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THE DECIDABILITY OF A CLASS OF AE
SENTENCE IN THE ISOLS

ERIK ELLENTUCK AND A L F R E D B. MANASTER

The isols are a recursive analogue of the Dedekind finite
cardinals originally developed by Dekker. In this paper a
metatheorem is proved which shows that for certain sentences
J>/ about addition in which no existential quantifier precedes
a universal quantifier, the truth of *S%f in the natural numbers
is sufficient to ensure the truth of Stf in the isols. A more
general class of sentences is also considered and it is seen
that the applicability of the metatheorem is also necessary
for the truth of any sentence in this class. It follows that
there exists a decision procedure for that class of sentences.
Extensions of these results to the case of the cosimple isols
are also considered.

Careful definitions and exact statements of the results will be
given in the next section. The remainder of this section will be
devoted to a brief indication of some applications of the metatheorem
and to a brief discussion of the relationship of the results in this
paper to other work in the theories of addition of the isols, the re-
cursive equivalence types (RETs), and cardinals in set theory without
choice. Section 3 contains a proof of the metatheorem. Section 4
contains a proof of the necessity of the metatheorem in the class of
sentences referred to above. In §5 the correctness of the two main
results in the cosimple isols is proved.

A typical application of the metatheorem proves the well known
refinement property [4, Theorem 14] for the isols.

(1.1) If Aγ + + An = Bx + + Bm1 then there exist isols
Ci>h l ^ i ^ n f l ^ j ^ m such t h a t

l,m + ^2,m + • • • • + • O Λ , m — !>,„

II II II

A, A2 A%.

Other examples are the truth in the isols of (1.2) and (1.3).
(1.2) For finite positive n and any A and B, nA ^ nB implies
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(1.3) For finite positive n and any A, B, and C, nA ^ B +
implies A ^ B + C.

The truth in the isols of the finite part of Tarski's theorem on
the decomposition of linear forms (See [12, Theorem 7] and [13, p.
242].) also follows from the metatheorem. A precise statement of
this theorem is given in the next section. The last example is espe-
cially interesting because it cannot be extended to the RETs (See
Manaster [8].).

The proof of the metatheorem is a generalization of earlier proofs
by Dekker-Myhill. It was motivated by these proofs and modifica-
tions of them by Friedberg and Nerode. The basic idea of a "chain",
which plays a crucial role in the proof of the metatheorem, can be
found in Tarski [15] applied to cardinal arithmetic. This type of
proof is applied to the isols by Dekker-Myhill in [4] in proving that an
isolated set represents an isol and again, in a more complex manner,
in proving (1.2) [ibid., Theorems 39 and 40]. Friedberg [6] and Nerode
[11] have extended this type of argument to the RETs. It is not
possible to extend directly Nerode's results for universal sentences in
the RETs to the types of sentences considered here because of the
failure of the decomposition of linear forms theorem in the RETs.

An example of an application of the decision procedure is the
falsity in the isols of the following sentence, even though it is true
in the natural numbers: for every xly x2, #3 there exist yλ and y2 such
that if 5xL = x2 + Sx3 then 3xt — hyι + 2yz or 8x2 = 5yt + 2y2. Nerode-
Manaster [12] shows that while the decision procedure here may be
capable of some extension, it can not be extended to a decision pro-
cedure for the complete theory of addition of the isols

The metatheorems proved below were developed at almost the
same time as very similar metatheorems were discovered in cardinal
arithmetic without the axiom of choice (See Bradford [1].). A signifi-
cant difference is the restriction to the Dedekind-finite case here.
Bradford did not make such a restriction.

2. Preliminaries and summary• The following notational con-
ventions will be used. Some of the notions referred to in this paragraph
will be defined later in this section. E denotes the set of natural
numbers, {0,1,2, •••}. Lower case English letters, except / and g,
with or without subscripts, denote natural numbers. gcd(xl9 •••,#»)
denotes the greatest common divisor of xί9 •••$». Lower case Greek
letters denote sets of natural numbers. \ξ\ denotes the cardinality of
ξ. All applications of pairing functions are implicit so that we identify
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an %-tuple of natural numbers with a natural number. ξSti denotes
ζ x {j} x {i} = {(x,jj i)\xe £}• The letters X, Y, Z, V, with or without
subscripts or superscripts, denote formal variables and, at times, isols
or natural numbers. The letter A, with or without subscripts, denotes
an indecomposable isol. Vector notation may be used; thus X denotes
(Xu •••, Xn) for some n. Any conjunction, disjunction, or summation
is finite even if the range of the operator is not explicitly indicated.
The union over an empty index set is empty; thus Uo<& ô̂  = 0 .
The matrix of a formula is the formula remaining after the initial
string of quantifiers is removed.

