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THE INVERSION THEOREM AND PLANCHEREL'S
THEOREM IN A BANACH SPACE

U. HAUSSMANN

l Introduction* Let G be a locally compact abelian group with
Haar measure μ, and let X be a complex Banach space and C be the set
of complex numbers. A classic theorem due to Plancherel ([8], [10])
states that the Fourier transform maps LX{G, C) Π L2(G, C)1 onto a
dense subset of L2(G, C) (G is the dual group of G and has Haar meas-
ure m) in such a way that 1 a{g)β{g)μ(dg)=\^ά(i)β(y)m{di) for all

JG ^ JG

a, β in L^G, C) Π L2(G, C) where a is the Fourier transform of a,

given by a{rt) = I (g, Ί)a{g)μ{dg) for all 7 in G. Here (g, 7) denotes
JG

the action of the character 7 on g in G. In this paper we extend
this result to functions taking values in an inner product subspace
of a Banach algebra.

Another well-known theorem ([8], [10]) states that if a is a
positive definite element of Lλ(G, C) Π L^{G, C) then a is in L^G, C)
and

(1.1) a(g) =
G

for (almost) all g in G. This inversion theorem is also generalized
to functions assuming values in certain admissible Banach spaces.

Our work relies heavily on an extension of Bochner's theorem
established in [4] We show that if p is in LX(G, X) Γ) L^G, X), if
p is positive definite (positivity is defined with respect to a particular
cone in X), and if p(0) satisfies a certain finiteness condition, then
p, the Fourier transform of p, is in L^G, X) and the inversion formula
1.1 given for a holds for p. A sharper theorem states that if p is
in LX{G, X) Π I<oo(Cr, X), Ίί p is positive definite, and if there is a
real, finite, regular Borel measure λ such that 1 a{g)p{g)μ(dg) ^

ΛI a(y) i \(di) for all a in L,{G, C), then p is in Z^G, X) and 1.1 is
G

satisfied by p.
Using this theory we extend to infinite dimensions some results

due to Hewitt and Wigner ([7]).

1 For 1 ^ p 5Ξ 00 LP(G, X) is the space of ^-measurable functions / mapping G into

i f ) l l P

X. For 1 ^ p < 00 we use the norm || |IP> where | | / | | P = i\ 11 f(g) 11p μ(dg) \ , and
for p = 00 we use the norm ||/||«> which is the (//) essential supremum of | |/(sθ | | on
G. ll ll denotes the norm in X.

585
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2* Bochner's theorem and dominated functions* Let X be a
Banach space, X* the dual of X and X** the dual of X*. For φ
in X* we denote the action of φ on xeX by (x9 φ). Given a subset
of X* we can define a cone of "positive" elements in X.

DEFINITION 2.1. Let Φ be a subset of X*. The subset KΦ of X
given by

(2.2) Kφ = {x e X: (x, ψ) ^ 0 for all ψ e Φ}

is called the cone determined by Φ.

Sometimes we write simply K if Φ is fixed by the context. Xφ

is the set of "positive" elements.
Let G be a ^-finite locally compact abelian group with Haar

measure μ and let G be its dual group with Haar measure m.

DEFINITION 2.3. Let p be a map of G into X. Then p is Φ-
positive definite if it is measurable and if

(2.4) Σ Σ χ cncm(p(gn - gm), <p) ^ 0

for any integer N, any c1} , cN in C, any ^x, , gN in G, and all
9> in Φ. If p is in L^G, X) the j> is integrally Φ-positive definite if

(2.5) (y^te)^2>(<7 - g')dμdμ, φ"j ̂  0

for all <x in L^G, C) and all φ in Φ.

Next we impose a condition which relates Φ to the topology of X.

DEFINITION 2.6. The family Φ is full if there is a /> > 0 such
that

(2.7) 1 1 * 1 1 ^ sup {| (a, φ) |/|| ?> ||: ?> e Φ}

for all α? in X.

The following two propositions examine the relationship between
the two notions of positive-definiteness.

PROPOSITION 2.8. If Φ is full and p is Φ-positive definite then
p is in L^iG, X) and p(0) is in Kφ.

