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A CLASS OF OPERATORS ON EXCESSIVE FUNCTIONS

MICHAEL J. SHARPE

Let X=(Ω,^r,^'t,Xt,θt,P*) be a special standard
Markov process with state space (E, if) and transition semi-
group (Pi). We emphasize here that the J^"t are the usual
completions of the natural σ-fields for the process. In this
paper, we associate with certain multiplicative functionals of
X operators on the class of excessive functions which are
related to the operators PM but which are a bit unusual in
probabilistic potential theory in that they are not generally
determined by kernels on E X if. An application is given to
a problem treated by P -A. Meyer concerning natural potentials
dominated by an excessive function.

2* The operator associated with a natural multiplicative func-
tional*1 By a multiplicative functional of X, we mean a progressively
measurable process M which satisfies, in addition to the standard
conditions ([1], III, (1.1)) the following condition:

(2.1) almost surely, Mζ = 0, t—>Mt is decreasing on [0, oo) and
if S = inΐ{t > 0: Mt = 0}, then t—*Mt is right continuous on [0, S),
and MtMsoθt = Mt+Soθt a.s. for all t ^ 0.

A simple example which illustrates some possibilities is obtained
I by considering X to be uniform motion to the right on the real line
Land Mt =f(Xt)/f(X0) on {/(Xo) > 0}, Mt = 0 for all t on {f(X0) = 0},
I where / is a decreasing positive function on the line, /(0+) = 0, / is
[right continuous on (—oo? 0) and /(0) ̂  /(0—).

If M is a multiplicative functional, then S is a terminal time and
so Mtl[0,s)(t) is a multiplicative functional which is right continuous.
For a given M, the modified functional will be denoted M. Let us
denote by EM the set {x e E: PX{S > 0} = 1} = Ejt and call M exact
if M is exact. Note that M and M generate the same resolvent, but
not necessarily the same semigroup.

It should be emphasized that one will not have the freedom to
replace M by an equivalent multiplicative functional, for the operator
to be associated with M will not respect equivalence.

Let M be a given MF; for almost all ω, let (—dMt(ω)) denote
the measure on (0, ζ(co)) generated by the increasing function t —* 1 —
MtAS(

ω) Care should be taken when computing with (—dMt), since
( — dMt) is generally not the restriction of (—dMt) to (0, S].

1 The reader is referred to the books of Blumenthal and Getoor [1] and Meyer [2]
for unexplained terminology.
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DEFINITION 2.2. A multiplicative functional M is called natural
if, almost surely, the trajectories t—*Mt and t —*Xt have no common
discontinuity on [0, S), and Xs = Xs_ on {Ms < Ms_, S < ζ}

We now associate with a natural MF M an operator P£ on the
class £Sa of α-excessive functions for X.

DEFINITION 2.3. If M is a natural MF and feSa, let

P£f(x) = E4\ e-*'f(XtU-dMt) + e-*sf(Xs)M8\ , xeEM

U(0,ζ) J

= f{x) y X$EM .

By f(Xt)-. is meant the left limit of the trajectory s —>f(Xa) at t if
ί > 0, and f(X0) if £ = 0. Recall that if M is a right continuous MF,
α ^ 0 and i?ί, one defines P£/ by

P£/(s) = E \ e-°tf(Xt)(-dMt) , x e EM

(2.4) J(o,o

= f(x) , a? g EM .

One obtains P^i7α/ + Vαf = Uαf, where (Vα) is the resolvent for
the subprocess (X, M) and it follows that if M is exact, P£g e £fα

for all g e S^α. life 6^α is regular, in particular if / = Uαg for some
flreg7?, then for M natural, P£f = P~f. In general though, the
trajectory t —• /(-XΓt) can jump at the same time as does the trajectory
t—+Mt and P£f will differ from P | / . Because of the assumption
that X is special standard, it follows from [1], IV, (4.21) that f(Tτ)_ ^
f(Xτ) for any accessible stopping time T, and therefore

(2.5) P£f(x) ^ P|/(») for all a? if fe <9*α .

We shall show that P£f ^ / and Pif e S*α if fe ^ \ The fact that
the action of P£ on α-potentials is the same as that of P | , but that
PM may differ from P~f shows that generally, P£ is not determined
by a kernel on E x if.