Two sets a and β are called recursively equivalent if there
exists a 1-1 partial recursive function / such that the domain of /
includes a and the image of a under / is β. Recursive equivalence
is an equivalence relation on the power set of E. The equivalence
classes under this relation are called recursive equivalence types
(RETs). The RET to which the set a belongs is denoted (a).

A set ζ is isolated if it does not contain any infinite recursively
enumerable (r.e.) subset. An RET X is called an isol if any ξ e X is
isolated. A denotes the set of isols. ζ and η are called recursively
separated if there exist disjoint r.e. sets ω and θ such that ξ S <*> and
7] s θ. The sum of X and Y is defined to be <f (J rjy where ξ e X, η e Y,
and ξ and rj are recursively separated. If ξ and η are recursively
separated we may write f U V a s £ + V X *s s a id to be less than or
equal to Y (X ^ Y) if there is a Z such that X + Z = Y. Basic
properties of the RETs and the isols may be found in [4]. In par-
ticular, the isols satisfy the additive cancellation law,

(2.1) (VX)(VY)(VZ)[X + Y = X + Z > Y=Z].

An infinite isol, A, is called indecomposable if A = X + Y implies
X is finite or Y is finite. The existence of uncountably many pair-
wise incomparable indecomposable isols is well known (See Dekker [3,
Tl] or Dekker-Myhill [4, p. 103].). Define X=,Y to mean there
exist finite m and n such that X + m = Y + n. Generalizations of
indecomposability and = x are considered in Manaster [9]. The fol-
lowing properties will be used in §4.

(2.2) If A is indecomposable and A = X X%> then there is exactly
one i for which Xt is infinite; moreover for that i, Xi — XA and so X{

is indecomposable.
(2.3) If X = 1 Γ, then X and Y are comparable.
(2.4) If A9 Al9 , AnJ are indecomposable and A <; X Ai + p,

then for some i, A —x Ai9

(2.5) If A19 , Am are pairwise incomparable indecomposable isols,
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then there is no isol F and j , 1 ^ j ^ m, such that 2V ^ΣAk & Aj <Ξ
3F.

Proofs. (2.2) is proved by a routine induction on the number of
summands. To prove (2.3) suppose X—1Y. Let X + m = Y + n.
If m ^> n, then (2.1) shows X + (m — n) = Y and hence X <: Y. A
symmetric argument shows that if m < n, Y g X.

For (2.4) suppose A,Au---,An are indecomposable and A ̂
Σ A4 4- p. The refinement property gives the existence of Xu Yl9 ,
Xn+1, Yn+1 such X, + Yi - A, for i ^ w, X%+1 + Γ n f l = p, A = Σ ^>
and F = Σ y*- (2 2) gives the existence of a unique i such that
A =1JE i. Since X; is infinite, ί ^ n. A further application of (2,2)
to X, + Yi = A, gives X ^ A , . Thus A =ίAi.

To prove (2.5) suppose Aί9 •••, Am are pairwise incomparable inde-
composable isols, 2V ^ Σ Λfe> and Aό ̂  3F for some j , 1 <Ξ j" ̂  m.
Since A5 ^ 3 F = V'+ V + F, the refinement property and (2.2) combine
to show that there is a natural number q such that Aά <; F + g.
Thus 2Ay ^ 2F + 2g ^ Σ ̂ * + 2g. (2.1) shows A, ^ Σ Λ ^ ̂ .* + 2g.
(2.4) then shows Ay — t Ak for some yfc Φ j . Thus, by (2.3), Ay is com-
parable with Ak.

An AE sentence is a sentence with a prenex form in which no
existential quantifier precedes any universal one. "E 1= Sf" asserts
that j y is true in the natural numbers. "A f= J ^ " asserts that Stf
is true in the isols. The following result is the main result of this
paper:

AE metatheorem. Let ^ be any sentence of the following form:

(VXO . . (VX,)(3 Yλ) (3 Yr)\& ( Σ a'j.iXt = ± a^xλ
(2.6) L i s s l W ι ί = 1

m / p

& (Σ
y=i Vΐ=i

r p r λ ~ l

Σcj> 4 Yi = Σ 67..Λ + Σcί'.iYi) .
*=i ί=i ί=i y J

If E μ ̂ 7 then A t=
An isol analogue of a theorem originally proved by Tarski for

the theory of cardinal numbers without the axiom of choice follows.
Its proof (See [8].) led to the discovery of the AE metatheorem.

