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CHARACTERIZATIONS OF AMENABLE AND
STRONGLY AMENABLE C*-ALGEBRAS

JOHN BUNCE

In this paper it is proved that a C*-algebra A is strongly
amenable iff A satisfies a certain fixed point property when
acting on a compact convex set, or iff a certain Hahn-Banach
type extension theorem is true for all Banach A-modules. It
is proved that a C*-algebra A is amenable iff A satisfies a
weaker Hahn-Banach type extension theorem.

A topological group G is said to be amenable if there is a left
invariant mean on the space of bounded continuous complex functions
on G. A number of papers have been published which give equivalent
definitions of amenability (for example, see the papers [4, 7, 11] or
the book [3]). It has recently been proven that a locally compact
group G is amenable iff for all two-sided L^φ-modules X and bounded
derivations D of U(G) into X*, we have that D is the inner deriva-
tion induced by an element of X* [5, Theorem 2.5]. This result
motivates the definition of amenable and strongly amenable C* -algebras
[5, sections 5 and 7]. In §2 of this paper we give some conditions
on a C*-algebra that are equivalent to amenability or strong amena-
bility and are analogous to some of the known equivalent definitions
of amenable groups. In §3 we show that the generalized Stone-
Weierstrass theorem for separable C*-algebras is true when the
C*-subalgebra in question is strongly amenable.

1* Preliminaries* Let A be a C*-algebra. Then a complex
Banach space X is called a Banach A-module if it is a two-sided
A-module and there exists a positive real number M such that for
all ae A and xe X we have

and

\\xa\\

If X is a Banach A-module, then the dual space X* becomes a Banach
A-module if we define for ae A,,feX*, and xeX,

(x) = f(xa)
(fa)(x) = f(ax) .

A derivation from A into X* is a bounded linear map D from A into
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X* such that D(ab) = aD(b) + D(a)b for all a, be A. If feX*, the
function 3(f) from A into X* given by

δ(f)(a) = af - fa

is called the inner derivation induced by /.

DEFINITION 1. [5, §5] A C*-algebra A is said to be amenable
if every derivation from A into X* is inner for all Banach A-modules
X.

DEFINITION 2. [5, §7]. A C*-algebra A is said to be strongly
amenable if, whenever X is a Banach A-module and D is a derivation
of A into X*, there is a /eco {£(%)%*: we C/(Ae)} with £> = -δ(f),
where Ae is the C*-algebra obtained by adjoining the identity e to
A, X is made into a unital A,-module by defining %e — ex — % for all
a? G K, D is extended to Ae by defining J5(e) = 0, U(Ae) is the unitary
group of Aβ, and co S denotes the w*-closed convex hull of a set £
contained in X*.

A C* -algebra A is strongly amenable iff Ae is strongly amenable,
and a C*-algebra A with identity is strongly amenable iff the defini-
tion is satisfied for all unital A-modules X with Ae replaced through-
out by A [5, §7]. The class of strongly amenable C*-algebras includes
all C* -algebras which are GCR, uniformly hyperfinite, or the C*-group
algebra of a locally compact amenable group [5, §7] It is not known
if there exist amenable C*-algebras which are not strongly amenable.

For A a C*-algebra, let A 0 A be the completion of the algebraic
tensor product A® A in the greatest cross-norm. Then we can
identify (A&A)* with the space of bounded bilinear functionals on
Ax A [13, p. 438]. We see that A 0 A becomes a Banach A-module
if we define for a, b, ce A,

a(b 0 c) = ab 0 c

(b ® c)a — b 0 ca .

Hence (A® A)* becomes a Banach A-module under the dual action:
If fe (A 0 A) and α, 6, c e A,

=/(αδ(g>c) .

We can also make A® A and (A(§)A)* into Banach A-modules by
defining for fe (A 0 A)* and a, b, ce A:

ac
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Note that the two operations on A ® A do not interact; that is, if
α, b, c, de A,

= δ(αo(c®<Z))

((c® d)δ)oα = ((c® d)oα)δ

and so forth.

