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LINEAR MAPS OF THE DISK ALGEBRA

RICHARD ROCHBERG

Denote by A the disk algebra, the sup-normed Banach
algebra of functions continuous on the closed unit disk of
the complex plane and analytic in the interior of the disk.
This paper describes the elements of K(F, G), the set of linear
maps of A into itself which are of norm one, fix the constants,
and take the inner function F to the inner function G. It is
shown that any L in K{F> G) is determined by its action on
a certain complement of FA and that the image of this com-
plement under L must be orthogonal (in H2) to ZGA. These
facts are used to show that K(F> G) is a compact convex set
of real dimension at most (n — l)(m +1) where n and m are the
orders of F and G respectively. This result gives examples
of non-multiplicative extreme points in the set of linear maps
of A into itself which are of norm one and fix the constants.
Some analysis is made of K(F, G) when F and G are not
required to be inner.

Most of the maps considered will be of (operator) norm one and
will fix the constants. We denote the set of all such maps by if.
The most easily described elements of K are those which are multipli-
cative; that is, those T in K which satisfy T(fg) = (Tf)(Tg) for all
/ and g in A. The polynomials are dense in A, hence if T is multi-
plicative then for all f in A and all w in the closed disk, (Tf)(w) =
f{T(Z){w)) where Z is the coordinate function on the disk. It is known
that if T is in K and if T(Z) is an extreme point of the unit ball
of A, then T is multiplicative [4] and is an extreme point of K
[3]. However, not all extreme points of the set K are multiplicative.
Lindenstrauss, Phelps, and Ryff, [2] have shown that the linear map
of A into itself defined by

is non-multiplicative extreme point of K. It is immediate that T is in
K and is not multiplicative. The not obvious fact that T is an extreme
point was verified directly. This map can alternatively be described
by requiring that T be an element of K which satisfies the following
conditions:

A. T(Z2) = Z
B. T(Z2f) = ZT(f) for all / in A, and
C. T(Z) = 1/2 + (1/2)Z.
This paper describes those elements of K which satisfy conditions
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similar to A above. It will be shown that if T in K satisfies A then
it satisfies B and that there is a complex number a with \a\ ^1/2
such that T satisfies

C\ T(z) =a + άZ.
It will follow that an element of K which satisfies A is an extreme
point of K if and only if it satisfies C" with a a constant of modulus
exactly 1/2.

In general, condition A will be modified to consider those elements
of K which take a non-constant inner function, F9 to a non-constant
inner function, G. We will denote the set of all such maps by K(F, G).
Thus A will be replaced by

A'. T(F) = G.
It is known [4] that if T in K satisfies A! then it also satisfies

B\ T(Ff) = GT(f) for all / in A.
We will show that such a T also satisfies a condition similar to, but
a bit more lengthy than, C". Let the orders (number of zeros in the
open unit disk) of F and G be n and m respectively. K(F, G) will
be shown to be isomorphic to a compact convex subset of a complex
n(m + 1) dimensional vector space. It will also be shown that the
coordinates of the points which correspond to K(F, G) must satisfy
certain additional restrictions and hence that K(F, G) has real dimen-
sion at most (n — l)(m + 1). Finally, it will be shown that for certain
specific choices of F and G the real dimension of K(F, G) is exactly
(n - l)(m + 1).

In §2 the analogue of condition C" will be developed which will
be used to show that an element of K(F, G) is described by n{m + 1)
complex parameters. Also, the relations will be developed which
show that the element is actually determined by (n — l)(m + 1) real
parameters. In §3 the structure of the set K(F, G) will be described
further for various specific choices of F and G. In particular it will
be shown that if F — Zn and G = Zm, then the dimension K(F, G) is
given by the upper bound developed in §2. In §4 the results of §§2
and 3 will be used to describe some of the extreme points of K.
Section 5 indicates an alternative approach to describing linear maps
that satisfy condition A!. Although the method is more complicated
than that of § 2, it does not require F or G to be inner. Also, some
of the complications which arise are of independent interest.