Theorem on the decomposition of linear forms. Let Xly , Xm

be isols satisfying the system of linear equations:

(2.7) &

There exist isols Γ M , Ylt2, Y2tl, Y2>2, Y3>1, Γ3>2, •••, Ym>u Ym>2 such t h a t

Xi - Γ i f l + Yiί2 for i = 1, . . , m, Γ l f l ^ Γ2 f l, Γ2)2 ^ Γ l f 2, and both Γ l f l,

F2,i> * •> ^mα and Fi,23^,2, , Ym,2 satisfy the original system of equa-

tions (i.e., both &(Σ<iYt,i = Σ*<iYi,d and έ ( Σ ΐ / i i 2 = Σ*<iYt,ύ)-
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The conclusion of the theorem on the decomposition of linear
forms can be strengthened.

Extension of linear forms decomposition theorem. Let Xu , Xm

satisfy (2.7). Let gl9 , gml be the set of permutations on {1, , m}.
Then there exist isols Xit3- for 1 ̂  i <^ m, 1 ̂  j ^ ml such that

ml

Xi = Σ -Xi.y for i = 1, , m ,

&(Σ <«-Zi,y = Σ < A i ) for j = 1, .., m! ,

and £fί ( i) < #,-(&) implies Xi,3 sϊ Xhιj for i, A 6 {1, , m} and 1 g jf 5Ξ m!.
The other metatheorem, providing a partial converse to the AE

metatheoreni, is most easily stated after two definitions are given.

DEFINITION. A special AE sentence is any sentence in the form:

(VXO (VX,) (3 Yd (3 Yr)\& (± a'^Xt - Σ <<
(2-8) m

 b = ι ί = 1 ί = 1

V (&— > V (& ( Σ
j=l \A=1 \*=:1

A Horn-reduct of the sentence (2.8) is one of the m sentences obtained
by deleting all but one of the disjuncts in the consequent of the
matrix of the (2.8); thus it is one of the m formulas

Σ(VXP) (3 Yd (3 Yr)\&<Σ <iXi =

— > & (Σ b'jfh,iXi + Σ c;,M Yi - Σ &ZMU + Σ ^ / . M ^

A converse to the AE metatheorem. A special AE sentence is
true in A only if one of its Horn-reducts is true in E.

Since the AE metatheorem implies the converse, a special AE
sentence is true in Λ iff one of its Horn-reduct is true in E.
Presburger [13] gives an effective procedure for determining the truth
or falsity of each of the Horn-reducts of (2.8) in E. Thus Presburger's
result together with the equivalence just stated gives a decision
procedure for special AE sentences in the theory of addition of isols.

3* The AE metatheorem* Let ̂  be the sentence (2.6). The
antecedent, or hypothesis, of the matrix of JF will be denoted by
JBΓ, the consequent by C. Since both E and A satisfy the additive
concellation law, we may assume with no loss of generality that

min (a'jti, a
f/ti) = min (δyff, b"ti) = min (cjf<, c'/ti) = 0 .

(Explicit mention of the range of subscripts willl be omitted; the range
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is always finite and determined by j ^ in an appropriate way.)
Assume E \= JK Assume further that X is a vector of isols

satisfying H. For each i let ξt be a representative of Xt where there
exist pairwise disjoint r.e. sets ω* such that each ^ g a>; and U ω ; <ϋ
{2x\xeE}. Since X satisfies H, there exists a set of 1-1 partial
recursive functions f3- such that for each j the domain of f3- includes
Σi(Σo<**.'.,.fP) and

(3.1) Σ
k

To prove the theorem a method of enumerating 1-1 partial recursive
functions gά must be described and sets ηi must be defined such that
for each j the domain of g5 includes Σi(Σo<^6j;ίίί

>fc) + Σ* Σo<^c;.^Vϊh

and

/Y f v ( V ^-^/c\ 4- V V r)j>k\ — V V y?5"'Λ _i_ V V r)j>k

QΛ2J[ ZΛ Si I ~τ 2-1 2-ι 7/i - 2 J ( 2-I Vi + 2 J 2 J Vί

Let

ajti = max ( α ^ , α7fί), δ^i = max %ti, b'/yi), cj}i = max (c'jfi, c"ti) .

