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FIXED POINT THEOREMS FOR SET-VALUED MAPPINGS
OF CONTRACTIVE TYPE

NADIM A. ASSAD AND W. A. KIRK

In this paper a new fixed point theorem is proved for
contraction mappings in a complete metric space by observing
that if the space is metrically convex, then significant weak-
enings may be made concerning the domain and range of the
mapping considered. While the main theorem is formulated
for set-valued mappings, its point-to-point analogue is also a
new result. This result, proved in § 1, is the following: Sup-
pose M is a complete, metrically convex, metric space, K a
nonempty closed subset of M, and φ a contraction mapping
from K into the family ^~(M) of nonempty closed bounded
subsets of M supplied with the Hausdorff metric. Then if ψ
maps the boundary of K into subsets of K, φ has a fixed
point in K, i.e., there is a point xoeK such that xoeφ(xo).

Many applications of the contraction mapping theorem occur in
a convex setting, and in particular the results of this paper are
applied to obtain new fixed point theorems in Banach spaces. For
example, if H is a closed convex subset of a Banach space X and T
is a contraction mapping of K into H where if is a nonempty closed
subset of H, then the requirement that T maps the boundary of K
relative to H back into K is sufficient to guarantee a fixed point for
T. Hypotheses of this type are not new in analysis; for mappings
which are completely continuous, H is often taken as the positive
cone in X and K the intersection of H with the closed unit ball.

In §2 we use the above theorem to obtain an improved version
of Lami Dozo's generalization [9] of a theorem of J. Markin [10],
and in §3 a connection between fixed point theory of Lipschitzian
pseudo-contractive mappings and that of nonexpansive mappings yields
a theorem which generalizes results of Kirk [7], [8].

1* Set-valued contraction mappings* Let (M, d) be a metric
space and let ^(M) denote the family of all nonempty bounded
closed subsets of M. For A, Be ^~(M), let D(A, B) denote the distance
between A and B in the Hausdorff metric induced by d on
In particular, if for r > 0 and E e J7~(M) we define

Vr(E) = {xeM: dist (x, E) < r} ,

then we have

D(A, B) = inf {r: A c Vr(B) and B c Vr(A)} .
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In the theorem below we shall assume M is a complete metric
space which is (metrically) convex, that is, M has the property that
for each x9yeM with x Φ y there exists z e M, x Φ z Φ y, such that

d(x, z) + d(z, y) = d(x, y) .

K. Menger has shown that in such a space each two points are
the endpoints of at least one metric segment. (A proof of this theorem
due to N Aronszajn may be found in L. M. BlumenthaFs book [1,
p. 41].) This fact immediately yields the following:

REMARK. If K is a closed subset of the complete and convex
metric space M and if xe K, y g K, then there exists a point z in the
boundary of K such that

d(x, z) + d(z, y) = d(x, y) .

We shall also make use of the following lemmas, which are noted
implicitly in Nadler [11] Here M denotes a metric space and
the family of nonempty bounded closed subsets of M.

LEMMA 1. If A, Be^{M) and xeA, then for each positive
number a there exists yeB such that

d(x, y) £ D{A, B) + a.

LEMMA 2. Let {An} be a sequence of sets in ^(M), and suppose
lim^o, D(An, Ao) = 0 where Ao e ^~(M). Then if xn e An, n = 1, 2, ,
and if lim^^ xn = x0, it follows that x0 e Ao.

In the theorem below we consider a mapping φ on a subset K
of M which takes values in ^(M). Such a mapping is called a
contraction mapping if there exists a constant k < 1 such that D(φ(x)f

φ{y)) ^ kd(x, y). Also, we use the symbol dK to denote the boundary
of K.

THEOREM 1. Let M be a complete and convex metric space, K a
nonempty closed subset of M, and φ a contraction mapping from K
into J7~(M). If φ{x) c K for each x e dK then there exists xoe K such
that xoeφ(xo) (i.e., φ has a fixed point in K).

Proof. Let α, 0 < a < 1, denote the Lipschitz constant of φ. We
select a sequence {pn} in K in the following way: Let poe K and
pΊ e φ(Po). If pi e K, let pt = p[; otherwise select a point pt e dK such
that d(p0, pλ) + d(ply p[) = d(p0, p[). Thus pxeK and by Lemma 1 we
may choose p[ e φ{pΐ) so that
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d(p[, p'd ^ D(φ(p0), φ{vd) + a .