2* The elements K(F, (?)• Let F and G be two non-constant
inner functions in A and let Tbe an element in K(F, G). F, G, and
T will be held fixed for the rest of this section. It will be assumed
that the reader is familiar with the basic properties of A and of the
inner functions in A. (See [1] for these properties as well as for the
basic facts about H2 which will be used later.) Denote the zeros of
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F by au , an and those of G by βlf , βm. For conveniences we
will proceed on the assumption that the at are distinct and that the
βj are distinct. However, the results of this section, and, with minor
modifications, the proofs remain valid for the case of multiplie zeros
For i = 1, , n let A^z) = (z — ̂ )/(l — &&). For j = 1, , m let
B, (z) = (z- β^Kl - βμ). Thus F(z) = C Π?=i^i(«) f ° r some constant
C of modulus one and similarly G(z) = D Π?=i Bs{z) where D is a
constant of modulus one. Without loss of generality we may assume
that C — 1 and be redefining Bλ(z) can write G(z) — ΠyU-δ Oz)-

Denote the open unit disk of the complex plane by D, the closed
disk by D, and the unit circle by Γ. The functions in A can be con-
sidered as functions on Γ and we will sometimes write f{Θ) for f(eiθ).

Since G is inner, it is an extreme point of the unit ball of A.
Hence by a result in [4], T(fF) = T{F)T(f) = GT(f) for all / in
A. Hence for any fl9 f2 in A

(1) T(fAfaF)) = T(fd-(f>oG)

where hole denotes the composite function, (hok){z) — h{k(z)). If f2 is
a polynomial this follows by induction on the degree of / 2. The
general case follows from the density of the polynomials in A.

Let ei(p be a point of Γ. T is in K, hence the linear functional
which sends / to (Tf)(eiψ) = (Tf){φ) is represented by a probability

measure μ on Γ. Hence Tf(φ) = \f{θ)dμ{Θ) for all / in A. If we

set / = F we find G{φ) - TF(φ) - [F{θ)dμ{θ). The left hand side is

of modulus one and F(θ) is of modulus one on Γ and μ is a probability
measure. Hence the support of μ must be contained in {θ: F(θ) =
(?(?>)}. Since i*7 maps .Γ onto itself in an n to one manner, this is a
finite set, {θu , θn). Thus there are positive constants r(θ1)9 , r(0n)
such that

(2) Tf(φ)= Σ
F θ ) G

= Σ
F(θi)=G(<p)

Let S be a subset of {1, •••, n). Let H(z) = HiBSAi(z). Note that
F/H is an element of A and that on Γ, F(z)/H(z) = F(z)Έ(zj. Hence,
substituting in (2) and recalling that the r(^) are real we have

T(F/H)(φ) =Σ

= G(φ)

= G{φ)THΪ&) ,

or more conveniently,

(3) T(F/H) = T(F)T(H) on Γ .
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Our goal now is to exploit equations (1) and (3). In order to do
this it will be convenient to have bases for certain vector spaces at
our disposal. For j — 1, •••, n, set C3- = Πl=i^.ί Let Co = 1. We
will need the following observation.

PROPOSITION 1. The set of functions Co, , CW_L is linearly inde-
pendent. Furthermore, if zu , zn are any n distinct points in D,
then the matrix (C^fo )) for ί,j = l, ,nίs nonsingular.

Proof. By comparing the location of zeros one sees that for k =
0,1, , n — 2, Ck is not in the span of Ck+1, , CΛ_i, hence the linear
independence. Next, suppose that the matrix (C^fo)) is singular.
Then there are constants &i, •••,&*, not all zero, so that the function
Σ?=ihCi-ι{z) is zero for z = zlf •••, zw. Let A(s) = Π S 1 (1 — &&).
Then the function L(z) = ^Jkih(z)Ci^1(z) has zeros at z = zl9 •••,£».
But Z/(«) is a polynomial of degree at most n — 1. Hence L(^)
is identically zero. Thus Σ kiC^^z) is identically zero. Since the
C/s are linearly independent the &/s must all be zero, contrary to
assumption. This contradiction shows that the matrix is invertible
and completes the proof.