Proof. It is readily shown that for g in G, φ in Φ, | (p(g), φ) \ S
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(P(θ),φ) so that | |3)(flr)| |^/o||p(0)| |.

PROPOSITION 2.9. Let p be in L^(G, X) such that one version of
p is coX-continuous.2 Then p is Φ-positive definite iff p is integrally
Φ-positive definite.

Proof. See [4] or [6].
We shall see shortly (Corollary 2.15) that all those elements of

L^iG, X) of interest to us have the continuity required in Proposition
2.9.

Next we recall some results from measure theory. Let S be a
locally compact topological space and let Σ(S) be the Borel field of S
(i.e. the smallest σ-field containing the closed sets of S).

DEFINITION 2.10. A vector measure v is a weakly countably addi-
tive set function defined on Σ(S) and taking values in X. v is weakly
regular if the scalar measures (v( ), φ) are regular3 for all φ in X*.
v is Φ-positive if (v(E), φ) ;> 0 for all φ in Φ and E in Σ(S).

DEFINITION 2.11. A set function v** mapping Σ(S) into X** is
weak-*-regular if (φ, v**( )) is a regular scalar measure for all φ in
X*. v** is Φ-positive if (φ, v**(JS7)) ^ 0 for all φ in Φ, E in Σ(S).

If v is a vector measure we denote its variation on a measurable
set E by \\v\\(E) and its semi-variation by \v\{E) ([2], [1]). The
following theorem, an extension of Bochner's theorem, is essential to
our work. The proof is given in [4]. We assume Φ is full.

THEOREM 2.12. (A) If v is a weakly regular Φ-positive vector
measure defined on Σ(G) and if

(2.13) p(g) = ί G/,7M<Z7)

then p is an integrally Φ-positive definite element of L^G, X).
(B) // p is an integrally Φ-positive definite element of L^iG, X),

then there is a set function v** mapping Σ(G) into X** such that
(i) v** is weak-*-regular, Φ-positive with finite semi-variation and (ii)

(2.14) (p(g), ψ) = ί (g, 7)(<P, v**(dy))
JG

for all φ in X* and almost all g in G.
2 The mapping / of G into X is α>X-continuous if it is continuous when the weak

topology is imposed on X. G retains its usual topology.
3 A scalar measure λ is regular if, given ε > 0 and EeΣ(S) with | U | | (E) < oo (i.e.

λ has finite variation on E)y then there is a compact K c E and an open 0 =) E such
that l U I I ( O - i Γ ) < ε .
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COROLLARY 2.15. // p is an integrally Φ-positive definite element
of L^G, X) then one version of p is coX-continuous. If p is given
by 2.13, where v is a weakly regular Φ-positive vector measure defined
on Σ(G), then p is a continuous map of G into X.

Proof. This follows from the relevant regularity. See also [6].

With the aid of Theorem 2.12 we could prove a useful inversion
theorem. However, a different version of Bochner's theorem will allow
us to establish a sharper theorem. We require first the following.

DEFINITION 2.16. p in L^(G, X) is dominated if there exists a
finite, regular, positive Borel measure λ, such that

(2.17) \\\ga(g)p(g)μ(dg)

for all a in Lλ(G, C), where ά is the Fourier transform of a, i.e.

ci{i) = I (g, i)a{g)μ{dg). If R+ is the set of nonnegative real numbers,
J G

we have

DEFINITION 2.18. Let Φ be a subset of X. Assume there is a
function <pQ mapping KΦ into R+ U {°°} in a linear manner such that
φ0 is uniformly positive on KΦ, i.e. there exists k > 0 such that
k(x,φQ) ^\\x\\ for all x in KΦ. Furthermore assume there are at
most countable sequences {c<} in R+ and {?><} in Φ such that (x, φ0) =
ΣΠ=i c%(%9 Φ%) for all x in Kφ. Then we say that the pair (Φ, X) is
admissible. We let KQ = {x e Kφ: (x, <pQ) < oo}.

LEMMA 2.19. // (Φ, X) is admissible, if Φ is full, and if p e
Loo(G, X) is integrally Φ-positive definite with p(0) in Ko, then p is
dominated.