Now put P2 = V2 if P2 £ K; otherwise let p2 be a point of dK such that
^(Pi, P2) + ^(ft, p£) = d(pl9 p'2). By induction we may obtain sequences
{Pn}, {Pn} such that for n = 1, 2, ,

( i ) K + 1 € ^ ( p J ,
(ii) d(p;+1, p'n) ̂  D(φ(pn), φ{pn^)) + an

where
(iii) p'n+1 = pn+1 if p'n+1 e K, or

(iv) d(pn, pn+1) + d(pn+1, p'n+1) = d(pn, p'n+1) if p'n+1 ί K.

Now let

P= {ViZ{PnY-Pi = pί , i = 1,2, ...}

Q - {ft e {pn}: Λ Φ pi, i = 1, 2, ..} .

Observe that if pneQ for some n, then pn+1 e P.
Now for n ^ 2 we consider the distance d(pn, pn+i). Three cases

must be considered:

Case 1. pnzP and p Λ + 1 e P: In this case we have

Pn+i) = d{p'n, Pn+i) S D(φ(pn),

^ ad(pn, pn-d + a\

Case 2. pne P and p w + 1 € Q: Here we use (iv) to obtain

dip*, Pn+d ̂  d(pn, p'n+1)

n^9 φ(pn)) + an

n_u pn) + α % .

Case 3. pnzQ and p w + 1 e P: By the above observation, two con-
secutive terms of {pn} cannot be in Q, hence pn^ e P and pf

n_x = pn^.
Using this below, we obtain

d(pn, Pn+i) ^ d(j)Λ, K ) + d{p'n, pn+ί)

= d(pn, p'n) + d(p'n, p'%+1)

, K ) + D(<P(Pn-i), ΨiPn)) +

n_l9 pn) + an

U , Pi)

an
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The only other possibility, pn e Q, pn+ι e Q, cannot occur. Thus for

n ^ 2 we have

αd(ί>—2, 3>—i) + α + «

Now let δ = αr 1 / s max

Assertion. For % ̂  1,

(**) d(p%, pn+ι) £ a^\δ + n) .

In order to prove this by induction we must establish the cases n
1, 2. For n = 1

For w = 2 we use (*) and take each case separately,

d(p2, p8) ^ αd(Pi, p2) + a2

^ Λ:(^1/2δ + of)

^ α(δ + 2)

d(p2, pa ^ ^(po, Pi) + a2 + a

^ α(α1/2δ + α + 1)

^ a(δ + 2) .

Now assume (**) holds tor 1 ^ n <^ N, and for N ^ 2 consider the
two cases:

l d(pN+1, pN+2) ^ ad(pN, pN+1) + aN

+ (N

+ (N + 1)) .

2. d(p^+1, ^ + 2 ) ^ a d ( p ^ ! , pN) + ^ + 1 + α^

- 1))] + <xN+ί + aN

α^+ 1 + aN

This proves the assertion, and from (**) it follows that

(***) <*(!>*, P*)£δ± (a1**)* + Σ ί^ 1 7 2)' , k>N^l.

This implies {p%} is a Cauchy sequence and since M is complete and
K closed, {pn} converges to a point x0 e K. Also observe that there
exists a subsequence {pnje} of {pn} each of whose terms is in the set
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P (i.e , pnjc = p'%lc, k = 1, 2, . •). Thus by (i), p\k e φ(pnjc^)9 k = 1, 2,
• , a n d s ince pnjc-ι —> x0 a s k —• oo w e h a v e 9>(pnjfe_i) —• <p(#o) a s & —» oo

in the Hausdorίf metric. It follows from Lemma 2 that %oeφ(xo),
completing the proof.

REMARK, In the above proof the rate at which the sequence {pn}
converges to a fixed point of φ is obtainable from (***). If φ is a
point-to-point mapping then one can always take p'n = φ(pn~i) in defining
the sequence {pn} thus obtaining in place of (ii)

i, Pn) = d(φ(p%),

Using this one obtains, in place of (***), the sharper estimate

For subsets K, H of a Banach space we use the symbol dHK to
denote the boundary of K relative to H. In particular, if K is closed.

dHK = {zeK: U(z, r) n H\KΦ 0 for each r > 0} ,

where U(z, r) = {x e X: \\z — x\\ < r}.
By taking M = H in Theorem 1 we obtain:

COROLLARY 1. Let X be a Banach space, Ha closed convex subset
of X, and K a closed subset of H. If φ: K—>^~{H) is a contraction
mapping such that φ(x) c K when x e dHK, then there exists xoe K
such that xoeφ(xo).