It follows from this result that the functions Ci9 i = 0, , n — 1
form a basis for the complement of FA == {/ in A: f = #F, # in A}.
For any / in A we can choose constants at so that / — Σf ί 1 α Λ
has zeros where ί7 does and hence is in FA. Hence the C* form the
required basis. (A stronger result in this direction is presented in
Theorem 1.) We will also need a basis for the complement of the
space ZGA = {/ in A: f — ZGh, h m A). For our purposes it will
be more convenient to look in the space H2. Recall that H2 is the
Hubert space of functions analytic in D and such that

\im\\f(rei9)\*dθ

For any / in H2 the radial limit lim^ f(reiθ) = f(θ) exists almost
everywhere (dθ) and the inner product on H2 can be given by (/, g) =

l/2π^ f(θ)W)dθ.

We know that G = ΠΠ=i •#•• Define DQ to be the constant func-
tion, Do = 1. For & = 1, , m let Dk = (£* - ^(O^ILti1 5*. Let Λf be
(ZGA)1. That is, let M be the orthogonal complement in H2 of the
subspace of H2 generated by functions of the form ZGf with / in
A.

PROPOSITION 2. The functions Dif i=0, , m form an orthogonal
basis for M.
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Proof. Since A is an H2 dense subspace of H2, M equals (ZGH2)1.
This space is easily seen to be of dimension m + 1, hence we need
only show that the Ό{ are pairwise orthogonal and that each Z^ is
orthogonal to any function of the form ZGZ% for any nonnegative
integer n. Both of these facts can be verified directly. We will

verify the second. (Zn+1G, D%) = l/2τrίZ^GD.dθ, but Zn+lGD, = /, a

function in A which is zero at the origin. So

(Z^G, A) = -±-\f{θ)dθ =/(0) = 0 .

Combining these observations gives the following:

PROPOSITION 3. There are (n — l)(m + 1) complex constants {ai5}
i = 1, , n — 1; j — 0, , m such that for i = 1, , n

( 4 )

Proof. By the previous proposition it suffices to show that T(C{) is
in M = (ZGA)1. This, however, follows immediately from (3). We
must show that for n = 0, 1, (Zn+1G, T{C%)) = 0. By using (3)

(Zn+1G, T[C%)) = -±-
2π

= -±Λzn+1T(F/Ci)dθ
ΔΊC J

= 0 .

We have not yet shown that T is uniquely determined by these
constants nor have we ruled out the possibility that no choice of
constants in (4) will give a map which is of norm one and hence in
K(F, G). The first of these issues is settled by the following decom-
position formula.

THEOREM 1. Given f in A there are functions fl9 * ,fn in A
such that for all z in D

( 5 ) f(z) = ΣCi(z)fi(F(z)) .

Furthermore, the functions f€ are uniquely determined by (5) and for
each i the mapping of A into itself which sends f to f{ is continuous
and linear.
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Proof. We will first show that we can find ft in H2 so that (5)
is satisfied for all z in D. We will then show that we can conclude
that these ft are actually in A.

Let S be the linear operator on H2 defined as multiplication by
F, S(f) — Ff. S is isometric and is not unitary on any non-trivial
subspace of H2. Hence, setting J = (FH2)L, the orthogonal comple-
ment of the range of S, H2 = Σ~=o (FkJ), the sum being a Hubert
space direct sum and the summands pairwise orthogonal. The space
J has dimension n. Let vi9 i = 1, , n be an orthonormal basis for J.
Thus the elements Fkvt form an orthonormal basis for H2. Pick /
in A. f is also in H2. Thus / = Σfc,« cikiFkvi9 For each i, i = l, , w,
define /** = Σ?-o a>ki%k Since the sequence αM is square-summable,
the subsequence with the second index, i, fixed is square summable
for each value of i. Thus the function /<* is in H2 for each i. The
functions/(z) and Σt=iVi(z)f*(F(z)) define the same element of H2

since they have the same expansion with respect to the orthonormal
basis consisting of the FhVi\ i.e.

