
PACIFIC JOURNAL OF MATHEMATICS
Vol. 43, No. 3, 1972

GROTHENDIECK AND WITT RINGS OF HERMITIAN

FORMS OVER DEDEKIND RINGS

MANFRED KNEBUSCH, ALEX ROSENBERG AND ROGER WARE

The prime ideal theory of the Grothendieck and Witt ring
of non-degenerate hermitian forms over a Dedekind ring with
involution is studied. The relationship of these rings to those
defined over the quotient field of the Dedekind ring is also
investigated.

The main goal of this paper is to extend the structure theory for
Witt rings over fields of Pfister [18] and Harrison-Leicht-Lorenz ([10],
[16]) to the Grothendieck ring K(C, J) and the Witt ring W(C, J) of
a Dedkind ring C with an involution J. Since the case J — identity-
is allowed, the Grothendieck and Witt rings of [12] are included.
We shall see that the main theorems of Pfister and Harrison-Leicht-
Lorenz remain true for W(C, J) and that if J is the identity they
are also true for K(C,J). However, for K(C,J) with /^ ident i ty
there is some deviation: there may be p-torsion for primes p Φ 2 and
there may be nilpotent elements which are not torsion (Example 1.3).
This fact has been overlooked in [13].

In §1 we extend some elementary results of [12, §11, §13] to
the case J Φ identity. We conjecture that they are well known to
the specialists but we did not find an appropriate reference in the
literature. We show that the canonical map from W(C, J) to the
Witt ring W{L, J) of the quotient field L of C is injective and give
some information about the kernel Λ(C, J) of the map K(C, J) —>
K(L, J). Since the exact determination of Λ(C, J) is not needed for
our structure theory we delay this matter to § 4, where such a deter-
mination is given along the same lines as in [12, §11.2]. We then
show that W(C, J) is the intersection of certain subrings W(CP, J) of
W{L, J) which are Witt rings for abelian groups of exponent 2 in the
sense of [14, Def. 3.12] and we describe the image K'(C, J) of K(C, J)
in K(L, J) in an analogous way.

We are thus led to study subrings T of an "abstract" Witt ring
R for an arbitrary abelian g-group [14, Def. 3.12]. If T is the inter-
section of a family {Ta} of subrings of R which are also Witt rings
for some abelian g-groups, the entire prime ideal theory of R remains
true for T.

In § 3 we show that if T is either K{C, J) or W(C, J) then the
group of units of T is generated by 1 + Nil T and the rank one spaces
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over (C, J).
The results of [14] are used throughout.

1* Elementary facts about K(C, J) and W(C, J). (cf. [12, §11,
§13.3], [9].)

In this paper C will always denote a Dedekind ring and J will
be an involution on C which is allowed to be the identity. The
quotient field of C will be denoted by L and J will also denote the
unique extension of our involution to L. Further, F denotes the fixed
field under J and A denotes the intersection F Γ) C. Since C is integral
over A (c2 — (J(c) + c)c + J(c)c = 0 for all c in C), A is also a Dedekind
ring and C is the integral closure of A in L. The unadorned (R)
means (x)̂ .

Throughout we use the notations of [14]. In particular, we often
write x for the value J(x) of some x in L under J. A space (E, Φ),
or more briefly E, over (C, J) always means a fininitely generated
protective C-module E equipped with a non degenerate J-hermitian
form Φ (see [14, Sec. 1], Φ is linear in the first argument and anti-
linear in the second). A space E over (C, J) is called metabolic if E
contains a direct summand V as C-module with V = V1 (see [14,
Sec. 1]). By S(C, J) we denote the semiring of isometry classes of
spaces over (C, / ) , by K(C, J) we denote the corresponding Grothendieck
ring, and by W(C, J) the Witt ring of (C, J), i.e., the residue class
ring K(C,J)/KM(C,J), where KM(C,J) denotes the Grothendieck
group of metabolic spaces over (C, J) which is an ideal in K(C, J)
[14, Cor. 1.6]. We write [E] for the image of the isometry class of a
space E in K(C, J).

For any finitely generated protective C-module U we denote by
Z7* the group Ή.omc(U, C) with C-module structure defined such that

(u, cu*y = c(u, u*y

for all u in U, u* in £7*, c in C. We further denote by H(U) the
hyperbolic space C70Z7* with the hermitian form Φ characterized by
Φ(U x U) = Φ(Z7* x E7*) - 0 and Φ(u, u*) = <u, ̂ *> for u in J7, %*
in U*. The elements of KM(C, J) all have the form [H{U)\ - [H(V)\
([14, Lemma 1.3(i)]) For the space H(C) corresponding to the free C-
module C we simply write H. Analogous notations will be used over
(L, J).

LEMMA 1.1. A space E over (C, J) is metabolic if the space L® E
over (L, J) is metabolic. Hence the canonical map from W(C, J) to
W(L,J) induced by Et-> L (x) E, is injective.

Proof. We repeat the well known argument for the convenience
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of the reader. Let W be a subspace of L (x) E with W1 — W and
consider E as a subset of L(g) E. Then F = W f) E is a submodule
of JP with F = V1 and F is also a direct summand of E since i ί / F
is finitely generated and torsion free, hence protective [7, Prop. 4.1,
p. 133]. The last assertion follows from the fact that over (L, J) a space
M whose class in W(L,J) is zero is metabolic ([3, §4] and in case
of characteristic 2 and J — identity, [12, Lemma 8.2.2, p. 119] or [17]).

