A CLASS OF OPERATORS ON EXCESSIVE FUNCTIONS

MICHAEL J. SHARPE

Let $X = (\Omega, \mathscr{F}, \mathscr{F}_t, X_t, \theta_t, P^x)$ be a special standard Markov process with state space (E, \mathscr{E}) and transition semigroup (P_t) . We emphasize here that the \mathscr{F}_t are the usual completions of the natural σ -fields for the process. In this paper, we associate with certain multiplicative functionals of X operators on the class of excessive functions which are related to the operators P_M but which are a bit unusual in probabilistic potential theory in that they are not generally determined by kernels on $E \times \mathscr{C}$. An application is given to a problem treated by P.-A. Meyer concerning natural potentials dominated by an excessive function.

2. The operator associated with a natural multiplicative functional.¹ By a multiplicative functional of X, we mean a progressively measurable process M which satisfies, in addition to the standard conditions ([1], III, (1.1)) the following condition:

(2.1) almost surely, $M_{\xi} = 0, t \to M_t$ is decreasing on $[0, \infty)$ and if $S = \inf \{t > 0: M_t = 0\}$, then $t \to M_t$ is right continuous on [0, S), and $M_t M_s \circ \theta_t = M_{t+s \circ \theta_t}$ a.s. for all $t \ge 0$.

A simple example which illustrates some possibilities is obtained by considering X to be uniform motion to the right on the real line and $M_t = f(X_t)/f(X_0)$ on $\{f(X_0) > 0\}, M_t = 0$ for all t on $\{f(X_0) = 0\},$ where f is a decreasing positive function on the line, f(0+) = 0, f is right continuous on $(-\infty, 0)$ and $f(0) \leq f(0-)$.

If M is a multiplicative functional, then S is a terminal time and so $M_t \mathbf{1}_{[0,S)}(t)$ is a multiplicative functional which is right continuous. For a given M, the modified functional will be denoted \widetilde{M} . Let us denote by E_M the set $\{x \in E: P^x \{S > 0\} = 1\} = E_{\widetilde{M}}$ and call M exact if \widetilde{M} is exact. Note that M and \widetilde{M} generate the same resolvent, but not necessarily the same semigroup.

It should be emphasized that one will not have the freedom to replace M by an equivalent multiplicative functional, for the operator to be associated with M will not respect equivalence.

Let M be a given MF; for almost all ω , let $(-dM_t(\omega))$ denote the measure on $(0, \zeta(\omega))$ generated by the increasing function $t \to 1 - M_{t \wedge S}(\omega)$. Care should be taken when computing with $(-dM_t)$, since $(-dM_t)$ is generally not the restriction of $(-d\tilde{M}_t)$ to (0, S].

 $^{^1}$ The reader is referred to the books of Blumenthal and Getoor [1] and Meyer [2] for unexplained terminology.

DEFINITION 2.2. A multiplicative functional M is called natural if, almost surely, the trajectories $t \to M_t$ and $t \to X_t$ have no common discontinuity on [0, S), and $X_s = X_{s-}$ on $\{M_s < M_{s-}, S < \zeta\}$.

We now associate with a natural MF M an operator \bar{P}_{M}^{α} on the class \mathscr{S}^{α} of α -excessive functions for X.

DEFINITION 2.3. If M is a natural MF and $f \in S^{\alpha}$, let

$$ar{P}^{lpha}_{_M}f(x) \,=\, E^x igg\{ \int_{_{(0,\,\zeta)}} e^{-lpha t} f(X_t)_-(-dM_t) \,+\, e^{-lpha S} f(X_S) M_S igg\} \,, \quad x \in E_{_M} \ =\, f(x) \,, \quad x
otin E_{_M} \,\,.$$

By $f(X_t)_-$ is meant the left limit of the trajectory $s \to f(X_s)$ at t if t > 0, and $f(X_0)$ if t = 0. Recall that if M is a right continuous MF, $\alpha \ge 0$ and \mathscr{C}_+^* , one defines $P_M^{\alpha}f$ by

(2.4)
$$P_{M}^{\alpha}f(x) = E^{x}\int_{(0,\zeta)}e^{-\alpha t}f(X_{t})(-dM_{t}), \quad x \in E_{M}$$
$$= f(x) \quad , \quad x \notin E_{M}.$$