(6) f = *Zvr(fi*°F)-
i

Next we note that the vt can be written as linear combinations of
the functions Ci9 i = 0, , n. To see this note that if F(0) Φ 0 then
the functions (Ĉ  — 1/(̂ (0)) for i = 1, , n form a basis for J. (If
F(ϋ) = 0 then we can renumber the A{ so that An — Z. In this case the
functions C«, £ = 1, , w are themselves a basis for J.) Since the v^s
can be replaced by a linear combination of the C/s, equation (6) can
be rewritten in the form given by (5) with the //s in H2. It is
immediate from the construction that the functions ft are uniquely
determined and depend linearly on / .

We will now show that the functions ft are actually continuous
on D. Fix /, pick z0 in Γ. Pick zk, k = 1, an arbitrary sequence
of points in D tending to z0. Let w(j, k) j = 1, , n; k = 1, be
the F preimages of zk chosen so that F(w(j, k)) — zk and w(j, k)
approaches w(j, 0) as k becomes infinite, where w(j, 0),j — 1, •••, n,
are the n distinct F preimages of z0.

We know that / is continuous on the closed disk. Hence, using
(5) we have for j = 1, , n

3, k))ft(F(w(j, k))) =f(w(j, 0)) .

Hence, for the same values of j,

lim Σ Ctiwti, k))ft(zk) = f(w(j, 0)) .
k i

By deleting finitely many of the zk we can insure that for each
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k the n points w(j, k) are distinct. Let M{k) be the n by n matrix,
M(k) = (ay) = (Ci(w(j, k))). Since the w(j, k) are distinct, Proposition
1 insures that M(k) is invertible for each k. Let V{k) be the vector
V(k) = (f1(zk)9 ,Λ(s*)) ^ t Wbe the vector (f(w(l, 0)),. - ,f(w(n, 0)).
The previous limit can now be rewritten

lim (V(k)M(k)) = I F .
J f c -

Since the d are continuous we know that lim M(k) — M(0) and that
all of the M{k) are invertible and that lim M{k)~ι = il^O)"1. Hence

-1 = lim (y(fc)Jlf(fc)) lim

Thus lim V(k) exists and hence for each i, lim fi(zk) exists. Thus
all of the f{ are continuous at zQ, Since z0 was arbitrary all of the
fi are in A. Since every element of A can be written in the form
(5), it follows from the closed graph theorem that the fi depend con-
tinuously on / and the theorem is proved.

For F and G as above, define L(F, G) to be the set of all bounded
linear maps of A into itself which take F to G. We will regard
Qn(m+D a s j ^ Q S p a c e of % by m + 1 matrices, (α^ ), i = 0, , n — 1;
j = 0, , m. To each JV = (αi5 ) in Cw ( w + 1 ) we can associate φ{N) in
L(F, G) defined by requiring that φ{N)(l) = ̂ a^D59 that equation
(4) be satisfied, and that if / is rewritten as in equation (5), then

ψ(N)(f) = Σ (<P(N)(CMfi°G)

If the first row in N is (1, 0, 0, •••, 0) then the description of φ(N)
simplifies —φ(N) is the unique element of L(F, G) which satisfies (1)
and (4). (Note that equation (1) implies that φ(N)(l) = l )

THEOREM 2. The mapping ψ is a well defined, one-to-one, linear,
continuous mapping ofC n( m+ι) into L{F, G). The set K{F, G) is contained
in the range of φ and φ~ι(K(F, G)) is a compact convex subset of
Cn{mΛl) of real dimension at most (n — l)(m + 1),

Proof. The basic properties of φ follow from the definition and
the previous theorem. The fact that K{F, G) is contained in the range
of φ follows from Proposition 3. The preimage of K(F, G) is clearly
closed. To see that it is bounded we define n(N) for N in Cn{m+ι) by
n(N) = \\φ(N)\\. Direct verification shows that n{ ) is norm.