2* Amenable and strongly amenable C*-algebras*

PROPOSITION 1. Let A be a C*-algebra with unit e. Then the
following seven statements are equivalent:

(a) A is strongly amenable.
(b) For all unital Banach A-modules X and fe X*, there exists

g e co {ufu*\ u e U(A)} such that ag = ga for all ae A.
(c) For any fe (A ® A)* ί/̂ erβ e#ΐs£s # e co {ufu*: u e U(A)} such

that ag — ga for all ae A.
(d) There is a linear map T of (A ® A)* mίo C = {# e (A® Ay:

ag = ga all aeA} such that T(aof) — aoT(f), T(foa) = T(f)<>af and
T(f) e co {ufu*: ue U(A)} for all aeA,fe(A® Ay.

(e) Let X be a Banach A-module, S a w*-closed convex subset
of X* such that usu* e S for all seS,ue U(A). Then there exists
an element seS such that usu* = s for all ue U(A).

( f ) Let Y be a Banach A-module and X a subspace of Y such
that uxu* e X for all x e X, u e U(A). Let fe X* be such that f(uxu*) =
f(x) for all xeX,ue U(A). Then for any ge Y* which extends f,
there is an he co {ugu*: ue U(A)} such that h extends f and h(uyu*) =
h(y) for all ye Y and ue U{A).

(g) Let Y be a Banach A-module and X a two-sided A-submodule
of Y. Let fe X* be such that f(uxu*) — f(x) for all x e X, u e U(A).
Then for any ge Y* which extends/, there is an he co {ugu*: ue U(A)}
such that h extends f and h(uyu*) = h(y) for all yeY and ue U(A).

Before proving the proposition, we make some remarks. The
implications (a) implies (b) and (b) implies (d) were proven in [1].
The map T in (d) takes the place of the invariant mean that is
present in amenable groups. The condition in (e) is a fixed point
property; it is known that a locally compact group is amenable iff it
has a certain fixed point property [7]. The condition (f) and (g)
might be called the strong invariant extension property for subspaces,
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and the strong invariant extension property for submodules respec-
tively. A locally compact group is amenable iff it has a certain Hahn-
Banach type extension property similar to (f) and (g) [11].

Proof of Proposition 1. (a) implies (6): Let fe X* and δ(f) be the
inner derivation induced b y / . Then there is a ae co {δ(f)(u)u*: ue
U(A)} such that δ(f) = -S(g). But δ(f)(u)u* = ufu* - f, hence / +
ge co {ufu*: ue U(A)}. Also δ(/)(α) = — δ(g)(a) for all α e i , thus
(/ + g)a = a(f + flr) for all aeA.

(b) implies (c): Clear.
(c) implies (d): The proof is an adaption to the present situation

of a proof of J. Schwartz [10, Lemma 5]. Let A be the set of all
linear mappings Tof (A® A)* into (A® A)* such that T(f) e co {ufu*:
ue U(A)} and T(a<>f) = aoT(f), T(foa) = T(f)<>a for all fe (A® A)*,
α e i . The set A is nonempty since the identity map is in A. We
order A by defining ϊ\ ^ Γ2 if for all fe {A ® A)*,

co {wΓxί/)^*: w e £/(A)} s co {i*Ta(/)tt*: u e U(A)} .

Then >̂ defines a quasi-order on A. Suppose {Ta:aeA} is a totally
ordered subset of A. We have || Ta(f) || ^ | | / 1 | , thus for all d e A(g) A,
|Γα(/)(d)| ^ \\f\\\\d\\ and {Γβ(/)(d): αe z/} is a bounded function on
A. Let LIM be a Banach limit on the directed set A (see [10, p. 21]
for information on Banach limits). Then set T(f)(d) = LIM Ta(f)(d)
for all/e (A (g) A)* and^de A ® A. Then T is a bounded linear map
from (A (g) A)* into (A (§) A)*. An easy calculation shows that T(aof) =
αoΓ(/) and T(foά) = Γ(/)oα. We show that T(/) e co {̂ /̂ *: u e U(A)}
and T ^ Tα for all a e A. If β ^ α and / e (A (g) A)* then

Tβ(f) e co {%Tα(/)%*: ̂ C7(A)} = K .