We denote by Λ(C, J) the kernel of the canonical map [E]\-+[L®E]
from K(C, J) to K(L, J). Since the natural map W(C, J) ~> W(L, J)
is injective it is clear that Λ(C, J) is contained in KM(C, J). Hence
any element x of Λ(C, J) has the form

x = [H{U)\ - [H(V)\

with [H(U) (x) L] = [H(V) (x) L] in K(L, J). Thus for some space M
over (L, J) there is an isometry Ml (H(U) (g) L) = Ml (H(V) (g) L) so
that rank U = rank F. Conversely, it is evident that all such x lie in
Λ(C, J). Now there exist ideals α and b of C such that P = α φ r x C
and F ~ b 0 r x C for some r ^ 0 where r x C denotes the free C-
module of r a n k r [22] or [20, Thm.l]. Hence by [14, Lemma 1.3(iii)],

x =

Recalling that

(*) a^a.-C® a,a2

for any ideals α1? α2 of C and again using Lemma 1.3(iii) of [14], we
obtain x = [^(αb"1)] - [H].

We denote by Pic(C) the ideal class group of C, by Pic(C)G the
subgroup of all elements invariant under G = {1, J}, and by (1+J)Pic(C)
the subgroup of all classes (aa). Our consideration about Λ(C, J) shows
that we have a surjective map

/: Pic(C) > Λ(C, J)

(cf. [12, 11.1.4, p. 136], [9, Th. 1]) which sends an ideal class (α) in
Pic(C) onto [H(a)] - [H]. By (*) we see that f(ab) = f(a) +/(&).

PROPOSITION 1.2.

( i ) (1 + J)Pie(C) c Ker / c Pic(C)σ.
(ii) If J = identity then 2Λ(C, J) = 0.
(iii) A(C, jy = 0 (cf. [9, Prop. 5]).

Proof. ( i ) Since for any ideal α of C the C-modules α* and
α"1 are isomorphic, we have H(a) ~ Hid"1) and hence /(α) = /(α"1).
Thus f(aa) — 0 for all ideals α. On the other hand, if α is an ideal
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with f(a) — 0 then there exists a space E over (C, J) with H(a) j_ E ~
H±E. Comparing the Steinitz-invariants (~ highest exterior powers)
of both sides we see that (σα"1) = 1 in Pic(C), hence (α) = (α).

Statement (ii) is now clear since 2 Pic(C) c Ker/.
(iii) For two ideals α, b we have

H(a) (x) Hφ) ~ H(a (x) (b © 5"1)) ^ iϊ(αb)

[14, Prop. 1.5 and Prop. 1.3]. From this one computes

f(a)f(b) = [H(cώ)] + [H(ab-i)} - 2[H(a)] - 2[Hφ)] + 2[H]

= f(ab) + /(αE-1) - 2/(α) - 2/(b)

= /(b-Έ-1) - 0 .

EXAMPLE 1.3. Let C be the ring of all integers of a quadratic
number field with automorphism J. We have A = Z, hence

(1 + J)Pic(C) = 0 ,

so that 2 Pic(C)G = 0. Hence Λ(C, J) is a torsion group whose part
prime to 2 equals the part prime to 2 of Pic(C). Thus we obtain many
examples of Dedekind rings (C, J) with K(C, J) having odd torsion.

Furthermore, there are Dedekind rings (C, J) such that Λ(C, J)
is not torsion at all. To obtain an example let Y be an elliptic curve
over the complex numbers and X = Y — p for some point p of Y.
Since X is a non singular affine curve its affine ring is a Dedekind
ring C with an involution J induced by the inverse map j of the
abelian group Y with unit p. There is a canonical isomorphism
Pic(C) ~ Y which carries the induced action of J on Pic(C) to j .
Since as an abelian group Y is S1 x S\ there are only four fixed ele-
ments in Y and Y is not torsion. This yields an example with Λ(C, J)
not torsion.

REMARK 1.4. In [9, Cor. to Th. 4] and [12, §11] it has been
shown that for J = identity the kernel of / is generated by 2 Pic(C)
and the classes of all maximal ideals 3̂ with 2 e φ. By the same
method we show in §4 that for /^identity, Ker/ is generated by
the image of Pic (A) and all maximal ideals 3̂ with ^32 = C($ Π A).

For each maximal ideal p of A we set Cv = Ap (x)A C = the localiza-
tion of C with respect to p, which is a semi-local Dedekind ring.
The involution on C9 induced by / will also be denoted by /. We
consider the Cp as subrings of L and have Cp = Afi. Let Im S(C, J)
and ImS(Cp, J) be the images of S(C,J) and S(CP, J) in S(L,J).

LEMMA 1.5. Im S(C, J) = f\p Im S(CP, J) where p runs through
the set, Max A, of all maximal ideals of A.
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Proof. The assertion means that a space over (L, J), which con-
tains a (Cp, J)-space of full rank for all p in Max A, also contains a
(C, J)-space of full rank. This is elementary lattice theory (cf. [6,
Thm. 3, p. 54]).