lί xe ωif (x, j , k) is called an H-version of x if 0 < k fg α̂  ̂  and (#, i, /c)
is called a C-version of α; if 0 < & <£ 6y,, . If a? e ω, , y e ωίf, (x, j , k) is
an H-version of x and (y, j , kr) an ίZ-version of y, (x, j , k) is said to
be H-satίsfied by (y, j , kf) and conversely in case a'jti > 0, a' Λ, > 0, and
fj(x,j, k) = (#, jf, yk') a? and y are directly H-linked if there are in-
versions of x and 2/ which satisfy each other, x is said to be H-
linked to y if ίCGX^ and x — y or if there is a finite sequence
# = xl9 , xw = y such that each x4 is directly iί-linked to xi+1. An
H-chain is a subset of X ω̂  any two elements of which are H-linked
to each other. A complete H-chain is an iϊ-chain in which all ίί-ver-
sions of the elements of the chain are iϊ-satisfied by ϋ-versions of
elements of the chain.

Observe that the relation of being iί-linked is an equivalence
relation on Σ ωi s o that the set of maximal fi-chains partitions Σ ω^
Since each fό is partial recursive and each ωζ is r.e., each maximal
if-chain is r.e. To enumerate the set of elements linked to a given
x, x e Σ ωi> simultaneously enumerate the sets α^ and the functions fά.
Whenever sufficient information has been generated to show that y
is iϊ-linked to x, place 'y in the iϊ-chain defined by x. It can be
proved by induction on the number of direct iϊ-links required to link
y to x that any y which is Jϊ-linked to x will be placed in the enu-
merated ίZ-chain. If x belongs to a finite complete if-chain, there is
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a finite stage of the enumeration at which this complete H-chain is
enumerated. At some, possibly later, finite stage of the process all
information needed to show that the iZ-chain is complete will have
been generated since all H-versions of all elements of the chain will
have been satisfied by H-versions of other elements of the chain.

Suppose that 7 is a finite complete iϊ-chain. Let 7* = 7 Π (Oi and
let Xi = |7i|. The functions fs show that x satisfies H. Since ^~ is
true in E, there exist natural numbers y such that (x, y) satisfies C.
Moreover a sequence of numbers y with this property can be found
effectively. Let δ be a sequence of pairwise disjoint sets of odd
numbers (so that JJ^ Γ) \jΎi = 0) such that | ^ | = 2/< for each i. δ
may also be chosen in an effective way. For the remainder of this
paragraph let the notions of C-versions of elements of \J3i be defined
analogously to that for elements of LM*: ίn detail, (α?, j , k) is a C-
version of x e d{ if 0 < k ^ cjyi. There is an effective procedure for
defining 1-1 partial functions g3 such that, with the obvious definitions
relative to the functions gs, \JΊ U U ^ ^S a finite complete C-chain.
This effective procedure exists because, for each j ,

Σ Σ 7p

= Σ VitiXi + Σ c'ύiVi - Σ δy.ί«« + Σ c'LiVi
i i i

Σ( Σ 7p
i \0<k^b'j'j

Σ
k '

The constructions of the preceding paragraphs may be combined
to enumerate sets ζ{ and functions g3- in the following way. By
simultaneously enumerating all maximal iϊ-chains and checking to
see when a finite complete iϊ-chain has been enumerated, an effective
enumeration of all finite complete ϋΓ-chains is given. Whenever a
finite complete ίf-chain is enumerated and identified, find sets δ and
functions g3- as in the preceding paragraph and, further, such that
\Jδi is disjoint from the union of all the sets chosen as ^'s at earlier
stages of the enumeration. For each ί, let ζ« be the union of all the
sets di enumerated in the process. For each j let g3- be the union of
all the finite functions enumerated as g/s. Each g, is a 1-1 partial
recursive function and ζ is a sequence of pairwise disjoint r.e. sets.
Now define C-chain and related notions analogously to the corre-
sponding definitions for H; here elements of X cόi + X ζ» will be con-
sidered and the functions g3- will be used. The construction has the
property that any finite complete i?-chain is contained in a finite
complete C-chain formed by adjoining elements of \Jδi for sets δ{ such
that for each i, δt £ ζ̂

For each i define rji to be the subset of ζt consisting of elements
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C-linked to some element of Σ ff. Observe that if xe^Si and y is
jff-linked to x, then y e Σ ζ% This may be proved by an induction on
the number of links in an ίZ-chain from x to y using (3.1). There-
fore, since the even elements of any complete C-chain are precisely
the elements of some finite complete ίf-chain, the even elements of
any complete C-chain are either all in Σ £* o r n o n e *n Σ £<• Finally
a finite complete C-chain is either a subset of Σ ί* + Σ V% o r disjoint
from this set.