COROLLARY 2. Let K and H be as in Corollary 1. If T: K—+
H is a contraction mapping, and if Txe K when x e dHK, then T has
a (unique) fixed point in K.

Both of these corollaries are used in the subsequent sections.

2* An approach of Lami Dozo* In [12] Opial observed that
every uniformly convex Banach space which possesses a weakly con-
tinuous duality mapping [3] satisfies the condition:

(A) If the sequence {xn} is weakly convergent to x0, and if x Φ
XQ, then

liminf \\xn — x\\> liminf \\x% — α?0|| .

Following Lami Dozo [9], we say that a Banach space satisfies
OpiaΓs condition if it has property (A). Such spaces include Hubert
spaces, and the spaces lp, 1 < p < ^ (see Browder [3]).
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For a Banach space X, let JίΓ{X) denote the family of nonempty
compact convex subsets of X supplied with the Hausdorff metric, and
let B denote the closed unit ball in X. In [10] J. Markin proved
that if X is a (real) Hubert space, if φ: X—> 3ίΓ(X) is a nonexpansive
mapping (that is, D(φ(x), φ{y)) ^ \\x — y\\ for all x,yeX), and if
φ(x) c B for every xeB, then φ has a fixed point in J3. Subsequently,
E. Lami Dozo [9] generalized this result. He proved that if X is a
Banach space which satisfies OpiaFs condition and if C is a nonempty,
weakly compact, convex subset of X, then every nonexpansive set-
valued mapping defined on C whose values are nonempty compact
subsets of C possesses a fixed point. Application of Corollary 1 to
Lami Dozo's approach yields the improvement of his result given
below.

THEOREM 2. Let X be a Banach space which satisfies Opial's
condition, H a closed convex subset of X, and K a nonempty, weakly
compact, convex subset of H. Let T be a nonexpansive point-to-set
transformation on K into the nonempty compact subsets of H, and
suppose Txcz K whenever x e dHK. Then T has a fixed point in K.

Proof. It is readily seen that we may assume, without loss of
generality, that 0 e K. Choose a sequence {r J of real numbers, 0 <
rn < 1, such that rn —> 1 as n —+ oo. For each n, rnT is a point-to-set
contraction mapping from K to the nonempty compact subsets of H.
Furthermore, if x e dHK then rnTxaK because 0 e K and K is convex.
By Corollary 1, it follows that for each n, rnT has a fixed point in
K; say xn e rnTxn f] K, n = 1, 2, . Hence xjrn e Txn, and thus
xn(l - 1/r J exn- Txn = (I - T)xH. Since {xn} c K and K is weakly
compact, it follows that {xn} has a weakly convergent subsequence,
and we may merely assume {xn} itself converges weakly, say to x0.
Furthermore, since {xn} is bounded,

wn — xn(l — l / r Λ ) > 0 strongly.

Following the argument of Lami Dozo, we show 0 e (I — T)xQ and
conclude xQ is a fixed point of T.

Since wn e (I — T)x we may write wn = xn — un where un e Txn.
Thus

D(Txn, Tx0) £\\xn-Xo\\,

and un e Txn implies existence of ΰn e Tx0 such that

l l ^ - δ . H ^D(Txn, Tx0) .

Thus,
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II «*Λ

 U n \ \ = : ||J>Λ J>θ| |

I t follows t h a t

l iminf ||a?w — xo\\ ^ l iminf \\un — IZW||

= liminf | |x n — wn — un\\ .

Now, since {wΛ} is contained in the compact set Tx0, we may suppose
subsequences again have been chosen so that {ΰn} converges strongly,
say to u0 6 Tx0. Therefore,

liminf | |α n - wn - ΰn\\
n—*<χ>

= lim inf ||a?Λ - wn - ΰn + u0 - uQ\\
n-*oo

^ l iminf [\\xn - uo\\ - \\wn\\ - \\ΰn - uo\\]

^ l iminf | | x n - uo\\ + l iminf ( - \\wn\\)
n—κχ> n-*oo

+ liminf ( - | |ΰ n - uo\\)

= liminf | |x n — uo\\ .