By Lemma 1.1 we regard W{C, J) and all W(CP, J) as subrings
of W(L, J). Since Pic(Cp) = 0 for each p and hence by Proposition
1.2, Λ{CP, J) = 0, we similarly regard the rings K(CP, J) as subrings
of K(L, J). We denote by K'(C, J) the image of K(C, J) in K{L, J).

LEMMA 1.6.

(i)
(ii)

where in both equations p runs through the maximal ideals of A.

Proof. Since all protective modules over Cp are free, KM(L, J)
and all KM(CP, J) coincide with the additive group generated by [H].
Evidently KM{C, J) also maps onto KM(L, J). Thus as subsets of
W(L, J) we get W(CP, J) = K(CP, J)/KM(L, J) and

W(C, J) = [K(C, J)/Λ(C, J)]/[KM(C, J)/Λ(C, J)] = K'{C, J)/KM(L, J)

so that the two assertions of the lemma are equivalent.
We proceed to prove (ii). Let x be an element of Γ)W(CP9 J) and

(V, Φ) a space over (L, J) representing x. As for any (L, J)-space
there exists a finite "exceptional set" T c Max A such that V contains
a space over (C,, J) of full rank for all p $ T. If T Φ 0 let pQ be a
prime ideal in T. Since the class of V lies in W(CH, J) there exists
a space Vo over (L, J) containing a (CPo, J)-space of full rank and
metabolic (L, J)-spaces Z7, Uo such that Vl Z7= Vo± Uo [14, Lemma
1.4]. Since any metabolic space over (L, J) contains (Cp, J)-spaces of
full rank for all p in Max A (see the definition of metabolic spaces in
[14, Sec. 1]) it follows that Vl U is a space over (L, J) which repre-
sents x and has an exceptional set contained in T — {pPo}. After a
finite number of such steps we obtain a space V representing x and
containing (Cp, J)-spaces of full rank for all p. Hence by Lemma 1.5
V contains a (C, /)-space of full rank. Thus ΠW(CP, J) c W{C9 J).
The reverse inclusion is clear.

REMARK. Using the cancellation theorem for hermitian forms
over fields [3, Thm. 1, p. 71], Hilfsatz 13.3.3 of [12] can be extended
to the case / Φ identity, stating that if a space V over (L, J) contains
a (Cp, J)-space of full rank then the same is true for all spaces Vf

with the same class in W{L, J) . This offers a shorter proof of Lemma
ii). _
For any p in Max A we have either pC = ̂ 3 or = ψ or = $!β, Sβ Φ
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φ, with φ in MaxC [5, Th. 2, p. 42].

LEMMA 1.7. If pC = φ φ wiί& ^ Φ ψ or pC = ψ then K{CP, J) =
, J) cwwZ T7(C,, J) = W(L, J).

Proof. We denote the norm function x \-> xx (x κ-> x2 if J = identity)
by N. Since K{Ly J) and W(L, J) are both generated by one dimen-
sional forms it suffices to show that any coset of F* mod NL* con-
tains a unit of Cp. Now, the coset of an element x of F* mod NL*
contains a unit of Cp if and only if the coset of x in F* mod NL*
contains a unit of C0 (Fp, Lp, Cp, denote the completions of .P7, L,
C, with respect to £). Evidently this is true if pC = φ 2 . If pC =
φ φ with *β ̂  φ then Lp = Fpx Fp and the involution of L9 corresponds
to the involution (α, 6) i-> (6, α) of Fp x F p [14, Example 1.7]. Thus
N(L*) = F * and the assertion is also true in this case.

REMARK 1.8. If pC = 5β then iΓ(C,, J) Φ K(L, J) and 1^(CP, J) Φ
W(L, J ) . In fact, one has an exact sequence

0 > W(CP9 J) > W(L, J) - ^ W(C/% J) > 0

with residue class form homomorphism dp (cf. [21], [12, §13.3], [19]).
Combining Lemmas 1.6 and 1.7 we get

PROPOSITION 1.9.

(i)
(ii)

where in both equations p runs through all maximal ideals of A with
pC a maximal ideal of C.

2. Subrings of Witt rings. Let q be a rational prime and G
an abelian g-group. In [14, Def. 3.12] we have called a commutative
ring R a Witt ring for G if R is a homomorphic image of the integral
group ring Z[G] and the torsion subgroup, Rt, of R is g-primary. Let
us recall some facts proved for a Witt ring R in [14]: There is only
one prime ideal Mo of R which contains q. The ideal Mo is of finite
index q (i.e., R/Mo = Fq

1]) and contains all minimal prime ideals
of i2. Moreover, any maximal ideal M Φ Mo of R properly contains a
unique prime ideal and this prime ideal is a minimal prime ideal.
All the zero divisors of R lie in MQ9 the ring R is connected (i.e.,
has no idempotents other than 0 or 1) and Rt Φ 0 if and only if Mo

consists entirely of zero divisors. R is integral over Z and hence R
is a Jacobson ring [5, p. 67] of Krull dimension, d i m i ί ^ l . In parti-
cular, its Jacobson radical, Rad R, coincides with its nil radical,

1 Fq denotes the field of g-elements.
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Nil R. In addition, Rt = Nil R if and only if Z—>R is injective and
Rt — R otherwise. In the former case the minimal prime ideals P of
R are characterized by P Π Z — 0 and in the latter case R is local
and Mo is the only prime ideal of R.