In this lemma it is assumed we are talking about the ωX-
continuous version of p( ) (Corollary 2.15).

Proof. Let ψ(a) — \ a{g)p{g)μ{dg) for all a in L^G, C), then
φ ) ( ? , v**(d7)) for some weak-*-regular, Φ-positive set

G

function y** given by Theorem 2.12. We can actually define ψ( )

mapping CQ(Gγ into X by (ψ(/), φ) = \Af(j)(φ, v**(dy)).5 Then ψ is a
JG

4 Co(G) is the space of continuous functions mapping G into C, which vanish at oo
if G is only locally compact.

5 For a in Li(G, C), ψ{a) = f ( « ) 6 l As {άeCo(G): α6Li((?, C)} is dense in Co(G),
and as ^ is continuous, it can be extended uniquely, with range in X.
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bounded linear map, || ψ(/) \\£\\f IL I »** I (G).
If / is in C0(G) then / = Λ - /, + ίf8 - */* where /, is in C0(G),

fi(y) ^ 0, and each pair of functions (flf /2), (/3, /4) has disjoint support.
Hence My) ^ \f(y) j, and #(/<) is in KΦ so that || #(/<) || ^ Λ(<RΛ), 9>0) -
* ΣΓ=i <>i(ΉΛ), 9>y) = k ΣJ * \ji(rr)((Pj, v**(dτ)). Consider now the set
function λ given by λ(#) = ΣΓ=i 0<(9> , v* *(#)), EeΣ(G). Then λ(#) ^ 0
for all E in ^(G), and also λ is additive. Moreover X(E) <; (p(0), φ0) <
oo as p(0) is in KQ.

X is countably additive because λ((J, ^y) = Σ* Σ/ ^(^^ y

Σ i Σ ί ^ ί , v**(JE?y)) = ΣiM-E'i). if the E3 are disjoint (note that
v**(Ej)) ^ 0 for all i, j). Also λ is regular, for given ε > 0 and E
in -£(<?), there is a number JV such that Σϊ+i ci(?i> v**(G)) < e/2 and
there is a compact KczE and an open O^> E such that (<£>*, y**(0 —
K)) < 6/2^, i = 1, 2, , N. Hence λ(O - K)< e.

Then 1| t ( / ) ii ^ ΣUx ii t(Λ) II ̂  * Σ i LΛWdλ ^ 4fc ί |/(τ) I dλ. It
JG JG

follows that if λ' = ikX then \\ψ(a) || ^ ί |α(7)|dλ'. This establishes

the lemma.
We can now state the alternate version of Bochner's theorem.

Assume Φ is full and countable

THEOREM 2.20. p is a dominated, integrally Φ-positive definite
element of L^G, X) iff there is a weakly regular Φ-positive vector
measure v mapping Σ(G) into X such that v has finite variation, i.e.
| | j ; | | (G) < oo, and such that for any φ in X*,

(2.21) (p(g), φ) = \A(g, J)(v(dy), φ) , α e. g.
JG

For the proof see [4]. Countability of Φ is not required for the
only if part.

3* Inversion theorems* If pe Lλ(G X) we recall that the
Fourier transform of p is given by

(3.1) p(y) =

For convenience we let &> — {peL^G, X): p is integrally Φ-positive
definite} and &d = (p e 3P\ p is dominated}. We recall that if p e &
then p is ωX-eontinuous (Corollary 2.15). If (Φ, X) is admissible then
J7~Q is the set of functions p mapping G into X such that p is coX-
continuous and such that p(0) is in KQ where KQ is defined in 2.18.

PROPOSITION 3.2. (A) If pe span {LX{G, X) Π &*} and if φe
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span {Φ} then (j3( ), φ)eLL(Gf C) and (B) if the Haar measure of G
is fixed then the Haar measure of G can be so normalized that

(3.3) (p(g), φ)=\A (g, 7)(p(7), ψ)m{di)
JG

is valid for all p e span {LX{G, X) Π ̂ } and all φ e span {Φ}.

Proof. It is evident the results need only hold for p e Lt(G, X) Π
^,φeΦ. But this follows from the scalar inversion theorem ([10],
p. 22).