One obtains $P_{\underline{M}}^{\alpha}U^{\alpha}f + V^{\alpha}f = U^{\alpha}f$, where (V^{α}) is the resolvent for the subprocess (X, M) and it follows that if M is exact, $P_{\underline{M}}^{\alpha}g \in \mathscr{S}^{\alpha}$ for all $g \in \mathscr{S}^{\alpha}$. If $f \in \mathscr{S}^{\alpha}$ is regular, in particular if $f = U^{\alpha}g$ for some $g \in \mathscr{C}_{+}^{*}$, then for M natural, $\bar{P}_{\underline{M}}^{\alpha}f = P_{\underline{M}}^{\alpha}f$. In general though, the trajectory $t \to f(X_t)$ can jump at the same time as does the trajectory $t \to M_t$ and $\bar{P}_{\underline{M}}^{\alpha}f$ will differ from $P_{\underline{M}}^{\alpha}f$. Because of the assumption that X is special standard, it follows from [1], IV, (4.21) that $f(T_T)_{-} \geq f(X_T)$ for any accessible stopping time T, and therefore

(2.5)
$$\overline{P}_{\mathfrak{M}}^{\alpha}f(x) \geq P_{\widetilde{\mathfrak{M}}}^{\alpha}f(x) \text{ for all } x \text{ if } f \in \mathscr{S}^{\alpha}$$

We shall show that $\bar{P}_{\underline{M}}^{\alpha}f \leq f$ and $\bar{P}_{\underline{M}}^{\alpha}f \in \mathscr{S}^{\alpha}$ if $f \in \mathscr{S}^{\alpha}$. The fact that the action of $\bar{P}_{\underline{M}}^{\alpha}$ on α -potentials is the same as that of $P_{\underline{M}}^{\alpha}$, but that $\bar{P}_{\underline{M}}^{\alpha}$ may differ from $P_{\underline{M}}^{\alpha}f$ shows that generally, $\bar{P}_{\underline{M}}^{\alpha}$ is not determined by a kernel on $E \times \mathscr{C}$.

The first lemma shows that although it may not be determined by a kernel, \bar{P}^{α}_{M} does respect certain increasing limits. Obviously $\bar{P}^{\alpha}_{M}f \leq \bar{P}^{\alpha}_{M}g$ if $f, g \in \mathscr{S}^{\alpha}$ and $f \leq g$.

LEMMA 2.6. If
$$f \in \mathscr{S}^{\alpha}$$
, $\overline{P}_{M}^{\alpha}(f \wedge n)$ increases to $\overline{P}_{M}^{\alpha}f$ as $n \to \infty$.

Proof. It suffices to prove that $(f \wedge n)(X_t)_-$ increases to $f(X_t)_-$ for all $t \in (0, \zeta)$, almost surely. If the trajectory $s \to f(X_s)$ is right continuous and has left limits on $(0, \zeta)$, then for each $t < \zeta$, if $f(X_t)_- > \beta$, then there exists $\varepsilon > 0$ such that $f(X_s) > \beta$ on $[t - \varepsilon, t)$. Therefore, if $n > \beta$, $(f \wedge n)(X_s) > \beta$ on $[t - \varepsilon, t)$ and hence $(f \wedge n)(X_t)_- \ge \beta$.

We remark at this point that $\alpha \to \overline{P}_{M}^{\alpha}f(x)$ is right continuous for every fixed choice of M, f and x.

THEOREM 2.7. If M is an exact natural MF, $0 \leq \alpha < \infty$ and $f \in \mathscr{S}^{\alpha}$, then $\bar{P}_{M}^{\alpha}f \leq f$ and $\bar{P}_{M}^{\alpha}f \in \mathscr{S}^{\alpha}$.

Proof. Because of (2.6) it may be assumed that f is bounded. We may also assume $\alpha > 0$, since the case $\alpha = 0$ will follow by a trivial limit argument. Let

$$egin{aligned} N_t &= M_t, \, t < S \ &= M_S, \, t \geqq S \, ext{ on } \{S < \zeta\} \ &= M_{r_-}, \, t \ge \zeta \, ext{ on } \{S = \zeta\} \ . \end{aligned}$$

One then has $-dN_t = -dM_t$ almost surely, and for $x \in E_M$, $\overline{P}_M^{\alpha} f(x) = E^x \left\{ \int_0^\infty e^{-\alpha t} f(X_t)_{-}(-dN_t) + e^{-\alpha s} f(X_s) M_s \right\}$. Define a family $\{T_s; 0 < s < 1\}$ of (\mathscr{F}_t) stopping times by

$$T_s = \inf \left\{ u > 0 : 1 - N_u > s
ight\}$$
 .