Suppose, for contradiction, that T(f) <$ K. Then by the strong sepa-
ration theorem, there exists de A ® A, λ real and ε > 0 such that
for all g e K,

Re T(f)(d) ^ λ < λ + ε ^ R e g(d) .

Hence Re T(f)(d) ^ λ < λ + ε ^ R e Tβ(f)(d) for all β^a. But applying
the Banach limit to this equation we obtain Re T(f){d) < Re T(f)(d).
Hence T(f)eK. Thus

co {^T(/)u*: u e U(A)} s co {wΓβ(/)%*: w e C7(A)}

for all aeA. Hence TeA and Γ ^ 7 .̂ Hence /ί is inductive, so by
Zorn's lemma A has a maximal element T. We show that T(f) e C
for all /6 (A (g) A)*. If g e (A <g) A)* is such that T{g)$C, then
co {uT(g)u*: ue U(A)} contains more than one element. Since we
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assumed (c), Cflco {uT(g)u*: ue U(A)} is nonempty. Let Σ XuT(g)u*
be a net indexed by a directed set A which converge w* to an element
h of C (we suppress all indices in the sum). Define for /e(A(x) A)*
and de (A(g) A),

V(f)(d) - L I M Σ ^ T ( / > * ( d ) .

Then T is a bounded linear map from (A® A)* to (A (§) A)* and
another application of the strong separation theorem shows that
T(f) e co {uT(f)u*: u e U(A)}. If we show that T(aof) = αo T{f) and
T'(foa) = T'(f)oa, we will know that T e A and T ^ T. But

T'(aof)(b <g) c) = LIM Σ ΛuT(aof)u*(b (x) c)

= LIM Σ λ(αo T(f))(u*b (x) ĉ 6)

- LIM Σ XT(f)(u*ba (x) cw)

= (αor(/))(6(8)c).

Hence Γr(αo/) - aoT'(f) and likewise Tr(/oα) = Γ'(/)°α. But the net
Σ\uT{g)u*{d) has the actual limit Λ(d!). Thus T'(g) = h and
co {^T'(#)'(#)%*: UG C/(A)} = {fe}, and {fe} is properly contained in
co{uT(g)u*:ue U(A)}, hence it is not true that T^T. But this
contradicts the maximality of T, and we have that T(f) e C for all
/. The completes the proof.

(d) implies (e): Let xe Xand ί ixseS. Define a bounded bilinear
function F(x, s) on A x A by F(£, s)(α, δ) = s(axb) for all α, 6G A. We
consider î (a?, s) as an element of (A(g)A)*. Let G(s)(x)= T(F(x, s))(β(x)β).
Then clearly G(s)eX*. Now if ^ e f/(A), then

, s)(a® b) = s{au*xub)

6) .

Thus F(u*xu, s) = u*oF(x, s)ou. Hence for all &e X and %G Z7(A), by
using the properties of the map T,

(uG(s)u*)(x) - G(8)(u*xu)

= T{F{u*xu, s))(e (x) e)

= T(u*oF(x, s)ou){e®e)

= (uT(F(x, s))u*)(e ® e)

= T(F(x,8))(e<g>e)

= G(s)(x) .

Thus uG(s)u* = G(s) for all ue U(A). We will be done when we
show that G(s) e S. If G(s) $ S, then there exists x e X, a real number
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λ and ε > 0 such that for all te S we have

Re G(s)(x) ^ λ < λ + ε ^ R e t(x) .