A better result is the following.

THEOREM 3.4. Assume Φ is full and G is σ-finite. (A) If pe
span {LX(G, X) Π ̂ J then p e LX{G, X), and (B) with μ fixed, m can
be so normalized that for each φ in X*

G \
A (9, r/)p(l)m(d7)φ a. e. g.
G J

If Φ is countable or if p is continuous (3.5) becomes

(3.6) p{g) = j ^ (g, i)p{i)m{di) a. e. g.

Proof. Again we need only prove the results for p in L^G, X) Π
&*d. If p is in L^G, X) then p is in C0(G, X), the space of continuous
functions mapping G into X, which vanish at infinity if G is only
locally compact but not compact. As p is measurable and G is σ-
finite, p is essentially separably valued, and hence is measurable and
a member of L^G, X).

As p is in &dy then by Theorem 2.20 there is a weakly regular
Φ-positive vector measure v with finite variation such that for any φ
in Φ

), Ψ) = \ΛQ, 7)(v(dτ), Ψ) , a. e. g.
(3.7) JG

= L (9, 7)(p(7), <P)m(dy)
JG

by Proposition 3.2. As both integrals are continuous, the equality
hold for all g. It follows, [10], that

, Ψ) = \ (0((7), <p)m{drt)

= (\ (p(7)m(di),<p
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if m(E) < oo, as p is bounded. Since Φ is full, we have

v(E) = \ p(Ύ)m(dy)
JE

if m(E) < CXD . As p is in C0(G, X) given n these exists a compact
set Kn such that \\v{i) \\ < 1/n if 7 is in G - i£w. Let χn(.) be the
indicator function of Kn. Then

limf ||

= limί

Also ||χ«(7)?>(7) || t ||j>(7) || for each 7 in G. Then by the monotone
convergence theorem

lim ί II p(y) || m(dy) = f || ^(7) || m(d7) ^ II υ II (G) .

Hence p is in Lλ(G, X), and for all measurable sets E,

v{E) = \ p(y)m(dy) .
JE

Since Φ is full (3.5) now follows from (3.7).
If p is continuous, the set of measure zero where (3.5) does not

hold is empty and (3.6) follows. If Φ is countable, the union of these
null sets (one for each <p in Φ) is still a null set and again (3.6)
holds.

COROLLARY 3.8. Assume Φ is full, G is σ-finite, and (Φ, X) is
admissible.

(A) If p is in span {L^G, X) n & Π ̂ } then p is in L^G, X).
(B) // μ is fixed, m can be so normalized that for each ψ in X*

(3.5) holds. If Φ is countable or if p is continuous then (3.6) holds.

Proof. Apply Lemma 2.19 and Theorem 3.4.

4* The Plancherel theorem* As usual this theorem is set in
a Hubert space, and so we must first develop the necessary structure*
Assume now that X is a Banach algebra with continuous involution
x—*x*.

DEFINITION 4.1. The triplet (Φ, X, Xo) is strongly admissible if
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(i) (Φ, X) is admissible, (ii), Xo is a non-trivial subspace of X such
that xx* is in K0

6 for all x in Xo, and (iii) there exists k0 > 0 such
that if xeX0 then

(4.2) fco||ss*||^ 11*11',

We note that 4.2 is satisfied if X is a C*-algebra. Now we have

PROPOSITION 4.3 If X is a Banach algebra and if (Φ, X, Xo) is
strongly admissible then Xo is a Hilbert space under the norm || ||0

= <a?, £> 0 α ^ d <», i/>0 =

Proof. φQ is only defined on K and we do not know that if
x,yeX0 then xy*eK. However we can extend φQ by setting (xy*,
<Pd = Σ Γ - i ^ l / * , 9><) where {cj, {<?,} define <?0 on K. Then |<α?, »>0| =
I (xy*> ψ) I - I ΣΓ-i c<(a?»*, ?><) I ̂  Σ Γ <φa*, φtfι\yy*y φtfl% where the last
inequality follows because ψi is a positive functional. Hence we can
define (x, y)0 for x,yeX0 and \(x, y\\ <> \\x\\Q\\y\\0. I t follows from

2.18 and 4.2 that kk0 \\x \\l^ \\ x ||2 and that || ||o'is a norm.
If {xn} is Cauchy in || ||0 then it is Cauchy in || ||, soxn—>xeX.