It is clear that $s \to T_s$ is almost surely increasing and right continuous, $T_s = \infty$ a.s. on $\{T_s > S\}$, $\{T_s = 0 \text{ for some } s\} = \{M_{0+} = 0\}$ and $\{T_s \leq S\} = \{T_s < \zeta\}$ almost surely. By the change of variable formula,

$$\int_{(0,\zeta)} e^{-\alpha t} f(X_t)_{-}(-dM_t) = \int_0^1 e^{-\alpha T_s} f(X_{T_s})_{-} \mathbf{1}_{\{T_s < \zeta\}} ds .$$

Let $Z_t = e^{-\alpha(t \wedge S)} f(X_{t \wedge S})$. Since $\alpha > 0$,

$$\begin{split} \int_{0}^{1} & Z_{T_{s}} - ds = \int_{0}^{1} & Z_{T_{s}} - \mathbf{1}_{\{T_{s} \leq S\}} ds + \int_{0}^{1} & Z_{T_{s}} - \mathbf{1}_{\{T_{s} = \infty\}} ds \\ &= \int_{0}^{1} e^{-\alpha T_{s}} f(X_{T_{s}}) - \mathbf{1}_{\{T_{s} \leq S\}} ds + \int_{0}^{1} e^{-\alpha S} f(X_{s}) \mathbf{1}_{\{T_{s} = \infty\}} ds \\ &= \int_{(0,\zeta)} e^{-\alpha t} f(X_{t}) - (-dM_{t}) + e^{-\alpha S} f(X_{s}) M_{s} . \end{split}$$

Upon checking separately the case $x \notin E_M$, one finds

(2.8)
$$\overline{P}_{M}^{\alpha}f(x) = E^{x}\int_{0}^{1}Z_{T_{s}}ds, x \in E.$$

We now need a fact which will be of use at a subsequent point in the proof.

(2.9) For any initial measure μ , the set of $s \in (0, 1)$ for which T_s is a.s. P^{μ} equal to an accessible stopping time has full Lebesgue measure.

To demonstrate (2.9), we let

MICHAEL J. SHARPE

$$I(\omega) = \{\infty\} \cup [0, \zeta(\omega)) - \{t \in (0, \zeta(\omega)) \colon N_{t+\varepsilon}(\omega) < N_t(\omega) \ ext{ for all } \varepsilon > 0 ext{ and } N_{t-\varepsilon}(\omega) = N_t(\omega) ext{ for some } \varepsilon > 0\}$$
.

Obviously $[0, \zeta) - I$ is countable and $\int_{[0,\zeta)-I} (-dM_t) = 0$ a.s., and consequently $\int_0^1 1_{T_s \notin I} ds = 0$ a.s., by the change of variable formula. If we prove that T_s is accessible on $\{T_s \in I\}$, we shall have proven (2.9), for by Fubini,

$$0 = E^{\mu} \int_{0}^{1} 1_{\{T_s \notin I\}} ds = \int_{0}^{1} P^{\mu} \{T_s \notin I\} ds.$$

On $\{T_s = 0\} \cup \{T_s = \infty\}$, T_s is trivially accessible. It is easy to check that $\{T_s \in I, 0 < T_s < \zeta\} = \{0 < T_s = T_{s-} < \zeta\}$, and on $\{T_s \in I, 0 < T_s < \zeta\} \cap \{X_{T_s} = X_{T_s-}\}$, T_s is accessible by the famous theorem of Meyer, whilst on $\{T_s \in I, 0 < T_s < \zeta\} \cap \{X_{T_s} \neq X_{T_s-}\}$, $N_{T_s} = N_{T_s-}$ since M is natural, and it follows that a.s., $T_{s-s} < T_s$ for all $\varepsilon \in (0, s)$. The accessibility of T_s on $\{T_s \in I\}$ is now evident.

To obtain $\overline{P}_{M}^{\alpha}f \leq f$, we invoke (2.8) to see that $\overline{P}_{M}^{\alpha}f(x) = \int_{0}^{1} E^{x}Z_{T_{s}}ds$, and conclude by observing that $(Z_{i}, \mathscr{F}_{i}, P^{x})$ is a bounded non-negative right-continuous supermartingale and that for almost all $s \in (0, 1)$, T_{s} is a.s. P^{x} accessible to find $E^{x}Z_{T_{s}} \leq E^{x}Z_{0} = f(x)$ for almost all s.