Let C be a Dedekind ring with involution / and quotient field
L. It is pointed out in [14, Remark 3.11] that K{L, J) and W{L, J)
are Witt rings for an abelian group of exponent two. By Lemma 1.1,
W(C, J) is a subring of W(L, J) and by Proposition 1.2 the natural
map K(C, J) —• K(L, J) has a kernel Λ{C, J) which is small in the sense
then Λ(C, J)2 = 0, and if J is the identity, in addition 2Λ(C, J) = 0. We
are thus led to consider subrings T of a Witt ring R for an abelian
g-group.

The following Lemma follows easily from the properties of R
described above, the Lying over theorem [5, Th. 1, p. 38], and [14,
Lemma 2.5]. Its proof will be omitted.

LEMMA 2.1. Let T be a subring of a Witt ring R for an abelian
q-group. Then

( i ) T is integral over Z, T is a Jacobson ring, and T is con-
nected.

(ii) T has a unique prime ideal M0)T containing q and T/MOfT ~ Fq.
(iii) If MOfT is not the only prime ideal of T then every maximal

ideal properly contains a prime ideal. In this case Z—> T is injec-
tive and a prime ideal P is minimal if and only if P Π Z — 0.

(iv) T — Tt if and only if MOtT is the only prime ideal of T.
(v) Tt is q-primary.
(vi) All zero divisors of T lie in M0>τ and M0>τ consists entirely

of zero divisors if and only if Tt Φ 0.
(vii) If TtΦT then Nil T = Tt.

In particular, the statements of the lemma are true for W(C, J)
and K'(C, J) . Because of the stated properties of Λ(C, J) they also
remain true for K(C, J) if J is the identity. If J is not the identity
(i), (ii), and (iii) remain true for K{CyJ) and (iv) is vacuous because
K{C, J) always contains Z. As shown by Example 1.3, (v), (vi), and
(vii) are generally not true. However, even in this case K(C, J)t c
Nil K(C, J) since Λ(C, J)2 - 0 and K'(C,J)t c Nil K'{C, J).

REMARK 2.2. Suppose G is group of exponent two and Z—> T is
injective. If P is a minimal prime ideal of T there is a minimal
prime ideal P1 of R such that P'f]T = P [11, Ex. 1, p. 41] More-
over, by [14, Remark 3.2], R/P' ~ Z so T/P is a subring of Z and
hence T/P = Z. Thus we see that any homomorphism from T to Z
extends to one from R to Z and Nil T is the intersection of the
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kernels of the homomorphisms from T to Z. Moreover, if M is a
maximal ideal of T we must have T/M ~ Fp for some rational prime
p. Thus if C is a Dedekind ring with involution J and P is a non
maximal, whence minimal, prime ideal of T = K(C, J) or W{C, J)
then TjP ~ Z. If M is a maximal ideal of Γ = K(C, J) or W(C, J)
then T/M ~ Fp for some rational prime p. Moreover, in these cases
the ideal MOfT is exactly the ideal of forms of even rank.

At the beginning of this section we stated one property of Witt
rings R which is not necessarily inherited by all subrings of R: a
maximal ideal M Φ Mo contains a unique minimal prime ideal. We
obtained this property in [14] as a consequence of the following theo-
rem: If R denotes the integral closure of the image R = 1 (x) R of
R in Q (x) R then R/R is a g-group. Here, and until the end of § 2,
(x) always denotes (x)z. This results from the rather evident fact, that
R/pR is von Neumann regular for all p Φ q (see [14]). Thus we are
now looking for subrings T of R such that T/pT is von Neumann
regular for all p Φ q. For any such subring it will be true that a
maximal ideal M Φ MQtT contains a unique minimal prime ideal.

For any abelian group X and rational prime p we let X[p] be
the p-primary component of X*

LEMMA 2.3. Let T c R be an integral extension of commutative
rings and p a rational prime such that R[p] = 0 and R/pR is von
Neumann regular. Then T/pT is von Neumann regular if and only
if (R/T)[p] = 0.

Proof. By [14, Lemma 2.8], Nil (T/pT) = 0 if and only if
(R/T)[p] = 0. Now by Lemma 2.7 of [14] the kernel of the map
T/pT~>R/pR is a nil ideal. Since R/pR is integral over T/pT,
dim T/pT = dim R/pR = 0, Thus T/pT is von Neumann regular if
and only if Nil (T/pT) = 0 [4, Ex. 16(d), p. 173], which proves the
lemma.

COROLLARY 2.4. Let R be a commutaive ring and {Ti}ieI a family
of subrings such that R is integral over T = f\ieiTia If for a rational
prime p with R[p] = 0 all the rings R/pR, TJpTi are von Neumann
regular then T/pT is also von Neumann regular.