As K is closed then xx* e K. Also {xn} is bounded in || ||0 because it
is Cauchy, so ΣS=iCi(a?»a?ί, %) ^ M, hence Σ Γ = i ^ ^ * , ?><) ̂  Λf or OJG
KQ. Choose m(e) such that if n, m > m(ε) then || OJ% — α?m ||0 < e. Then
Σf=i c,([αj - »J[α? - α?J*, <p<) = l i m ^ Σf=i ^([a?. - a j f o - α?J*, ^ ) ^
lim s u p n ^ ΣΠ=i Ci([»» - #m] K - » « ] * , ^i) < ε2 so that for m > m(ε),
II» — #m Ho < e> or XQ is a Hilbert space.

If X is a Banach algebra and G is σ-finite, then L1(G9 X) is also
a Banach algebra ([5]). If X has the involution #—>x*, then we can
define an involution on Lt(Gf X) as p-+p* where p*(gr) = p(—g) *

THEOREM 4.4. If G is σ-finite, X is a Banach algebra with con-
tinuous involution, Φ is a full subset of X* and (Φ, X, Xo) is strongly
admissible, then (i) if {ea} is an orthonormal basis for Xo and there
exists &! such that \ (x, ea)01 ^ Λi | |« | | for xeX0 and all a, then the
Fourier transform maps LJ^G, X) Π L2(G, Xo) onto a dense subset of
L2(G, Xo), (ii) for q, re L^G, X) Π L2(G, Xo)

(4.5) ( q(g)r(g)μ(dg) = ί q(y)f(7)m(dy) ,

(iii) for q,re L,(G9 X) Π L,(G, Xo)

(4.6) <Ϊ, r> - <g, f > ,

where <?, r> = \ <g(flr), r(g))oμ{dg) and <g, ?> = L<g(7), f(i)\m(di) .
)G JG

6 Zo is defined in 2.18.
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Proof. We shall put

II Q Ik = \G II Q(g) II μ(dg) and || q ||2 = { ^ || q(g) Wlμidg)}1'*

for q e L,{G, X) ΓΊ L2(G, Xo). Let pfo) = (q*q*)(g). As g e Z^G, X) so
is p with \\p Ik ^ || g ||J. It can also be shown that peC0(G, Xo) as

g G L2(G, Xo). Now p(0) = ί q(g)q(g)*μ(dg) e K so
JG

, <pf)μ(dg)

= ( (Q(g)Q(g)*,
JG

= \ \\Q(9) Wl
JG

= \\q\\t< -

using the monotone convergence theorem. Hence p e L^G, X) Π
Now C0(G, Xo) c Cβ(G, X) so p e LJfi, X). Also

- g')μ{dg)μ{dg')

= t q'(g)q'(g)*μ(dg)
JGJG

using the Fubini and Tonelli theorems with aeLJfi, C), where q' =
L 2 ( G , X 0 ) ([5]) so j ' t o j e ί , a.e. or q'(g)q'(g)* e Ko a.e Hence if
then

( j ^ ) j ^ , Ψ)μ(dg) ^ 0

or p e ^ .

Consequently Corollary 3.8 yields p(g) — \ (g. i)p(i)m(di). Then
JG

We have used the monotone convergence theorem again Hence the
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Fourier transform maps into L2(G, Xo). By the usual expansion
(Q, r} = <£, f>. This establishes (iii).