We prove next that $\bar{P}_{M}^{\alpha}f$ is α -super-mean-valued. It is enough to give a proof in case $\alpha > 0$. From (2.8) we see that

$$P_t^{\alpha} \overline{P}_{\mathfrak{M}}^{\alpha} f(x) = E^x e^{-\alpha t} E^{X_t} \int_0^1 Z_{T_s} ds = \int_0^1 E^x e^{-\alpha t} Z_{T_s} \circ \theta_t ds .$$

Our first step is to show

$$(2.10) P_t^{\alpha} \overline{P}_M^{\alpha} f(x) \leq \int_0^1 E^x (Z_{t+T_s \circ \theta_t})_{-} ds , \qquad x \in E.$$

On $\{S \ge t + T_s \circ \theta_t\}$, either S > t or S = t and $T_s \circ \theta_t = 0$. It is a matter of checking cases to see that

$$e^{-lpha t}Z_{{}^{T_s-}}\circ heta_t=(Z_{{}^{t+T_s\circ heta}t})_-$$
 on $\{S>t\}$,

and a.s. on $\{S = t, T_s \circ \theta_t = 0\}$,

$$e^{-\alpha t}Z_{T_s-}\circ \theta_t=e^{-\alpha t}f(X_t)=e^{-\alpha t}f(X_{t-})\leq e^{-\alpha t}f(X_t)_-=(Z_{t+T_s\circ \theta_t})_-\text{ .}$$

 $\underset{t}{\overset{t}{\underset{t}{\mapsto}}} \text{Hence } e^{-\alpha t} Z_{T_s -} \circ \theta_t \leq (Z_{t+T_s \circ \theta_t})_{-} \text{ a.s. on } \{S \geq t + T_s \circ \theta_t\}. \text{ On } \{S < t + T_s \circ \theta_t\}, (Z_{t+T_s \circ \theta_t})_{-} = e^{-\alpha S} f(X_S), \text{ while }$

$$e^{-lpha t} Z_{T_s -} \circ heta_t \leq e^{-lpha (t+T_s \circ heta_t)} f(X_{t+T_s \circ heta_t})_- ext{ on } \{S < t + T_s \circ heta_t, T_s \circ heta_t \leq S \circ heta_t\},\ = e^{-lpha (t+S \circ heta_t)} f(X_{t+S \circ heta_t}) ext{ on } \{S < t + T_s \circ heta_t, T_s \circ heta_t > S \circ heta_t\}.$$

364

One sees readily from (2.9) that for fixed $x, t + T_s \circ \theta_t$ is a.s. P^* equal to an accessible stopping time for almost all s and so for almost all choices of s, there exists an increasing sequence $\{R_n\}$ of stopping times with limit $t + T_s \circ \theta_t$ such that $P^*\{R_n < t + T_s \circ \theta_t\} = 1$ for every n. Then $L_n = R_n \wedge (t + S \circ \theta_t)$ increases to $t + T_s \circ \theta_t$ strictly from below (a.s. P^*) on $\{S < t + T_s \circ \theta_t, T_s \circ \theta_t \leq S \circ \theta_t\}$ and R_n is eventually equal to $t + S \circ \theta_t$ on $\{S < t + T_s \circ \theta_t, T_s \circ \theta_t > S \circ \theta_t\}$. One then has

$$\begin{split} E^x e^{-\alpha t} Z_{T_{s^-}} \circ \theta_t &= E^x \{ e^{-\alpha t} Z_{T_{s^-}} \circ \theta_t [\mathbf{1}_{\{S \ge t + T_s \circ \theta_t\}} + \mathbf{1}_{\{S < t + T_s \circ \theta_t\}}] \} \\ & \leq E^x \{ (Z_{t + T_s \circ \theta_t}) - \mathbf{1}_{\{S \ge t + T_s \circ \theta_t\}} + \lim_{\sigma} e^{-\alpha L_n} f(X_{L_n}) \mathbf{1}_{\{S < t + T_s \circ \theta_t\}} \} \; . \end{split}$$

But $t + S \circ \theta_t \geq S$ a.s. and so $L_n \geq S$ eventually, a.s., on $\{S < t + T_s \circ \theta_t\}$ and it follows from the fact that $\{e^{-\alpha t}f(X_t), \mathscr{F}_t, P^x\}$ is a bounded nonnegative right-continuous supermartingale that $E^x e^{-\alpha t} Z_{T_s} \circ \theta_t \leq E^x (Z_{t+T_s \circ \theta_t})_-$ for almost all $s \in (0, 1)$. This proves (2.10).