Proof. Consider the exact sequence

0 >R/T >Π
iel

of abelian groups. By Lemma 2.3, we have (R/T^[p\ = 0 for all i so
(R/T)[p] = 0. Hence Lemma 2.3 shows that T/pT is von Neumann
regular.
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THEOREM 2.5. Let R be a Witt ring for an abelian q-group G
and let {T<}ίej be a family of subrings of R such that each Ti is a
Witt ring for an abelian q-group H^ If T — f\ieI T{ then

( i ) T/pT is von Neumann regular for all rational primes p Φ q.
(ii) If T denotes the integral closure of T = 1®T in Q (g) T

then T/T is a q-group.
(iii) Any maximal ideal of T distinct from M0}T properly con-

tains a unique prime ideal of T which is a minimal prime ideal.

Proof. Since Rt is g-primary, R[p] = 0 for all rational primes
p Φ q. Moreover, by [14, Example 2.6] R/pR and TJpTi are von
Neumann regular rings. Statement (i) now follows immediately from
Corollary 2.4. Statement (ii) is then a consequence of [14, Prop. 2.9].
Finally, if T contains a maximal ideal distinct from MOyT then by
Lemma 2.1 (iv) and (vii), Nil T = Tt. Thus (iii) follows from (i)
and [14, Cor. 2.10 and Th. 2.12].

EXAMPLES 2.6. (i) Let G be an abelian g-group and {Hi}ieI a
family of subgroups of G. Let K be an ideal of Z[G], R = Z[G]/K,
and for i in I, let Tt = ZlHMiZlHi] Π K). If R is a Witt ring for
G then each Ti has only g-torsion and so is a Witt ring for H^
Hence T— f\Ti satisfies the conclusions of Theorem 2.5.

(ii) Let C be a Dedekind ring with involution J and quotient
field Lo Denote the fixed ring of J on C by A. By Proposition 1.9,

κ'(c, j) = n κ(cp, j), w(c, j) = n w(cf, j)
P P

where p runs through all maximal ideals of A with pC a maximal
ideal of C. Since each Cp is a local ring it follows that K(CP, J) and
W(CP, J) are Witt rings for an abelian group of exponent two [14,
Remark 3.11]. Hence the conclusions of Theorem 2.5 apply to Kf(C, J)
and W(C, J). Since by Proposition l 2(iii) the kernel Λ(C, J) of
K(C, J) —> K(L, J) is nilpotent, statement (iii) of Theorem 2.5 remains
true for K{C, J). In case J is the identity, Proposition 1.2(ii) asserts
that 2Λ(C, J) = 0. Hence Q (x) K(C, Id) = Q (g) K'{C, Id) and

K{C, Id)/pK(C, Id) ~ K'(C, Id)/pK'(C, Id)

for all odd p so t h a t s ta tements ( i ) and (ii) of Theorem 2.5 hold for

K(C, Id) also.
We finally remark that a shorter proof of Theorem 2.5(ii) and

hence, using [14, Cor. 2.10 and Th. 2.12], also of Theorem 2.5(iii)
can be given by way of

LEMMA 2.7. Let R be a commutative ring, {Ti}ieI a family of
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subrings and T = Π ei 2V - ^ p be a rational prime such that
B[p] = (fi/TJlp] = 0 for all i in I. Then (T/T)[p] = 0.

Proof. Since Q is a flat Z-module we may identify Q® Tt and
Q®T with subrings oί Q®R. Thus we regard ?*, f<, T, a-nd f as
subrings of Q® R. Let cc be an element of Γ with px in Γ. Then
for all i in I we have x e ft and p# e f< Hence ϊe f l ie/ ?*• There
thus exist elements α̂  in Ti and 7/ in T such that # = 1 (x) #; and
pS; = 1 (x) 7/. Hence px{ — 7/ lies in Rt for all ΐ in I. Thus there exist
integers % with (%, p) = 1 such that n{pXi = n^y* Now there are
integers ai7 bi with 1 = α ^ + bφ. Multiplying this last relation by
y yields elements %i in T4 with y = pzi for all i in J. But since
R[p] = 0 the relation ^ = ^ ^ shows ^ = z5 for all i, j in /. Hence
there is an element z in T with 7/ — p ;̂. Thus px — 1 (x) p£ and there-
fore 2c = 1 (x)« which shows that x lies in T, i.e. (T/f)[p] = O

3* Units in iΓ(C, J) or W(C, J). We first recall some elementary
facts true for spaces over an arbitrary commutative ring C with involu-
tion J. For any space {E, Φ) over (C, /) there is an inverse space
(E, Φ) [3, Def. 8, p. 23] defined as follows: E is a C-module on the
additive group E with a new scalar multiplication c x = J(c)x and
the form Φ on E is defined by Φ(x, y) — Φ(y, x). Now assume that E
has rank one. Then it is easily checked that the C-linear map g: E®
E—>G defined by g(x (x) y) = Φ{x, y) is bijective and gives an isometry
from (E(x) E, Φ(g)Φ) to the space (C, Ω) where β(c, d) = cd for c, d in
C (by a localization argument it suffices to check this for E a free
space in which case the proof is straightforward). Since the space
(C, Ω) has matrix (1) it is clear that the tensor product makes the
set Si(C, J) of isometry classes of (C, J)-spaces of rank one into an
abelian group. The subgroup of classes of free spaces of rank one
can be identified with A*/NC* where A denotes the fixed ring of /
and C*, A* are the groups of units of C, A.