Moreover I q{g)q{g)*μ(dg) = p(0) = \,p{Ί)m{dy) = l A g(7)g(7)*m(d7)

Also if x, y are elements of a Banach algebra with involution then

4α;2/ = (x + i/)(α? + t/)* - (a? - 3/) (a? - y)*

+ i(a? + iy)(x + ii/)* — i($ — iy)(x — ίy)*

so that (ii) is also proved.
We need only show that Q = {q e L2(G, XQ): q in Lt(G9 X) Π L2(G, XQ)}

is dense in L2(G, Xo) As μ is translation invariant so is L^G, X) Π
L2(G, Xo) and hence Q is invariant under multiplication by (g, •) for
any g e G. If r e L2(G, Ko) and <<?, r> = 0 for all g e Q, then

(Λ (?Cr)r(7)*, PoXflr, 7)m(d7) = 0 for all g e Q and g e G. As (?( M )*f
9>0)

 G A(G, C) it follows that (9(7)^(7)*, 9>0) = 0 a.e. for every g e Q, or
<?(7), τ(7)>o = 0 a e. As LX{G9 X) Π L2(G, Xo) is invariant under multi-
plication by ( , 7), 7 G G , then Q is invariant under translation.7 Hence
to every 70 e G. there corresponds qQeQ such that go(%) ^ 0, so qo(y) Φ 0
in a neighborhood of 70 as qQ is continuous. If {ea} is the basis of Xo

mentioned in the statement of part (i), then qQ( ) = X α g α ( )̂ α so there
exists a0 such that qaQ(7) Φ 0 in a neighborhood of 70 If #0( ) = P( )
then 2> = ΣαP«βα a n d as p e L2(G, Xo), pae L2(G, C). By hypothesis
i <», O o I ̂  fti II « II so pα 6 L^G, C) and pa(j) = qa(y). Hence pαo( )βα e
L^G, X) Π ί/2(G, Xo) for any α and paQ(-)ea = gαo( ) e « e Q Since for
each 7 in a neighborhood of 70, {#αo(7)βα}α forms a complete set in Xo,
and since 0 = (qajct)ea, r(7)>0> then r(i) — 0 in a neighborhood of 70

But 70 was arbitrary so r = 0, or Q is orthogonal only to 0 in L2(G, Xo),
a Hubert space. Hence Q is dense in L2(G, Xo). This completes the
proof.

COROLLARY 4.8. Under the assumptions of the theorem the Fourier
transform can be extended in a unique manner to an isometry of
L2(G, Xo) onto L2(G, Xo).

Proof. We need only show Lγ{Gy X) Π L2(G, Xo) is dense in L2(G>
Xo). But CC{G, X0Y is dense in L2{G, Xo) ([6]). Hence if fe L2{G, Xo)
then there exists {fn}T c CC(G, Xo) n L£(G, Xo) such that ]|Λ - /II2 — 0.
Then fn e CC(G, X) and fn is measurable so fn e LX{G, X).

REMARK. The equality (4.5) holds for all q, re L2(G, Xo). More-
over, all results are correct assuming only that φQ is an arbitrary

By this we mean that fγQ is in Q for any γo in G if / i s in Q and/ rofr) = f(γ + γQ).
Cc(G, Xo) denotes the set of functions in Co(G, Xo) having compact support.
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linear combination of φ^s, i.e. φ0 = Σ ^ βaΨa.

5* Examples* Here we give some examples of admissible pairs
and strongly admissible tr iplets .

EXAMPLE 5.1. Let X = Z/i([0, 1], C) so X is weakly complete,
and let Φ consist of elements <pt such t h a t

(5.2) (x, φ<) = [ X i { t ) x { t ) d t x e X
Jo

where χ4( ) is the indicator function of one of a countable collection
of sets {Ei} dense in Σ([0, 1]) under the usual Hausdorff metric.
Assume E± = [0,1]. Then it can be shown ([4], [6]) that Φ is full
and that K is the cone of nonnegative (a.e.) functions. Let (a?, φ0) =
(x φλ) = \ χ(s)ds = 11 a? ||i for xeK. Hence (Φ, X) is admissible and

Jo

Ko = K.
If p is in & then p(0) is in K = Ko by Propositions 2.8 and 2.9

and by Corollary 2.15. So p e ^ and the inversion theorem states
that if p e sp {LX(G, L&0, 1], C)) Π ̂ } then p e L^G, Lx([0, 1], C)) and
p(g) = L(^, i)p{i)m{di).

JG

The author does not know of any nontrivial subspace Xo which
would make (Φ, X, Xo) strongly admissible.