The first lemma shows that although it may not be determined
by a kernel, P£ does respect certain increasing limits. Obviously
Pif ^ Pi9 if /, 9 e ̂  and / ^ #.

LEMMA 2.6. If fe^α, P£(f A n) increases to P£f as n-+ ooβ

Proof. It suffices to prove that (/ Λ w)(-3Γt)_ increases to f(Xt)-
for all ίG(O,ζ), almost surely. If the trajectory s—+f(X8) is right
continuous and has left limits on (0, ζ), then for each t<ζ, if f(Xt)^>β,
then there exists ε > 0 such that f(Xs) > β on [£ — ε, t). Therefore,
if n > β, (f A n)(Xs) > β on [t - ε, t) and hence (/ Λ n){Xt)_ ^ β.
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We remark at this point that a —» P£f(x) is right continuous for
every fixed choice of ikf, / and x.

THEOREM 2.7. If M is an exact natural MF, 0 ^ a < oo and
f e Sf\ then P£f ^ / and P£f e £f\

Proof. Because of (2.6) it may be assumed that / is bounded.
We may also assume a > 0, since the case a = 0 will follow by a
trivial limit argument. Let

Nt = Mt, t < S

= Ms, t ^ S on {S < ζ}

= -Me-, t ^ ζ on {S = Q .

One then has — diVf = — dMt almost surely, and for xeEM, P£f(x) =

£"{( Vα ί/(X)-(-^iV ί) + e~aSf(Xs)Ms\. Define a family {Γs; 0 < s < 1}

of (J^Γ) stopping times by

Γs = inf {u > 0:1 - Nu > s} .

It is clear that s —> Ts is almost surely increasing and right continuous,
Ts = oo a.s. on {Ts > S}, {Γ8 = 0 for some s} = {Mo+ = 0} and {T8 ̂ S} =
{Ts < ζ} almost surely. By the change of variable formula,

f e-«f(XtU-dMt) =
J(o,c)

Let Zt = e-«AS)f(XtA8). Since a > 0,

\ ZΓ ds = 1 ̂ Γ sΛ ί τ s^ s ]ds + \ Zτ l{τ^}d8
Jo Jo Jo

= ί V<^/(^8)-lίr8SS,ds + [e-"sf(X$)ltΓs=oa)ds
Jo Jo

= \ e-"f(XtU-dMt) + e-sf(X8)M8 .
J(O,ζ)

Upon checking separately the case x & EM, one finds

(2.8) P£f(x) = E^ZTs_ds, xeE.

We now need a fact which will be of use at a subsequent point
in the proof.

(2.9) For any initial measure μ, the set of s e (0, 1) for which
Ts is a.s. Pμ equal to an accessible stopping time has full Lebesgue
measure.

To demonstrate (2.9), we let
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- {<*>} U [0, ζ(ω)) -{te (0, ζ(ω)): Nt+ε(ω) < Nt(ω)

for all ε > 0 and Nt_ε(ω) = Nt(ω) for some ε > 0} .

Obviously [0, ζ) — / is countable and I (—dMt) — 0 a.s., and con-

S i J [o,θ—JΓ

1 ds = 0 a.s., by the change of variable formula. If
we prove that T8 is accessible on {T8el}> we shall have proven (2.9),
for by Fubini,

0 = ^ \ " l ds =

On {Γs = 0} U {Ts — 00}9 Ts is trivially accessible. It is easy to check
that {T.eI,.0< Γs < ζ} - {0 < T8 = Ts_ < ζ}, and on {Tse J, 0 < T8 <
ζ} Π {XΓg = Xτ8-}, T8 is accessible by the famous theorem of Meyer,
whilst on {T8e I, 0 < T8 < ζ} n {Xr8 ^ -Xr,-}, ̂ r s = NTa_ since ikf is
natural, and it follows that a.s., Γs_ε < T8 for all ε e (0, s). The ac-
cessibility of T8 on {T8el} is now evident.