REMARK 3.1. On the group Pic (C) of protective C-modules of
rank one, J induces an involution (M) H^ (M), where again M denotes
the abelian group M with new scalar multiplication c x = J(c)x.
Denote by (1+J)Pic (C) the subgroup of all (M) in Pic (C) with (M)(M) =
1. The "forgetful map" (E, Φ) M> (E) from S^C, J) to Pic (C) yields
an exact sequence

1 > A*/NC* > S,(C, J) > (1+J)Pic (C) > 1 .

(The surjectivity on the right can easily be proved, cf. [12, §2.3]).

REMARK 3.2. Let C be an integral domain with quotient field L.
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Any element of Pic (C) can be represented by an invertible ideal α
and ά is isomorphic with the ideal α — J(a). For any hermitian from Φ
on α we have Φ{x, y) — dxy for some d in L such that daa c C, since
Φ is the restriction of an (L, e/)-form on L. Note that Φ is non
degenerate if and only if daa — C.

Now let C be connected. For any (C, J)-space (E, Φ) of rank n
we define the determinant, det (#), of (J57, Φ) to be the element of
Si(C, J) represented by the space (AnE, Δ) w i t h ^ defined by

4(&i Λ Λ xn, yx Λ Λ yn) = det (Φfo, y3)) ,

which is again a nondegenerate space [3, §2] The map

det: S(C, J) > Sι(C9 J)

is additive but it does not vanish on all hyperbolic spaces. Thus
we have to modify this map in the following well known way: denote
by ZβZ-S^C, J) the set Z/2Z x £Ί(C, J) with the twisted multiplica-
tion

We have a surjective map

χ: Z x SX(C, J) > Z/2Z-SAZ, J)

via χ(rc, a?) = (^mod 2, (-1) ( % ( %-1 ) / 2 )X)

It is easy to verify that χ is multiplicative so that, in particular,
ZI2Z SX(C,J) is a group. We now consider the additive map

(v, d): S(C, J) ^ l i ϋ S z x ^(C, J) — ZβZ-S^C, J) ,

i.e. (v(E),d(E)) = (^mod2, (-l)^~ 1 ) ) / 2 det E) for any (£7) in S(C,J)
of rank tι, and call d(E) the signed determinant of £7. Since (y, d)
vanishes on all hyperbolic spaces [12, Satz 4.1.2, p. 108], it induces
maps from K(C,J) and W(C,J) to ZβZ S^C.J) which we will also
denote by (v, d). Since for (E) in S^C, J) we have d(E) = (E7) it
follows that the canonical maps S^C, J) —• Z"(C, J) and S^C, J) —>
W(C, J) are injective. Thus we may regard S^C, J) as a subgroup
of the units of K(C, J) or of W(C, J).

THEOREM 3.3. Let C be either a Dedekind ring or a connected
semi-local ring with involution J and let T be either K(C, J) or W{C, J) .

Then for any unit x of T we have

x = d(x)(l + n)

with a nilpotent element n in T. In particular, the group T* is
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generated by S^C, J) and 1 + Nil T.

Proof. If T = Tt then by Proposition 1.2 (iii) and Lemma 2.1 (iv),
M0>τ = Nil T. Since ,τ is a unit, it must be represented by a form of
odd rank. Hence x — d(x) e M0}T is nilpotent, so setting

n = d{x)~ι{% - d(x))

we have x = d(x)(l + n) with n nilpotent.
If T Φ Tt then Z-+ T is injective so by Proposition 1.2 (iii) and

Remark 2.2, Nil T is the set of y in T such that σ(y) — 0 for all ring
homomorphisms σ: T—+Z. Thus we only need to check that σ(x) =
σ(d(x)) for all σ. This has been done in [14], proof of Theorem 3.23,
for C connected semi-local. Now let C be a Dedekind ring, L its
quotient field, and R be K{L, J) or respectively W(L, J ) . Denote the
canonical map T —>R by φ. By Proposition 1.2 (iii) and Remark 2.2
any homomorphism σ:T—>Z can be factored σ = σΌφ with some
σr: R —> Z. Since φ(x) is a unit of R we know from the preceding
that σr(φ(x)) = σ'(d(φ(x))). But by the functorial properties of exterior
powers clearly d(φ(x)) = φ(d(x)). Thus we get the desired equation

(σΌφ)(χ) - (σΌφ)(d(x)) .

REMARK 3.4. Let q be any rational prime, R = Z[G]/K a Witt
ring for an abelian group G of exponent q and T be the intersection
of the subrings T* = Z[ίir

ί]/(Z[£Γί] Π if) corresponding to some family
{Hi} of subgroups of G. It can be shown that any unit of T has
the form ± g(l + ri) where g is the image of some g in Π; -H* &nd
w is in Nil Γ, in the following cases: (IG — augmentation ideal).

(i) qΦ2:KaI* + qZ[G]
(ii) q = 2:KaI* + 4Z[G]
(iii) q = 2: there exists an element w of Π ί ^ such that

l + weKaI> + 4Z[G] + (1 + w)Z[G] .

Note that for R = W(L, J), G = F*/NL*, T = W(C, J) condition
(ii) is violated but (iii) holds with w = (—1). The assumptions ( i )~
(iii) are needed to construct "determinant functions" playing a role
similar to that of the signed determinant in the proof of Theorem 3.2.