Now T(F(x, s)) e co {uF{x, s)u*: u e U(A)}, and (uF(x, s)u*)(e 0 e) =
(usu*)(x). Since usu* e S for all ue U(A), this implies that Re G(s)(x) ;>
λ + e. This contradiction proves that G(s) e S.

(e) implies (/): Let X, Y and / e Γ be as in (f). Let geY*
be any extension of / and let S = co{ugu*:ue U{A)}. Then S is
w*-closed convex subset of F* and if s e S then usu* e S for all
ue U(A). Hence by (e) there is an element he S such that uhu* = h
for all ue U{A). Since uXu* S X for all ue U{A),f(uxu*) =f(x) for
all xe X and # extends /, it is easily seen that h extends /.

(/) implies (g): Clear

(g) implies (c): Given g e (A 0 A)*, let Γ = A 0 A, X = {0}, / = 0
and apply (g). Thus there is an he co {ugu*; ue U(A)} such that
h{uyu*) — h(y) for all ye A® A and ue A; that is, α& = ha for all
α in A.

(d) i m p l i e s (a): L e t D : A — + X * b e a d e r i v a t i o n . L e t x e X a n d
define a bounded bilinear functional f(x) on A x A by f(x)(b, c) =
D(b)(xc). Then define an element G e l * by G(αO - T [ / ( # ® β ) .
We will show that D = δ(G) and - G e c o {D(φ6*: ^ e i7(A)}. For
xe X and αeA, define a bounded bilinear functional #(#, a) on Ax A
by ff(», α)(δ, c) = D(a)(xcb). Then a computation shows that a°f(x) =
/(cw?) + flr(α?, α) and /(a?α) =f(x)<>a. If αe A, α e X, then

- Gά)(x)

— ax)

= Γ(/(α?α - αx))(β (x) e)

- T(f(x)oa - aof(x) + g(x, a))(e (x) e)

- T(f(x))(e 0 α) - T(f(x))(a 0 β) + Γ(flr(a?, α))(e 0 e)

- Γ(flr(α?, α))(e 0 β)

The last equality is true because Γ maps into C Now for we Z7(A),
(wβr(α;, a)u*)(e 0 e) = ^(α;, α)(t6* (x)w)= jD(α)(α;), and Γ(flr(α;, α)) is in
co {ug(x, a ) u * : u e U(A)}9 h e n c e (δ(G)(a))(x) = D{a)(x) f o r a l l x e X a n d
αe A, thus J9 = δ(G). An application of the strong separation theorem
shows that — Ge co {D(u)u*: ue U(A)}. Thus (d) implies (a) and the
proof of Proposition 1 is complete.

REMARKS. (1) The equivalence of (a) and (c) shows that, to
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check strong amenability of A, it is only necessary to consider the
A-module A ® A; this gives another proof of the Proposition 7.15 of
[5].

(2) In the notation of [6], a C*-algebra A is amenable iff the
first cohomology group Hϊ(A, X*) is zero for all Banach A-modules X.
The reduction of dimension argument of [5, §1. a] then shows that
all the cohomology groups H?(A, X*) are zero. If A is strongly
amenable, then the proof of (d) implies (a) above can be changed to
show directly that Hc

n(A, X*) is zero for all n and all Banach A-
modules X; this proof is similar to the proof of Theorem 3.3 in [6],
with the map T taking the place of the invariant mean which is
present in that theorem.

(3) In [1] the author used the existence of the function T to
generalize the well-known Dixmier-Mackey theorem on amenable groups
by proving that every continuous representation of a strongly amena-
ble C*-algebra on a Hibert space is similar to a *-representation.
However, this fact can be proved in a more elementary fashion as
follows: Let A be a strongly amenable C*-algebra and let π be a
continuous representation of A as bounded operators on a Hubert
space H. It suffices to assume A has an identity e and π(e) = I.
Make B(H) into a Banach A-module by the operations aT = π(a)T,
Ta= Tτr(α*)* for aeA, TeB(H). Then B(H) is the dual Banach
A-module of the trace class operators. Define a bounded linear map
D of A into B{H) by D(ά) = π(a) - π(α*)*. Then

aD(b) + D(a)b = π(a)(π(b) - π(bψ) + (π(ά) - τr(α*)*)τr(δ*)*

- π(ab) - π((ab)*)*

= D(ab) .