Now observe that a.s., $T_s \leq t + T_s \circ \theta_t$ on $\{T_s \leq S\}$ and $t + T_s \circ \theta_t > S$ on $\{T_s > S\}$. For, on $\{T_s \leq S\} \cap \{M_t > 0\}$,

$$egin{aligned} t + \ T_s \circ heta_t &= \inf \left\{ u + t {: \ u > 0, \ N_u \circ heta_t < 1 - s}
ight\} \ &\geq \inf \left\{ u + t {: \ u > 0, \ M_u \circ heta_t < 1 - s}
ight\} \ &= \inf \left\{ v > t {: \ M_v < (1 - s) M_t}
ight\} \ &\geq \inf \left\{ v > 0 {: \ M_v < 1 - s}
ight\} = T_s \;, \end{aligned}$$

and on $\{T_s \leq S\} \cap \{M_t = 0\}, t \geq S$ so $T_s \leq S \leq t \leq t + T_s \circ \theta_t$. On $\{T_s > S\} \cap \{M_t > 0\}$, the same calculation as above gives $t + T_s \circ \theta_t \geq inf \{v > 0: M_v < 1 - s\}$ a.s., and so $t + T_s \circ \theta_t \leq S$ would imply $T_s \leq S$. On $\{T_s > S\} \cap \{M_t = 0\}, M_s > 0$ so t > S and $t + T_s \circ \theta_t > S$ almost surely.

For almost all $s \in (0, 1)$, T_s and $t + T_s \circ \theta_t$ are (a.s. P^x) accessible stopping times and it follows simply from the order relation observed above and the fact that $(Z_t, \mathscr{F}_t, P^x)$ is bounded nonnegative supermartingale that $E^x(Z_{t+T_s} \circ \theta_t)_- \leq E^x Z_{T_s}$ for almost all $s \in (0, 1)$, whence $P_t^{\alpha} \bar{P}_M^{\alpha} f(x) \leq \bar{P}_M^{\alpha} f(x)$.

It remains to show $P_t^{\alpha} \overline{P}_M^{\alpha} f(x) \to \overline{P}_M^{\alpha} f(x)$ as $t \to 0$. If $x \in E_M$, then $X_t \in E_M$ a.s. on $\{t < S\}$, and so

$$\begin{split} P_t^{\alpha} \bar{P}_M^{\alpha} f(x) &= E^x e^{-\alpha t} \bar{P}_M^{\alpha} f(X_t) \\ &\geq E^x e^{-\alpha t} \mathbf{1}_{\{t < S\}} E^{X_t} \left\{ \int_{(0,\zeta)} e^{-\alpha s} f(X_s)_{-} (-dM_s) + f(X_s) M_s e^{-\alpha s} \right\} \\ &= E^x \mathbf{1}_{\{t < S\}} \left\{ \int_{(0,\zeta \circ \theta_t)} e^{-\alpha (t+s)} f(X_{t+s})_{-} (-dM_s \circ \theta_t) + f(X_{t+s \circ \theta_t}) M_s \circ \theta_t e^{-\alpha S \circ \theta_t} \right\} \\ &= E^x \mathbf{1}_{\{t < S\}} M_t^{-1} \left\{ \int_{(t,\zeta)} e^{-\alpha u} f(X_u)_{-} (-dM_u) + f(X_s) M_s e^{-\alpha s} \right\} \,. \end{split}$$

By Fatou's lemma, if $x \in E_M$

$$\begin{split} &\lim \inf_{(t \to 0)} P_t^{\alpha} \bar{P}_{M}^{\alpha} f(x) \\ & \geq E^x \lim_{(t \to 0)} \mathbf{1}_{\{t < S\}} M_t^{-1} \Big\{ \int_{(t,\zeta)} e^{-\alpha u} f(X_u)_{-} (-dM_u) + f(X_S) M_S e^{-\alpha S} \Big\} \\ & = E^x \Big\{ \int_{(0,\zeta)} e^{-\alpha u} f(X_u)_{-} (-dM_u) + e^{-\alpha S} M_S f(X_S) \Big\} = \bar{P}_{M}^{\alpha} f(x) \; . \end{split}$$

Consequently $P_t^{\alpha} \overline{P}_{\mathfrak{M}}^{\alpha} f(x) \to \overline{P}_{\mathfrak{M}}^{\alpha} f(x)$ if $x \in E_{\mathfrak{M}}$. On the other hand, if $x \in E - E_{\mathfrak{M}}, P_t^{\alpha} \overline{P}_{\mathfrak{M}}^{\alpha} f(x) \ge P_t^{\alpha} P_{\widetilde{\mathfrak{M}}}^{\alpha} f(x)$ which converges as $t \to 0$ to $P_{\widetilde{\mathfrak{M}}}^{\alpha} f(x) = f(x) = \overline{P}_{\mathfrak{M}}^{\alpha} f(x)$, using exactness of $\widetilde{\mathcal{M}}$. Our proof is now complete.