4* Λ(C, J) for J Φ identity• If J is the identity the kernel Λ{C, J)
of the canonical map K(C, J) —> K(L, J) has been determined for any
Dedekind ring in [9, Cor. to Th. 4] and [12, 11.3.5, p. 138]. In this
section we give a computation of Λ(C, J) for J Φ identity. We argue
along the same lines as in [12] and use well-known classical methods
([2], [15]).
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Throughout this section we use the notations of §1: C is an
arbitrary Dedekind ring with an involution J Φ identity, whose fixed
ring is denoted by A. For any prime ideal p of A, we denote by
Ap the completion of the localization Ap, and we write Cp for C(x)AΆpi

the completion of C (x)A Ap with respect to p. We set Cp = L for p =
0 and for a maximal ideal p of A we write Lp for the completion
L ® j . Fp — C (g)A Fp of L which is the total ring of quotients of the
semi-local ring Cp. The involutions induced by J on Cp and Lp will
both be written as Jp. For any space E over (C, J) we denote by
Ep the completed localization E(x)AAp which is a space over (CP,JP).
As usual we consider Ep as a subset of the space E ® 4 F p over
(£„ J,,) and the automorphism group 11(2̂ ,) as a subgroup of U(E®AFP).
For a space ikf over (L, J) we denote by Mp the completion with
respect to p, which is a space over (Lp, Jp). Note that Mp = M if
t> = 0.

We define the genus, Γ{E), of a space E over (C, J) as the set
of isometry classes (E') in S(C, J) such that Ep ~ 2£/ for all prime
ideals p of A. If (£") lies in Γ(E) we can find an isometry σ: Er® L —•
£" (x) L and for every £ in Max A an element 0"̂  in U(£" (g) L̂ ) such
that

(4.1) E; = σpσEp .

Since σp is unitary, the determinant of σp over Lp has norm 1 and
hence by Hubert's Theorem 90,

(4.2) det σp = a.a"1

for some ap in L*. We use (4.2) to define for any genus Γ a map

φ:Γ x Γ > Div C/£ (Div C)G

where Div C denotes the divisor group of C, (Div C)G the subgroup left
fixed by G = {1, J} and $ the group of principal divisors of C. For
E, Ef in Γ1 we define φ(E, E') to be the image of

(4.3) Π Π Sβ01**^ , 5β in Max C

in Div C/ξ>(Div C)° with ap coming from (4.1) and (4.2) chosen arbitra-
rily. Here p runs only through the ideals of Max A which split in
C. Next, we show that φ(E, E') is well defined, i.e., that (4.3) does
not depend on the particular choices in (4.1) and (4.2). Given (4.1),
the ap in (4.2) can only be changed by a factor in F* which does not
affect (4.3) mod (Dw). Let E'p = σf

pσ'E be another system of equations
of type (4.1). Then there exists some p in U(E' (x) L) and μp in U(EP)
such that
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(4.4) σ[ = μpσpp

for all p in Max A. If p splits in C then Lp = Fp x Fp and the involu-
tion Jp is given by Jp(x, y) — {y, x) [14, Lemma 1.8]. Hence the ele-
ment det (μp) of C* of norm 1 can be written in the form bpb~ι with
bp in Cp*. Again by Hubert's Theorem 90, there is an element c in
L such that det p — cc~\ Thus starting from (4.4), we obtain for
the computation of φ(E, Ef), elements ap — bpapc at split prime ideals
and this yieldst he same value in (4.3) mod £>. Hence it is also clear
that φ(E, E') depends only on the isometry classes of E and E\
Clearly for spaces V, V in some other genus we have

φ(E± V, E'LV) = φ{E, E')φ{V, V) and also
( # 5 ) φ(E, E') = φ(E', E)-1

EXAMPLE 4.6. Let (E, Φ) be the hyperbolic space of rank 2 over
(L, J), i.e., E=CeφCf with Φ(e, e) = Φ(f, f) = 0, Φ(e, /)_ = 1. For
any α in Div C we regard H(a) as the sublattice ae φ α"1/ of E.
Choose for every p in Max A a generator ap of the principal ideal aCp.
Then the automorphism e \-* ape, f\-> a~xf of Ep maps H{C)P to H{a)p.
Thus H(a) and H are in the same genus and <P(H, H(a)) = [α], where
[σ] denotes the class of the divisor α in Div C/£>(Div C)G.

We define the SU-genus Σ(E) of a space E over (C, J) as the set
of all isometry classes (£") in Γ{E) such that there exists an equa-
tion (4.1) with σp in SU(E'P) for all p in Max A, i.e., with detσp = 1.

LEMMA 4.7. Let E be a (C, J)-space and assume that Ep represents
a unit of Ap for every p in Max A. {This hypothesis is always ful-
filled if p splits or if 2 does not lie in p.) Then Σ(E) is the set of
all (E') in Γ(E) with <p(E, E') = 1.