Thus we have shown:

liminf ||ajΛ — xQ\\^> liminf ||α?» — uQ\\

Since α?n —• α?0 weakly, we have, by OpiaΓs condition, x0 = w0. But
te0 G Γίc0 so we have the desired result.

3* Pseudo-contractive mappings* We include an application of
Corollary 2 which generalizes a theorem of Kirk in [7]

In [5], F. Browder introduced the following definition: Let X be
a Banach space and DaX. A mapping U: D —* X is said to be pseudo-
contractive if for all u,veD and all r > 0,

( 1 ) \\u - v | | ^ | |(1 + τ){u - r) - r(U(u) - Ό{v))\\ .

Pseudo-contractive mappings are characterized by the property:
U is pseudo-contractive if and only if I — U is accretive (see [5],
Proposition 1). It is easily seen that these mappings include the
nonexpansive mappings.

The approach of [7], showing how fixed point theorems for pseudo-
contractive mappings may be derived from the fixed point theory of
nonexpansive mappings, may be modified to obtain the following:

THEOREM 3. Let X be a reflexive Banach space, H a closed
convex subset of X, and K a nonempty, bounded, closed, convex subset
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of H which posseses normal structure. Let U be a Lίpschitzίan
pseudo-contractive mapping of K into H such that U(x) e K when x e
dHK. Then U has a fixed point in K.

The concept of "normal structure" [2] enters here only so that
the theorem of Kirk [6] may be applied. In particular, if X is uni-
formly convex, or if K is compact, then K always possesses normal
structure.

Proof of Theorem 3. Since U is Lipschitzian there exists a number
λ, 0 < λ < 1, such that XU is a contraction mapping. Taking λ =
r/(l + r), (1) implies that the mapping Tλ — I — XU satisfies

\\Tλ{u- Tλ{v)\\ ^{l-X)\\u-v\\ , u,veK.

Hence (1 — XjTy1 is a nonexpansive mapping on its domain. Now let

y*e(l-\)K ={(1~ X)y:yeK} ,

and consider the mapping Uλ: K—> X defined by

Uλ(x) =XU(x) + y* , xeK.

For x e 3HK, then U(x) e K, hence

Uλ{x) = XU{x) + (1 - X)y'

for some yf e K, and this implies Uλ{x) e K. Thus Uλ is a contraction
mapping satisfying the assumptions of Corollary 2, so there is a point
x* e K which is fixed under Uλ. Hence

xU{x*) + y* = x*

(I - λ£7)£* - y* .

Therefore Tλ{K) => (1 - X)K, which implies

(1 - X)Tγι: (1 - X)K > (1 - X)K .

By the theorem of Kirk [6] the mapping (1 — λ ) ^ 1 has a fixed point
ze(l — X)K. Letting z = (1 — λ)^* one quickly sees that U(z*) = z*
(cf. [7]).

The above theorem also extends Theorem 2.1 of [8], which was
proved by a different method, from the class of nonexpansive mappings
to the class of Lipschitzian pseudo-contractive mappings.

The connection between pseudo-contractive and nonexpansive mapp-
ings has recently been further refined. R. E. Bruck has made the
interesting observation that if C is a closed convex set which has
the fixed point property for nonexpansive mappings, and if U: C —* C
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is a Lipschitzian local pseudocontraction, then U always has a fixed
point.

4* A theorem in Hubert space* The assumptions on the mapp-
ing of Theorem 2 may be considerably weakened if X is a Hubert
space and K a closed ball centered at the origin. Here we give a
theorem which was proved for point-to-point mappings by Browder
[3, Theorem 3].

THEOREM 4. Let Sίf be a Hίlbert space and B the closed unit ball
in £έf. Suppose ψ is a nonexpansive mapping from B into the
nonempty compact subsets of έ%f. If φ satisfies the condition:

(i) Xx $ φ(x) if xedB and λ > 1,
then φ has a fixed point in B.

Proof. We use the fact that "radial projection" in Hubert spaces
is nonexpansive. For x e B, let

φ{x) = {z:zeφ(x) and | | z | | ^ 1} U {z/\\z\\: zeφ(x) and | | s | | > 1} .

Then φ is also a nonexpansive mapping from B into the nonempty
compact subsets of B. By Theorem 2 (or the result of Lami Dozo)
there exists xoeB such that x0 e φ(xo) Since Xx0 £ φ(x0) if x0 e dB and
λ > 1, it follows that xoeφ(xo).
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