3. Application to a problem treated by Meyer. Meyer [3] proved that if u is a natural potential of $X, f \in \mathscr{S}$ and $u \leq f$, and if in addition $u(X_t)_{-} \leq f(X_t)$ for all t such that $X_t = X_{t-}$, then $u = P_R f$ for some exact terminal time R on a possibly larger sample space. We give here a similar representation using an operator of the type discussed in the preceding section, one advantage being that one may remain on the original sample space, using only the fields (\mathscr{F}_t) , and another being that the last, somewhat unnatural, condition may be dropped.

THEOREM 3.1. Let $f \in \mathscr{S}$ be finite off a polar set and let u be a natural potential such that $u \leq f$. Then there exists a natural exact MF M of X such that $u = \overline{P}_M f$.

Proof. Let $u = u_B$, B a natural additive functional. Since u is finite, B is a.s. finite on $[0, \zeta)$, and by [1], IV, (4.29), if T is a stopping time which is accessible on Λ , then $B_T - B_{T-} = u(X_T) - u(X_T)$ a.s. on $\Lambda \cap \{T < \zeta\}$. For every $\varepsilon > 0$, let

$$A^arepsilon_t=\int_0^t(f(X_s)_-+arepsilon\,-\,u(X_s))^{-1}dB_s$$
 .

Clearly A^{ε} is a finite natural AF of X, and if T is an accessible stopping time, $A_T^{\varepsilon} - A_{T-}^{\varepsilon} = (f(X_T)_- + \varepsilon - u(X_T))^{-1}(u(X_T)_- - u(X_T))$ a.s. on $\{T < \zeta\}$ and so $A_T^{\varepsilon} - A_{T-}^{\varepsilon} < 1$ for any accessible T. There exists therefore a right continuous natural MF, M^{ε} , such that $S = \zeta$ and

$$(M^{arepsilon}_{t\,-})^{-\scriptscriptstyle 1}(-dM^{arepsilon}_t)=dA^{arepsilon}_t$$
 , $t<\zeta$.

Let $C_t = B_t^c$, the continuous part of B. Then for $t < \zeta$

$$egin{aligned} M^{arepsilon}_t &= \exp\left\{-\int_{\mathfrak{o}}^t [f(X_s)_- + arepsilon - u(X_s)]^{-1} dC_s
ight\} \ & imes \prod_{s\leq t} \left[1 - (f(X_s)_- + arepsilon - u(X_s))^{-1} arphi B_s
ight] \end{aligned}$$

and it is clear that a.s., M_t^{ε} decreases as ε decreases for all $t \ge 0$.

Let $M_t = \lim_{(\varepsilon \to 0)} M_t^{\varepsilon}$, $S = \inf \{t > 0 : M_t = 0\}$. We propose to show that M is a MF of the type considered in the second section. Obviously M is adapted, multiplicative, a.s. decreasing, $M_{\zeta} = 0$, $M_t M_s \circ \theta_t = M_{t+s \circ \theta_t}$, but it may well happen that $M_s > 0$. Upon taking the monotonic limit as $\varepsilon \to 0$ in the above representation, one sees that

(3.2)
$$M_{t} = \exp\left\{-\int_{0}^{t} [f(X_{s})_{-} - u(X_{s})]^{-1} dC_{s}\right\} \\ \times \prod [1 - (f(X_{s})_{-} - u(X_{s}))^{-1} \Delta B_{s}]$$

for all $t < \zeta$, and from (3.2) one finds

(3.3)
$$S = \inf \left\{ t > 0: \int_{0}^{t} [f(X_{s})_{-} - u(X_{s})]^{-1} dB_{s} = \infty \right\}.$$

REMARK. In the product term of (3.2), we take

$$[f(X_s)_- - u(X_s)]^{-1} \Delta B_s = 0$$
 if $\Delta B_s = 0$.

It is almost surely true that if $M_t > 0$, $M_s^{\epsilon}/M_s \leq M_t^{\epsilon}/M_t$ for all $s \leq t$ whence $M_s^{\epsilon} \to M_s$ uniformly on [0, t] if $M_t > 0$. The right continuity of M on [0, S) follows immediately.

To see that M is natural, use (3.2) to observe that on [0, S), the only jumps of M must occur at jump times of B, and that on $\{M_s < M_{s-}, S < \zeta\}, \Delta B_s > 0$, implying that S is accessible on $\{M_{s-} > M_s\}$.