EXAMPLE 5.3. Let X — H> a separable Hubert space with a fixed
orthonormal basis {ejΓ Let Ho be the set of elements of H with all
but a finite number of components zero, with nonzero components
being real, rational nonnegative, and with norm less than or equal
to one. Then Φ — Ho is full ([4], [6]) and countable and Kφ — {h^
H: h ^ 0}.9 Let (Λ, ?>,) = <Λ, e*>, i = 1, 2, . . and % = Σ Γ 9>*. Then
^ 0 maps K into [0, °o], and for h in K

so t h a t (Φ, iJ) is admissible and Ko= {he K: Σ r h < CXD}.
ί ί becomes a Banach algebra if we define hk = Σ Γ Wiβί Let

A* = 2 7 ϊ ^ . For h in H hh* is in ίΓ and (hh*, <p0) = Σ i ^ Λ = P I I 2

We do not have k\\hh*\\ ^ \\h\\2 for some k > 0, but we do have
|| A||o z= 11 fe|| which is sufficient to show t h a t Xo — H. Hence (Φ, H, H)
is "strongly admissible," and the Plancherel theorem applies. Note
t h a t the condition \{h9 e4> | ^ | |A| | also holds.

EXAMPLE 5.4. Let X = £f{H, H), the linear bounded operators
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mapping the separable Hubert space H into itself. Let Ho be a
countable dense subset of the unit ball in H and let Φ = {φeX*:
(T,φ) = (Th,h},Te^f(H,H),heH0}. Let {e,} also be in Ho for
some orthonormal basis {et}. Then Φ is full and countable and Kφ is
the cone of positive operators ([4] or [6]). Let (T, φ0) = Σ Γ < ? K e*>.
So ^o = ΣΓ<P; is the trace, where (T, φ^ = (Teif e<>. Then <£>0: iΓ->
[0, oo], (Γ, φ0) = tr Γ ^ || 2Ί| if Γ is positive. Hence (Φ, ̂ f (fl, # ) ) is
admissible and Ko is the cone of positive operators of finite trace and
so a subset of the trace class.

We can see that in one case the condition p e J7~o is necessary
for the inversion theorem to hold. Let G be the circle group so that
G is countable. Label its elements Yi, 72,

 β > and let the set function
v be given by

(5.5) <*>({7Λ})e<, eό> = PAA;> 1 0 i, i, w = 1, 2,

where oo > M ^ p w ^ 0. v can be extended to a countably additive

measure of finite semi-variation in the obvious way. Let p be given

by

(5.6) p{t) = Σ e«^({7K}) .

Then p is in ^ (Theorem 2.12 (A)) and p is in L,(G, X) because G
is compact and | |p(ί) | | ^ M. If p is to be in L^G, X) then | |v| |(G)
must be finite or Σ Γ P» = tr p(0) < oo.

Finally let Xo = ^Y\ the Hilbert-Schmidt operators ([3]). Then
for T in ^Γ, TT* is in the trace class and is positive so that TT*
is in Ko. Also £?{H, H) is a C*-algebra so (Φ, Sf{Hy JST), ̂ O is
strongly admissible. A basis for Λf is given by {Tί:? } where {T^e^
eι> = δikδjι,k,l = l,2, .. Then |<Γ, Tiά\\ = \{Teh βy> | ^ || JΓ||, and
the condition in (i) of Theorem 4.4 also holds.

6* Fourier transforms on representations* In this section we
apply the preceding theory to extend the inversion theorem and
PlancherePs theorem to "Fourier transforms" defined for unitary
representations in a separable Hubert space. The case where H is
finite dimensional has been treated by Hewitt and Wigner [7]. Let
H be a separable complex Hubert space, and let U( ) be a continuous
unitary representation of G in £?{H, H), i.e. U(g + g') = U{g)U{g')>
[7(0) = /, and V is a continuous mapping of G into the unitary operators
on H. It follows [9] that there exists a sequence {γj of characters,
and a resolution {TΓJ of the identity in J*f(H, H), such that

1 0 <5%ί is the Kronecker delta.
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(6.1) U(g) = Σ for, Ίi)π<
i

(The summation is at most countable). If p is in Lt(G, Jΐf(H, H))
define the transform

(6.2) P(U)=\ p(g)U(-g)μ(dg) .
JG

We shall first consider the question of invertibility of this transform.
As we shall see, it suffices to know p(U) for all U corresponding to
a fixed resolution {TΓJ.