Each rji is isolated. Since any element of rji is C-linked to at
least one element of Σ £*> this follows from the existence of a simul-
taneous effective enumeration of all complete C-chains (in fact, the
procedure defining g and ζ is, essentially, such an enumeration). Thus,
if η were an infinite r.e. subset of % , we could obtain from its enu-
meration and the enumeration of all complete C-chains an infinite r.e
subset of Σ Si contradicting the assumption that each & is isolated.

The critical observation now is that if x e Σ £»> then x belongs
to a finite complete iϊ-chain. An induction shows that if x e Σ ί*>
then x does belong to a complete iϊ-chain. If this complete H-chain
were infinite, it would be an infinite r.e. subset of Σ £*> again con-
tradicting the assumption that each ξt is isolated. Since any finite
complete if-chain is contained in a finite complete C-chain, any x e
Σ £• belongs to a finite complete C-chain which is a subset of
Σ ί + Σ Vi This completes the proof.

The two theorems on the decomposition of linear forms are im-
mediate consequences of the AE metatheorem. For each system of
equations (2.7), each theorem can be expressed as a sentence true in
E to which the metatheorem applies.

4* A converse to the AE metatheorem* The proof of the con-
verse to the AE metatheorem described in § 2 begins with an observa-
tion about the natural numbers which was exploited by Bradford in

LEMMA.

E N (VX)(vro (vYn)\7 (x = 1 & .& Yi = o)

(3F)[2 F

Proof. Let X, Yu , Yn be any natural numbers. Suppose first
there is a V satisfying the matrix of the second part of the equiva-
lence. If V = 0, then X = 0 and the first part of the equivalence is
also satisfied. If V > 0, then X + Σ Y* ̂  2. Thus X ^ 2 or Σ Y* >
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0 so 1 ^ 2 or at least one Yt > 0. In any event, the first part of
the equivalence is satisfied.

For the converse consider first X even. In this case V = (1/2) X
will satisfy the matrix of the second part of the equivalence. If X
is odd but different from 1, then V — 1/2(X— 1) satisfies the matrix
since 2V=X-1^X£ 3/2(X - 1). Finally if X is 1 but some Y* >
0, V = 1 satisfies the matrix.

Let ^ be the formula (2.8) and let J^7 be the formula (2.9) for
1 <^i <; ra. Let έ%f(Xu •••, Xp) be the hypothesis of the matrix of
(2.8) and let ^(Xu , XP, Yu , Yr) be the conclusion of the matrix
of ^ 7 To prove the converse, assume E\Φ ^ for j = 1, •••, m.
For each j = 1, , ra, let xs — (xj}1, , xj>p) be a sequence of natural
numbers such that

(4.1) E μ

but

(4.2) E\= 7(3^) ••

Since ^g^ is a conjunction of homogeneous linear equations and
any linear combination of solutions to a system of homogeneous equa-
tions is itself a solution to the system,

(4.3) E N (yZd (VZm)β^(± xifίZi9

An immediate consequence of (4.2) is

(4.4)

Applying the equivalence of Lemma 4.1 to the conclusion of the
matrix, using the definition of ^ , and extracting quantifies gives

(4.5) E N (vZd (VZm) (V FO (V Γr) (3 F) (3 Fo) (3 Vd l^t]

where ^t is

Now apply the AJK metatheorem to see that the formulas in (4.3) and
(4.5) are true in the isols.

Let A19 9Am be pairwise incomparable indecomposable isols. Let
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-Xi = E?«i»*,iA*, -,Xp = Σ*=iXk,pAp. _By (4.3) in Λ, A |=

Assume now that A 1= ̂ 7 Since X satisfies the hypothesis of
there must be a j , 1 ^ j ^ m, and isols Yi, , Yr such that Λ |=

•••, Xp, Yi, •••, Yr). Recalling the definition of X,

Λ | = 9 ^ - Q L , X k Λ A k , •••, 2 - L % k , v A . k i Yl9 •••, Y r ) .