To obtain P£f £f, we invoke (2.8) to see that P£f(x) = KEXZT _ds,
Jo s

and conclude by observing that (Zt, ^ 7 , Px) is a bounded non-negative
right-continuous supermartingale and that for almost all s e (0,1), Ts

is a.s. Px accessible to find EXZT$_ ^ EXZO = f(x) for almost all s.
We prove next that P£f is α-super-mean-valued. It is enough

to give a proof in case α > 0. From (2.8) we see that

Pt

αP£f(x) = Exe~

Our first step is to show

(2.10) PtαP£f(%) £ [Ex(Zt+Ts0θ)_ds , x e E .
Jo

On {S ^ t + Ts°θt}, either S > t or S = t and T,»θt = 0. It is a
matter of checking cases to see that

e~αtZTa_oθt = (Zt+Ta.o)- on {S > t) ,

and a.s. on {S = t, Ts ° θt = 0},

e-«>ZTβ_°θt = e~«tf{Xt) = e-tfiXΛ ^ e—f(Xt)- = (Zt+Ts.0)_ .

[Hence e~αtZTs_°θt ^ (Zt+T,.et)- a.s. on {S ^ t + Ts°θt}. On {S < t +
Ts°θt}, {Zt+Tilθ)_ = e-«sf(Xs), while

wθ)_ on {S< t + T$°θt, Tsoθt ^ S°θt} ,

.e) on {S < t + T^θt, T^θt > Soθt) .
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One sees readily from (2,9) that for fixed x, t + Tsoθt is a.s. Px equal
to an accessible stopping time for almost all s and so for almost all
choices of s, there exists an increasing sequence {Rn} of stopping times
with limit t+ Tsoθt such that Px{Rn <t+T8°θt} = l for every n.
Then Ln = Rn A (t + S°θt) increases to ί + T8°θt strictly from below
(a.s. Px) on {S < t + T9oθt, Tsoθt ^ So0J and Rn is eventually equal
to t + Soflt on {S < t + Ts°#f, Tsoθt> Soθt}. One then has

^ E*{(Zt+Tsΰθt)Λ{s*t+Tsΰθt} +

But t + S°θt^S a.s. and so Ln^S eventually, a.s., on {S < t + Ts ° ί j
and it follows from the fact that {e~atf(Xt), J?t, P

x) is a bounded
nonnegative right-continuous supermartingale that Exe~atZTs_oθt ^
Ex(Zt+Tsθθ)_ for almost all se(0,1). This proves (2.10).

Now observe that a.s., T8^t + Tsoθt on {TS^S} and t + Tsoθt>S
on {Ts > S}. For, on {Ts ̂  S} f] {Mt > 0},

ί + Ts o ̂  = inf {u + ί: % > 0, Nu o θt < 1 - s}

^ inf {u + t: u > 0, Muoθt < I - s}

= inf {v >t:Mυ<(l- s)Mt)

^ inf {v > 0: Mv < 1 - s} = Γs ,

and on {Γs ^ S} Π {M* = 0}, ί ^ S so T8^S ^t^t + Ts° θt. On
{Ts > S} Π {Mi > 0}, the same calculation as above gives t + Tsoθt^
inf {v > 0: Mv < 1 - s} a.s., and so t + T8oθt<, S would imply Γs ^ 5.
On {Γs > S} Π {M* = 0}, Ms > 0 so t > S and t + Tsoθt> S almost
surely.

For almost all se(0,1), Γβ and ί + Tsoθt are (a.s. Pβ) accessible
stopping times and it follows simply from the order relation observed
above and the fact that (Zt9 ̂ 7 , Px) is bounded nonnegative super-
martingale that Ex(Zt+Tsθθt)_ ^ E*zτs- for almost all se(0,1), whence
P?P£f (x) £ P£f (ti-

lt remains to show Pt

aP£f{x) -> P£f(x) as t -> 0. If α e ̂ , then
Xt G 1?̂  a.s. on {ί < S}, and so

P?P£f(ti - &e-«P£f(Xt)

(0,ζ)

e-~f(X.U-dM.)
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By Fatou's lemma, if x e EM

^ Ex In

= E4\ e~**f(X.U-dMu) + e-*sM8f(X8)\ = Pif(x) .

Consequently PtaP£f(x)->P£f(x) if &€#*. On the other hand, if
xeE- EM, Pt

aP£f(x) ^Pt
aP?f(x) which converges as ί->0 to P~f(x) =

/(α?) = P£f(x), using exactness of iίf. Our proof is now complete.

3* Application to a problem treated by Meyer* Meyer [3]
proved that if u is a natural potential of X, f e S^ and u <* /, and
if in addition w(-3Γt)_ ^ /(-X«) for all t such that Xf = Xt_, then w =
P Λ / for some exact terminal time R on a possibly larger sample space.
We give here a similar representation using an operator of the type
discussed in the preceding section, one advantage being that one may
remain on the original sample space, using only the fields (^7), and
another being that the last, somewhat unnatural, condition may be
dropped.