From now on consider {TΓJ fixed, and let us denote the set of
subscripts by S. Then S is at most countable, Σiesπi — I Define
& = TliesGi, where Ĝ  = G for all i, with the product topology.
Then & can be considered as the set of all representations corre-
sponding to {π\J, if we put

(6.5) r +—

whenever r = {7*} e &.
Let us now introduce a measure on ^ . Choose a symmetric

neighborhood A of 0 in G such that the closure of A is compact. Hence
0 < m(A) < 00. Assume m is normalized (relative to μ) such that
the inversion theorem holds. Now normalize μ such that m(A) = 1.
Note that if G is discrete and A — G, or if G is compact and A = {0},
then the usual normalizations of μ and m occur. For a in G and E
in Σ(G) define

ma{E) = m[E f] (A + a)] .

Then ma{ ) is a probability measure on G, and by the Kolmogorov
extension theorem, there exists a unique probability measure

m J = ma x ma x

on f̂5. We set &ι = TTίeβ-^ G9 . For i? in Σί^1) write

where it is understood we are integrating out τ<
Now assume G is tf-finite and Φ is a full, countable subset of

£f(H, H)*. With the previous notation we have

THEOREM 6.4. If p is in span {L^G, £f(H, H)) n &>d}, then

(6.5) p(g) = ( [ p(U)U(g)m-(dr)m(da) .
JG JέP
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Proof. 7Γ; is a projection on the subspace Hi of H. Moreover if
we consider the equivalent spectral representation ([9], p. 247), then
the subspaces are mutually orthogonal. Let us write f(a) = p(ά)(g, a),
and fj(r) = f(yd) when r = {τj Then for n finite, βeG and h in H,

71 Γ Γ
Σ I Λ \ f(cήm%β(dr)mβ(da)πih
ί = ι JG Jέ?i

Σ \ ,
ΐ = l JG

\J{a)mβ{da)
JG

so that

Σ

As p is in Lu and as m(A) = 1, then

L L II0(«) II XA+β(a)m(dά)m(dβ)
JG JG

Hence

(6.6)

Σ [A f\r)my{dr)'m{dβ)π
ieS JG J&

Σ ί f\r)mr{
ί e S J . ^

Moreover

ί
j

p{g'){Q ~ 9'y

and

Σ fe - S',
4 = 1
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as I (g, 7) I = 1 and the π/s are orthogonal projections. As p is in Llt

and as mj{&) = 1, then

Σ ( U
(6.7) " e J -

J& JG ieS

On the other hand

p{U)U(g) = \ p(g')U(-g')μ(dg')U(g)
JG

(6.8) - ( p(g')U(g - g')μ{dg')
JG

- ( VW) Σ (9 ~ 9', v<)πiμ(dg') .
JG ieS

Hence we have shown that for each /9, g, p( U) U(g) is integrable

m?(dr), and \ p(U)U(g)mf(dr) is integrable m(dβ), so that 6.5 makes

sense
Finally

\ p{U)U{g)m~{dr)m{dβ)
G j£?

f{(r)mf(dr)m{dβ)πt

= Σ L L \ V(oc){g, a)mi
ieS JG JG J&i

= Σ L \,
ieS JG JG

= Σ L \,1Λ{OL - β)p{a){g, a)m(dβ)m(da)πt
ieS JG JG

= Σ L P(«)(Λ a)m{da)ni
i 6 S J G

- Σ
iS
Σ
ieS

We have made use of 6 6, 6.7, 6.8, and the inversion theorem. The
theorem is established.

Now consider the setting of Example 5.4.

THEOREM 6.9. // p and q are in LX[GU £?[H, H)] n L2(G,
then

ί P(g)q(g)*μ(dg)=\Λ p(U)q(U)*m-(dr)m(da)
JG JG J^S
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Proof. The proof is similar to the previous one except that
Theorem 4,4 is used.

Further applications of this theory can be found in [6].
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