By (4.5) in A, A N ( 3 F ) [ 2 F ^ Σ 4 b & Λ- rg 3 F ] . Since Λ , . . . , Am are
pairwise incomparable, this contradicts (2.5). Thus if E\Φ ^ for
j — 1, , m, then Λ fefc ̂ T

It is perhaps of interest to point out an alternative to the last
paragraph. Using the truth in A of (4.3), (4.5), and ^ 7 it is possible
to show A N (VZJ (VZm)(3 V)[V?^i(2F ^ Σ #*&Zy ^ 3F)]. However
this is not the case since if Zl9 , Zm is a sequence of pairwise in-
comparable indecomposable isols, there is no V satisfying the matrix.

5* The AE metatheorem for cosimple isols* An isol X is
cosimple if it has a representative ξ with r.e. complement. We denote
the cosimple isols by Λz. By Theorem 56 of [4] Az is closed under
isolic addition and predecessors (i.e., is an ideal in A) so that the notions
of the previous sections are applicable to Λz. Here we show that if
^~ is the sentence (2.6) and E |= ̂  then Az |= ^ 7

Except for minor differences we use the terminology of § 3. Let
X — (Zi, , Xp) be a vector of cosimple isols satisfying the hypothesis
H of ^ 7 Let ω be the even integers, and ωif 1 <̂  i <̂  p a partition
of ω into infinite recursive subsets. Choose ξ c ω such that & =
£Π ft>ί represents X* and 0)̂  — & is r.e.. It is clear that this choice
can be made since if ξl is a representative of JϋΓ* with r.e. comple-
ment and / is a one-to-one recursive function mapping E onto a);
then ξt = /(<?•) satisfies our requirements. Define complete iϊ-chain as
in §3 and let S be the set of all finite complete H-chains. As men-
tioned in §3, S is r.e. and hence can be enumerated by a recursive
function y(m).

Let Θ be the odd integers, and θi9 1 <̂  i ^ r SL partition of θ into
infinite recusive subsets. We define a partial recursive function h
by the following induction. Suppose h(y(m)) has been defined for
m < n. Let Xi = |7(m) Π (Oi |. Clearly the vector ά; = (a?!, , ^ )
satisfies H so there must be a vector of integers y = (yly , yr) such
that (», ^) satisfies the conclusion C of ^ T Let ί c ^ be the first
finite set in the canonical enumeration of finite sets such that | δ Π θt \ =
ί/i and δ is disjoint from h(y(m)) for m < n. Set h(y(ri)) = <?. Since
δ can be effectively be found, A is partial recursive. As in § 3, finite
functions ^ can be effectively found such that 7 U h(y) is a finite
complete C-chain Let η — \J{h(y) \y e S and 7 c ξ} and rηi = η Π ̂ , .
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Then as in §3, if % is a representative of Yiy and Ϋ= (Yί9 •••, Yr)
then Ϋ is a vector of isols such that (X, Ϋ) satisfies C. It only-
remains to show that each Yι is cosimple. Let ζ = \J{h(y)\yeS}. ζ
is r.e. and since ω — ζ is r.e. so is ζ — η — \J{h(y)\ye S and 7Π
(ω — ξ) Φ 0}. Let g be a one-to-one recursive function mapping E
onto ζi = ζ Π 0*. Then i? = g"1^) U g-1(ί< — ̂ ) and g"1^) is a repre-
sentative of Yt whose complement q~%t — %) is r.e.. Thus YiβΛz

which completes our proof.
There is also a converse to the AE metatheorem for cosimple

isols. Here we show that if j ^ is the sentence (2.8) and Λz |= j ^ ~
then some Horn reduct of ^ is true in E.

By the methods of § 4 it will suffice to find a countable collection
of pairwise incomparable indecomposable cosimple isols. Although it
is possible to give a direct construction of such a collection, we prefer
to obtain the result from existing literature. A set ξ c E is maximal
(cf. [14]) if ξ is r.e. and for any r.e. set ω, exactly one of ω Π (E — ζ)
and (E — co) Π (E — ζ) is infinite. Clearly if ξ is maximal then its
complement is a representative of an indecomposable cosimple isol. By
[5] maximal sets exist. By theorem 5.1 of [7] the Turing degree of
a maximal set contains a countably infinite collection of maximal sets
having pairwise incomparable many-one degrees. By theorem 58 of [4]
if a and β are infinite sets with r.e. complements, and the RET of
a is ^ the RET of β then a is one-to-one reducible to β. Combining
those facts gives the desired result.
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