Hence D is a derivation. Thus, since A is strongly amenable, there
is an operator T in co {D(u)u*: ue U(A)} such that D = -δ(T). Then
for aeA, π(d) - ττ(α*)* - -aT + Ta = Tττ(α*)* - π(a)T, thus π(a)(I +
T) = (I + T)π(aψ. WeletR=T+ I. Now D(u)u* = π{u)π{u)* - I,
thus R e co {π(u)π(u)*: u e U(A)}. For x e H, {π{u)π{u)*x, x) = ||π{u)*x||2,
and \\x\\z = ||7r(u*)*τr(^)*α;||2^||7r||2||7r(^)*α;|Γ. Hence (l/||τr||2) ||α;||2 ^
||τr(^)*a?||2. Thus R is positive and invertible. Let S be the positive
square root of R. Then π(a)S2 = S2ττ(α*)*, and S~1π(a)S = Sπ(a*)*S-\
If we define π^a) — S~ιπ(a)S, then πx is clearly a representation of
A, and π,(aψ = (S~ιπ(a*)S)* = SπiaψS'1 = S~1π(a)S = πx{a). Hence
TΓi is a *-representation.

We now give some equivalent conditions for a C*-algebra to be
amenable.

PROPOSITION 2. Let A be a C*-algebra with unit e. Then the
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following three statements are equivalent:
(a) A is amenable.
(b) There is a bounded linear map T of (A® A)* into C =

{/e (A(x) A)*: α / = / α all aeA} such that T restricted to C is the
identity on C and T(α°/) = a<>T(f), T(foa) = T(f)°a for all aeA,
/e(A(g)A)*.

( c) Let Y be a Banach A-module and X a two sided A-submodule
of Y. Let / e Γ be such that f(uxu*) = f(x) for all xeXyue U(A).
Then there is a he Y* such that h extends f and h(uyu*) — h(y) for
all yeY,ue U(A).

Proof, (a) implies (b): Let Y = (A ® A)* ® (A ® A) and let Z,
Wand X be as in the proof of (g) implies (d) of Proposition 1. Let
Fe Y* be defined by F(f ® ί) = f(t) and let A be the inner deriva-
tion induced by F. Then for αe A,fe (A ® A)*, and t e (A ® A),
A(α)(/® ί) = (αf — fα)(t). Hence A(α) is zero on W. A calculation
using the fact that the two A-module operations on (A (§) A) do not
interact (see the comment at the end of § 1) shows that Dt(α) is zero
on Z. Hence there is a map D from A into (Y/X)* given by D(a)(y) —
A(«)(]/)> where y is the coset in Y/X of an element ye Y. It is
easily seen that D is a derivation, hence since A is amenable there
is an element Gλe (Y/X)* such that D = δ(Gλ). Let Ge Γ* be defined
by G(2/) = Gt(y) for all ye Y. Define a bounded linear map 2\ from
(A® A)* into (A® A)* by 2\(/)(ί) = G(/ ® ί) for all /e(A(g)A)*,
ί G (A® A). Now D(α) = αG1 — Gxα for all αe A, thus

- (α/ -

= G(f ® (ία - αί)

- 2\(/)α)(ί) .

Hence (αf-fα)(t) - (oΓ^/) - T,(f)α)(t) for all ΓG (A® A), and we thus
have /— Tx(f) e C. Let Γ be the bounded linear map from (A(g) A)* into
C given by Γ(/) = / - 2\(/). If fe C, then ^(/Xί) - GjJWt) = 0,
thus Γ(/) = / if feC. Similarly, since G is zero on Z, we have
that Γ(α°/) = αoT(f) and Γ(/oα) - T(/)°α. This completes the proof
of (a) implies (b).