The exactness of M is a consequence of [1], III, (5.9) once it is established that if $P^{x}\{S=0\}=1$, then $E^{x}\tilde{M}_{v-t}\circ\theta_{t}\to 0$ as $t\to 0$, for all v>0. However, $\tilde{M} \leq M$ and it is easy to see that $t\to M_{v-t}\circ\theta_{t}$ is an increasing function. Because of the monotonic convergence of M_{t}^{s} to M_{t} , it is legal to interchange limits to obtain

$$\lim_{(t o 0)} M_{v-t} \circ heta_t = \lim_{(t o 0)} \lim_{(\epsilon o 0)} M_{v-t}^\epsilon \circ heta_t$$

 $= \lim_{(\epsilon o 0)} \lim_{(t o 0)} M_{v-t}^\epsilon \circ heta_t = \lim_{(\epsilon o 0)} M_v^\epsilon = 0 ext{ a.s. } P^x$

using the exactness of M^{ε} .

We remark at this point that $f(X_s) = u(X_s)$ a.s. on $\{S < \zeta\}$, for by (3.3), on $\{S < \zeta\}$, either $\Delta B_s > 0$ and $f(X_s)_- = u(X_s)$ or $\Delta B_s = 0$. In the first case, S is accessible on $\{\Delta B_s > 0\}$ and so $f(X_s) \leq f(X_s)_- = u(X_s) \leq f(X_s)$ whence $u(X_s) = f(X_s)$. In case $\Delta B_s = 0, t \rightarrow A_t = \int_{[0,t]} [f(X_s)_- - u(X_s)]^{-1} dB_s$ is left continuous at S. If $A_s = \infty$ and $T_n = \inf\{t > 0: A_t \geq n\}$ then T_n increases to S a.s. on $\{S < \zeta\}$ and $T_n < S$ a.s. on $\{0 < S < \zeta\}$. Thus S is accessible on $\{A_s = \infty, 0 < S < \zeta\}$ and a.s. on $\{A_s = \infty, 0 < S < \zeta\}$, $\liminf_{(t \rightarrow S^-)} [f(X_t)_- - u(X_t)] = 0$ which implies $f(X_s)_- = u(X_s)$. But $u(X_s)_- = u(X_s)$ since $\Delta B_s = 0$ and $f(X_s) \leq f(X_s)_-$ since S is accessible. This shows that $u(X_s) = f(X_s)$ a.s. on $\{0 < S < \zeta, A_s = \infty\}$. On $\{S < \zeta, A_s < \infty\}$, one sees from (3.3) that $\liminf_{(t \to s+)} [f(X_t)_- - u(X_t)] = 0$, whence $f(X_s) = u(X_s)$, proving finally that $u(X_s) = f(X_s)$ a.s. on $\{S < \zeta\}$.

From (3.2), we find that a.s. on [0, S)

$$(-dM_t)(f(X_t) - u(X_t)) = M_t - dB_t$$

and a.s. on $\{S < \zeta\}$

$$(M_{s-} - M_s)f(X_s)_- = (M_{s-} - M_s)u(X_s) + M_{s-} \Delta B_s$$
 .

Thus

$$\begin{split} \int_{(0,\zeta)} f(X_t)_{-}(-dM_t) &= \int_{(0,S)} f(X_t)_{-}(-dM_t) \\ &+ [f(X_S)_{-}(M_{S-} - M_S) + f(X_S)M_S]\mathbf{1}_{(S<\zeta)} \\ &= \int_{(0,S)} u(X_t)(-dM_t) + \int_{(0,S)} M_{t-}dB_t \\ &+ [(M_{S-} - M_S)u(X_S) + M_{S-}\Delta B_S + u(X_S)M_S]\mathbf{1}_{(S<\zeta)} \\ &= \int_{0}^{\infty} u(X_t)(-d\widetilde{M}_t) + \int_{0}^{\infty} \widetilde{M}_{t-}dB_t \ . \end{split}$$

Since $u(X_T)\mathbf{1}_{\{T<\infty\}} = E^x\{(B_{\infty} - B_T)\mathbf{1}_{\{T<\infty\}} | \mathscr{F}_T\}$ for all stopping times T, Meyer's integration lemma ([2], VII, T. 15) applies to give

$$E^x \int_0^\infty u(X_t)(-d\widetilde{M}_t) = E^x \int_0^\infty (B_\infty - B_t)(-d\widetilde{M}_t)$$
.

