqq 2 \gamma+\sum \Delta_{i} \geqq \sigma(A)+\pi(A)+\sum_{i} \sum_{j} m(p(i, j))$. This yields two inequalities: $2 \gamma+N \geqq \sigma(A)+\pi(A)+\mu(A)$ and $2 \gamma+N \geqq$ $\sigma(A)+\pi(A)+\mu(A)-1+\max m(p(i, j))$.

Finally we obtain $2 \gamma+N \geqq 1+\pi(A), 2 \gamma+N \geqq 2+\mu(A)$ and $2 \gamma+N \geqq 2+\max m(p(i, j))$ which yield the desired results. In the non-orientable case 2γ is replaced by γ in the preceding inequalities.

References

1. H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955.
2. ——, Recent Synthetic Differential Geometry, Springer-Verlag, Berlin, 1970.
3. P. Hilton and S. Wylie, Homology Theory, Cambridge University Press, London and New York, 1960.
4. Y. Nasu, On asymptotic conjugate points, Tohoku Math. J., 7 (1956), 157-165.
5. On asymptotes in a metric space with non-positive curvature, Tohoku Math. J., 9 (1957), 68-95.
6. -, On asymptotes in a 2-dimensional metric space, Tensor 7 (1957), 173-184.

Received September 14, 1971.
California state Polytechnic College, San luis Obispo