Proof. If (£") lies in Σ(E) it is clear that <p(E, E') = 1. Let
now (£") be in Γ(E) with <p(E, E') = 1. Without loss of generality
we assume that E and Er are lattices of full rank in the same space
M over (L, J) . First, for every p in Max A, we choose some σp in
ll(Mp) and some αp in Lp such that Ep = σpEp with det σp = apa~\
We want det σp to be a unit in C*. This is automatically true unless
pC = φφ with φ ̂  5β. But since ^ ( ^ , -SO = 1 we can find a c in L*
such that ord$(αpc) = ord%(apc) whenever pC = $β$β, 5β ̂  ^ . Since J Φ
identity, M contains a one-dimensional subspace W= Le with Φ(e, e) Φ
0 [3, Lemma 1, p. 90] so that M = Le JL IF 1 . Now let ̂  in U(M) be
the automorphism which is the identity on W1 and multiplies e by
c~ιc. Setting τp — σpρ~ι we obtain
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and det τp = (det σ^fcc"1), which is a unit of Cp for all p. By hy-
pothesis every Ep has a subspace Cpep with Φ(ep, ep) in A*. So by an
argument as above we can find a μp in U(E'P) with det μp = (detτ,)""1.
The equations

E[ = μpτppEp

show that {E') lies in the S [/-genus of i?.
We now sketch a proof of a weak version of Kneser's strong

approximation theorem for the special unitary group [15]. Let (M, Φ)
be any space over (L, J) of dimension Ξ> 2. Then tt(M) is generated
by the symmetries

σ(x, I): z i > z — Φ(z, x)l~ιx

where (x, I) runs through all pairs of I x L * such that I + T —
Φ(#, x) Φ 0 [8, p. 41] We first indicate a proof for the following well-
known fact [2, §3] since we feel that the argument in [2] is not
quite clear.

LEMMA 4.8. Given maximal ideals pu , pr of A and pairs
(xi9 k) in MH x £ * , 1 <Ξ i ^ r, with Z4 + I 4 = Φ(a?<, a?4) ^ 0, there exists

gor every ε > 0 a pair (x, I) in M x L* m£A £ + Γ = Φ(α;, a?) Φ 0 s^cΛ

ί/^αέ ||α? — Xi\\H < ε, \l — li\p. < ε for 1 ^ i ^ r . i ϊere | |p denotes a

valuation belonging to p and \\ \\p an associated norm on Mp.

Proof. Since J Φ identity there is some m in L with m + m =
1. We can find a vector a? in M which is near xt at pi and an Z' in
L which is near lt at pi9 for 1 <£ i ^ r. Then

ϊ = ϊ' + m(Φ(a?, » ) - ? ' - P)

satisfies ? + I = Φ(a?, x) and the pair (a?, I) has the desired properties
if the approximation of the Xi by the x and the lι by £' is good enough.

According [2, §3] this lemma implies that the weak approxima-
tion theorem holds for U(M), i.e., the diagonal map from U(M) to

Π 1W
p m S

has dense image for any finite subset S of Max A.
Assume now that [M: L] ^ 3 and that M is isotropic, i.e., M con-

tains some x Φ 0 with Φ(#, a?) = 0. Then SU(M) is the commutator
subgroup of U(M) [8, Chap. II, §4, §5]. Thus it can be verified that
the weak approximation theorem also holds for SU(M). Again pick
some m in L with m + m = 1. As is shown in [1] (cf. [8, p. 61] for
the orthogonal case), SVL(M) is generated by automorphisms
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E(x, y): z i > z + Φ(z, x)y — Φ(z, y)x — τnΦ(z, x)Φ(y, y)x

where (x, y) runs through all elements of M x M with Φ(x, x) ~
Φ(x, y) = 0. Now the simple argument in [12, Proof of Satz 11.2.8,
p. 137] shows that we have strong approximation in SVί(M). (It also
seems possible to adopt the proof of [2, Satz 18]):

THEOREM 4.9. Let M be an isotropic space over (L, J) wίth2)

[M: L] ^ 3 and let E a M be a (C, J)-lattίce of full rank. Prescribe
lattices E[. of full rank in Mp. and elements σ{ in SU(MP) for finitely
many ideals p19 •••,&. of Max A. Then there exists an element σ of
SVi(M) such that (σ - σ^Ep. c E'p. for l ^ i ^ r and σEq = Eq for q
in Max A distinct from pu * ί>r.

From this theorem a standard argument [15], [2, p. 99] establishes

COROLLARY 4.10. If E is an isotropic (C, J)-space of rank ^ 3,
the SU-genus Σ(E) contains only the class (E).

Finally, Corollary 4.10 and Lemma 4.7 yield the desired

THEOREM 4.11. The kernel of the surjection f: Pic(C) —• Λ(C, J ) ,
where f(a) = [H(a)] - [H], is the subgroup

Proof. For any α in (Div C)G we consider the spaces E — H_L(1)
and Er — jEΓ(α)±(l). According to (4.5) and Example 4.6, we have
φ(E, Ef) = 1. Now, since (H(tt))p and Hp represent all of Af9 Lemma
4.7 shows that E' is in the SCT-genus of E and Corollary 4.10 forces
E s E'. Hence /(α) = [E'\ - [E] = 0.

Let (α) be in Ker/. Then there exists a (C, J)-space V such that
H±V~ H(a) ± V. Again, (4.5) yields <p(H, H(a)) = 1 and so by Example
4.6, the class of a is in £(Div C)σ/§.
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