Thus, for $x \in E_M$,

$$ar{P}_{\scriptscriptstyle M}f(x) \,=\, E^x\!\!\int_{\scriptscriptstyle 0}^{\infty}(B_{\scriptscriptstyle \infty}\,-\,B_t)(-d\widetilde{M}_t)\,+\,\int_{\scriptscriptstyle 0}^{\infty}\!\!\widetilde{M}_{t-}dB_t
onumber \ =\, E^x(B_{\scriptscriptstyle \infty})\,+\,E^x\!\!\int_{\scriptscriptstyle 0}^{\infty}\!\!\widetilde{M}_tdB_t\,-\,\int_{\scriptscriptstyle 0}^{\infty}\!\!B_t(-d\widetilde{M}_t)
onumber \ =\, u(x)$$

upon integrating by parts.

If $x \notin E_M$, $\overline{P}_M f(x) = f(x) = E^x f(X_S) = E^x u(X_S) = u(x)$, and the theorem is completely proven.

4. REMARKS. It is natural to ask for a specification of the class $\{\bar{P}_{\tilde{M}}^{a}f: M \text{ a natural exact } MF\}$, for a given $f \in \mathscr{S}$. The following example shows that although it contains f and all natural potentials, it need not include all excessive functions dominated by f. Let X be uniform motion to the right on the real line, let $f \equiv 1$ and $u \equiv 1/2$. Obviously $\bar{P}_{M}f(x) = P_{\tilde{M}}1(x)$ for all x, and because we can write down (up to equivalence) the form of \tilde{M} , it is a simple matter to check that $P_{\tilde{M}}1 = 1/2$ has no solution for \tilde{M} .

A particular example of an operator \overline{P}_{M} which may be of interest is obtained by taking, for a fixed Borel subset B of E,

$$M_t = \mathbf{1}_{[0, T_B \wedge \zeta)}(t) + \mathbf{1}_{\{t = T_B < \zeta, X_t = \neq X_t\}}$$
 .

Then $S = \inf \{t > 0: M_t = 0\} = T_B \land \zeta$, and using the fact that S is totally inaccessible on $\{X_S \neq X_{S-}, S < \zeta\}, P^x\{t = T_B < \zeta, X_{t-} \neq X_t\} = 0$ for all $t \ge 0$ and $x \in E$. It follows readily that M is a MF satisfying (2.1). Define, for $f \in \mathcal{S}$,

$$ar{P}_{\scriptscriptstyle B}f(x) = ar{P}_{\scriptscriptstyle M}f(x) = E^{z}\{f(X_{{\scriptscriptstyle T}_{\scriptscriptstyle B}})_{-};\, T_{\scriptscriptstyle B} < \zeta,\, X_{{\scriptscriptstyle T}_{\scriptscriptstyle B}} = X_{{\scriptscriptstyle T}_{\scriptscriptstyle B}-}\} \ + E^{z}\{f(X_{{\scriptscriptstyle T}_{\scriptscriptstyle B}});\, T_{\scriptscriptstyle B} < \zeta,\, X_{{\scriptscriptstyle T}_{\scriptscriptstyle R}}
e X_{{\scriptscriptstyle T}_{\scriptscriptstyle R}-}\} \;.$$

Because of Theorem (2.7), $\overline{P}_{\scriptscriptstyle B}f\in\mathscr{S}$ if $f\in\mathscr{S}$.

One simple use of the operator \bar{P}_B is afforded by the following example. Let B be a finely closed Borel subset of E and let f be a uniformly integrable excessive function. Assume that X is a Hunt process. Let f^B be the lower envelope of the family of excessive functions which dominate f on a (variable) neighborhood of B. In [1], VI, (2.12)-(2.15), it is shown, under different hypotheses, that $f^B = P_B f$ off a certain exceptional set provided f is "admissible". However, under the hypotheses given above without assuming f to be admissible, it is a simple matter, using [1], I, (11.3) together with certain facts from [1], VI, (2.12)-(2.15), to obtain $\bar{P}_B f \leq f^B$ everywhere, and $\bar{P}_B f(x) = f^B(x)$ except possibly on $B - B^r$. It does not seem to be easy to remove the restrictions imposed above to obtain a general representation of f^B .

References

1. R. M. Blumenthal and R. K. Getoor, *Markov Processes and Potential Theory*, Academic Press, New York (1968).

2. P.-A. Meyer, Probability and Potentials, Ginn (Blaisdell), Boston (1966).

3. _____, Quelques résultats sur les processus de Markov, Invent. Math., 1 (1966), 101-115.

Received September 16, 1971. Research supported by NSF Grant GP-8770.

UNIVERSITY OF CALIFORNIA, SAN DIEGO