THEOREM 3.1. LetfeS^ be finite off a polar set and let u be
a natural potential such that u ^ / . Then there exists a natural
exact MF M of X such that u = PMf.

Proof. Let u = uB, B a natural additive functional. Since u is
finite, B is a.s. finite on [0, ζ), and by [1], IV, (4.29), if T is a stop-
ping time which is accessible on Λ, then Bτ — Bτ_ — u(Xτ)__ — u(Xτ)
a.s. on Λ Π {T < ζ}. For every ε > 0, let

A\ = Γ(/(XS)_ + ε - u(X.))-ιdB. .

Clearly Aε is a finite natural AF of X, and if T is an accessible stop-
ping time, Aε

τ — Aε

τ_ = (f(Xτ)_ + ε — u(Xτ))~ι{u{Xτ)_ — u{Xτ)) a.s. on
{T < ζ} and so Aε

τ — Aε

τ_ < 1 for any accessible T. There exists
therefore a right continuous natural MF, Mε, such that S = ζ and

=dAl, t < ζ .

Let Ct = Bt% the continuous part of B. Then for t < ζ

Mi = exp{-\\f(Xs)- + e - u

x Π [i - (/(X.)- + β -

and it is clear that a.s., Ml decreases as ε decreases for all t ^ 0.
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Let Mt = lim(e_0)M/, S = inf {t > 0: Λff = 0}. We propose to show that
M is a MF of the type considered in the second section. Obviously
Mis adapted, multiplicative, a.s. decreasing, Mc — 0, MtMsoθt =Mt+Saθt,
but it may well happen that Ms > 0. Upon taking the monotonic
limit as ε —> 0 in the above representation, one sees that

x Π [1 - {f{Xs)--u{X8)ΓΔB8]

for all t < ζ, and from (3,2) one finds

(3.3) S = inf jί > 0: Jj
REMARK. In the product term of (3.2), we take

s)_-u(Xs)]-^Bs = 0 if

It is almost surely true that if Mt > 0, MtjMs ^ M;/Mt for all
s fg ί whence Jlf; —> Ms uniformly on [0, t] if Mt > 0. The right con-
tinuity of M on [0, S) follows immediately.

To see that M is natural, use (3.2) to observe that on [0, S), the
only jumps of M must occur at jump times of B, and that on
{Ms < Ms_, S<ζ}, ΔBS > 0, implying that S is accessible on {Ms_ > Ms}.

The exactness of M is a consequence of [1], III, (5.9) once it is
established that if PX{S = 0} = 1, then ExMυ_t ogt-+0 as t ~* 0, for
all v > 0. However, M ^ Jkf and it is easy to see that t —* M ^ © θt

is an increasing function. Because of the monotonic convergence of
Mi to Mt9 it is legal to interchange limits to obtain

lim Mv_t © θt = lim lim M"v

ε_f © ^f
(ί-»0) (ί^0) (ε-»0)

= lim lim Λfί_t o θt = lim Af; = 0 a.s. P* ,
(ε—0) (ί-0) (ε-»0)

using the exactness of M\
We remark at this point that f(Xs) = u{X^ a.s. on {S < ζ}, for

by (3.3), on {S < ζ}, either ΔBS > 0 and f{Xs)- = u(Xs) or ΔBS = 0.
In the first case, S is accessible on {ΔBS > 0} and so f(Xs) ^ f(Xs)- —
u{Xs)<Lf{Xs) whence u(Xs) =f(Xs). In case ΔBS = 0, t-+At =
\ [f(Xs)~ - u{Xs)]-ιdBs is left continuous at S. If As = oo and
r Γ = inf {ί > 0: At ^ n] then Γ. increases to S a.s. on {S < ζ} and
Tn < S a.s. on {0 < S < ζ}. Thus S is accessible on {As = oo, 0 < S < ζ}
and a.s. on {As = oo, 0 < S < ζ}, lim inf(t^«,[/(JY;)- - ^PQ] = 0 which
implies /(X5)_ = w(X5). But u(X,5)_ = u(Xs) since z/J55 = 0 and/(Xs) ^
f(Xs)- since 5 is accessible. This shows that u(Xs) = f(Xs) a.s. on
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{0 < S < ζ, As = oo}. On {S < ζ, As < oo}, one sees from (3.3) that
lim inf(t_s+,[/(Xt)_ — u(Xt)] = 0, whence f{Xs) — u{Xs), proving finally
that u(Xs) =f(Xs) a.s. on {S < ζ}.