(6) implies (c): Let F be a Banach A-module, X a submodule of
Y, and let / e Γ be such that f(uxu*) = f(x) for all X G I , U G £/(A).
Let /L G F* be any extension of / and for each y e Y define an element
F(y) of (A(g) A)* by F(y)(α® δ) = /^α^/δ). Then let AeY* be defined
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by h(y) = T{F{y)){e® e). A calculation shows that for all ue U(A),
F(u*yu) = u*oF(y)ou, so that h(v,*yw) — h(y). Also, if xeX, then it
is easily seen that F(x) e C, hence h(x) = T(F(x))(e (g) e) = F(x)(e (x) e) =
/^a;) = /($). Thus ft has the desired properties.

(c) implies (6): The proof is essentially the same as the proof
of (g) implies (d) in Proposition 1; we omit the details,

(6) implies (a): Again, the proof is essentially the same as the
proof of (d) implies (a) in Proposition 1.

While we can not settle the question of whether every amenable
C*-algebra is strongly amenable, we think that the relationship be-
tween conditions (c) of Proposition 2 and conditions (f) and (g) of
Proposition 1 may be useful in settling the question.

3* A Stone-Weierstrass type theorem. For A a C*-algebra,
let ES(A) be the set of pure states of A. Let B be a C*-subalgebra
of A which separates ES(A) U {0}. The generalized Stone-Weierstrass
question for C*-algebras [9, section 4.7] asks when is A equal to BΊ
Using a method introduced by Sakai [8], we can show that A — B
if A is separable and B is strongly amenable.

PROPOSITION 3. Let A be a separable C*-algebra. If B is a
strongly amenable C*-subalgebra of A which separates ES(A) (J {0},
then A = B.

Proof. By [8, Lemma 1] we can assume that A has an identity
which is also in B. Then as in [8, proof of Proposition 2] if Bφ A,
there is a *-representation π of A on a separable Hubert space such
that (π(B))" Φ {π{A))fr. Then by [12, Theorem 12.2] there is a Hubert
space H and a von Neumann algebra D £ B{H) such that D is *-
anti-isomorphic to Dr and such that (π(B))" is *-isomorphic to D by
a *-isomorphism S. Now *-anti-isomorphisms are clearly order isomor-
phisms and hence are ultra weakly continuous [2, A27]. Thus the
image of π(B) under the *-anti-isomorphism is weakly dense in D\
It was proven in [5, Section 7] that the weak closure of any *-
representation of a strongly amenable C*-algebra has Schwartz's
Property P [10, Definition 1]; essentially the same proof shows that
the weak closure of any *-anti-representation of a strongly amenable
C*-algebra has Property P. Hence, the von Neumann algebra D' has
Property P. Thus by [10, Lemma 5] there is a linear norm-decreasing
map P from B(H) onto D which is the identity on D. Now consider
S as a *-representation of {π{B))n on H, then by [2, 2.10.2], there is
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a Hubert space K containing H and a *-representation T of
on K such that S(α?) = T(x) | i ϊ for all α? 6 (π(jδ))". Let p be the
projection of K onto iϊ, and define a linear norm-decreasing map iϋ
from B(K) onto J3(#) by Ry = py \H for all y e £(if). Then S'^PoRo T
is a linear norm-decreasing map from (7r(A))" onto (π(B))" which is
the identity on (π(B))". Then by [8, Theorem 1], we have that
(S-'oPoRo^x = x for all xe(π(A))". Hence (τφl))" = (π(B))". This
contradiction shows that A = B.

We remark that Sakai [9, 4.7,8] has proved Proposition 3 in the
case when B is the uniform closure of an increasing directed set of
Type I C*-subalgebras. The author does not know of an example of
a strongly amenable C*-algebra which is not the uniform closure
of an increasing directed set of Type I C*-subalgebras.
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