From (3.2), we find that a.s. on [0, S)

(-dMt)(f(Xt)- - u(Xt)) = Mt_dBt

and a.s. on {S < ζ}

(Ms_ - Ms)f(X8)_ = (Ms_ - Ms)u{Xs) + MS_ABS .

Thus

( f(Xt)-(-dMt) = \ f(XtU-dMt)

+ [f(X8)_(M8- - Ms) + f(Xs)Ms]lιs<o

= \ u(Xt)(-dMt) + ί MtjdBt
J (O,θf) J (0,5)

+ [(M8. - Ms)u(Xs) + MaΛBa + u(Xs)Ms]l{s<ζ)

= [~u(Xt)(-dMt) + \~Mt_dBt .
Jo Jo

Since u(Xτ)l{τ<oo} — EX{{BOO — Bτ)l{τ<oα}\^τ} for all stopping t imes Γ,

Meyer's integration lemma ([2], VII, T. 15) applies to give

E*[°u(Xt)(-dMt) = JS Γ φ . - Bt){-dMt) .
Jo Jo

Thus, for xeEM,

pMf(x) = E \~(B» - Bt){-dMt)
Jo

- E"(BJ) + E'\~MtdBt - \~Bt(-dMt)
Jo Jo

= u(x)

upon integrating by parts.
If x ί EK9 Pκf(x) = f{x) = Exf(Xs) = Exu{Xs) = u(x), and the the-

orem is completely proven.

4. REMARKS. It is natural to ask for a specification of the class
{PM/- M a natural exact MF), for a given / e Sf. The following
example shows that although it contains / and all natural potentials,
it need not include all excessive functions dominated by /. Let X be
uniform motion to the right on the real line, let / = 1 and u = 1/2.
Obviously PMf(%) = Pϊil(ώ) for all x, and because we can write down
(up to equivalence) the form of M, it is a simple matter to check
that PMI = 1/2 has no solution for M.
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A particular example of an operator PM which may be of interest
is obtained by taking, for a fixed Borel subset B of E,

Mt = l[0,5Γ5ΛC)W ~^~ ± {t =

Then S = inf {ί > 0: Mt = 0} = TB Λ ζ, and using the fact that S is
totally inaccessible on {Xs Φ XS_, S < ζ}, P*{t = TB < ζ, Xt_ Φ Xt} = 0
for all t ^ 0 and a? e i£. It follows readily that M is a MF satisfying
(2.1). Define, for fe£r,

PBf(x) = P^/(χ) = S {/(XΓJI).; TB < ζ, XΓ5 - XTB_)

+ E'{f(XτJ; TB < ζ, XΓ5 ^ XΓ5_} .

Because of Theorem (2.7), PBf£S<* if / e ^ .
One simple use of the operator PB is afforded by the following

example. Let B be a finely closed Borel subset of E and let / be a
uniformly integrable excessive function. Assume that X is a Hunt
process. Let fB be the lower envelope of the family of excessive
functions which dominate / on a (variable) neighborhood of B. In
[1], VI, (2.12)-(2.15), it is shown, under different hypotheses, that
fB = PBf off a certain exceptional set provided / is "admissible"*
However, under the hypotheses given above without assuming / to
be admissible, it is a simple matter, using [1], I, (11.3) together with
certain facts from [1], VI, (2.12)-(2.15), to obtain PBf ^ fB everywhere,
and PBf(x) = fB(x) except possibly on B — Br. It does not seem to
be easy to remove the restrictions imposed above to obtain a general
representation of fB.

REFERENCES

1. R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory, Academic
Press, New York (1968).
2. P.-A. Meyer, Probability and Potentials, Ginn (Blaisdell), Boston (1966).
3. , Quelques resultats sur les processus de Markov, Invent. Math., 1 (1966),

101-115.

Received September 16, 1971. Research supported by NSF Grant GP-8770.

UNIVERSITY OF CALIFORNIA, SAN DIEGO