φ~ι(K{F, G)) £ {M: n(M) = 1} .
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Thus φ~ι{K{F, G)) is a bounded set in the n( ) topology. However,
in a finite dimensional vector space any two norms are equivalent.
Hence φ~1(K(F9 G)) is bounded in the ordinary norm and is compact.

We now show that φ~ι{K{F, G)) has real dimension at most
(n - l)(m + 1). Fix θ in Γ. Fix N in Cn{m+ί). Let C(θ) be the
column vector (φ(N)C0(θ), •-, φ(N)Cn^(θ)y. Let D{θ) be the column
vector (D0(θ), •••, DJβ))*. We know that C{θ) = ND{Θ). However, if
we assume that φ(N) is in K(F, G) then we have another representa-
tion for C(θ) given by equation (2). Namely we know that for i =
0, . . . , n - l

T(Cj)(θ) = Σ CtfMθk)
F[θk)=G{θ)

and that the τ(θk) are positive real numbers. Let R{θ) be the vector
(r(^), , r(#w))e and Λf(0) the matrix \Ci(θk)) i = 0, , n - 1; k =
1, . . . , n. Thus C(0) - M{Θ)R{Θ). Hence JVD(ί) - M(Θ)R(Θ) for all 0
in /\ Pick <£>0,

 mmm

yΨn i n ^ so that the vectors D(φ0), •••, -D(^m) are
linearly independent. To see that such a choice can be made note
that if the set of vectors {D{θ):θeΓ} lie in an m dimensional sub-
space then the m + 1 functions Do, , Dm must be linearly dependent
on Γ and hence in A thus contradicting Proposition 2. Hence

( 7 ) iVD(^) =M(φk)R(φk)

for fc = 0, , m. For fixed k, the left hand side of (7) ranges, a
priori, over a space of complex dimension m + 1 as N varies over
the subspace spanned by φ~\K(F, G)). However, for fixed k, since
R(φk) contains only real entries and these entries sum to one, the
possible values for the right hand side of (7) are contained in a real
affine space of dimension n — 1. That is, there are n — 1 column
^-vectors, elk, , en_ί)k so that ND{φk) = (1, 0, , 0)* + Σ* bikeik with
the bik real numbers. These (n — l)(m + 1) real numbers bik, i =
1, , n — 1; k = 0, , m completely determine N; if N and N' give
rise to the same set of bik then N and iV' agree on the D(φk). The
D(φk) form a basis for the domain of N and Nf, hence N = iV'.
Thus the set of AT such that φ{N) is in K{F, G) lies in a real affine
subspace of Cn{m+ί) of real dimension (n — l)(m + 1) and the proof is
complete.

Two comments are in order. First, the previous theorem gives
only an upper estimate for the dimension of K(F, G). It does not
eliminate the possibility that K(F> (?) may be empty, be a single point,
or have real dimension strictly less than (n — l)(m + 1). To see why
this is so, note that we have actually shown that in order for φ(N)
to be in K{F, G), N must lie in an affine (real) subspace of Cn{m+ι)

and must satisfy n(N) = 1. We have not precluded the possibility
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that this subspace is exterior to the unit ball of the n( ) norm.
Alternatively, we did not consider the requirement that the components
of R(θ) must be positive.

Second, although we began by considering elements of K(F, G)
as linear maps of A into itself we have seen that all of the elements
of K{F, (?) can be regarded as linear maps of H2 into H2 which take
elements of A into elements of A and which are bounded linear
operators on H2.

3* Special cases* In this section we will investigate the set
K{F, G) for a number of particular choices of F and G. First we
will consider several cases in which K(F, G) is relatively simple. Then
we will describe how K(F, G) simplifies when F is a power of an
element of A. In particular we will show that if F — Zn and G =
Zm then the set K(F, G) has real dimension exactly (n — l)(m + 1).
Finally we will consider the case n — 2 and will make some comments
on the general case.

A. The trivial caseso
1. F = 1. K(F, G) must be empty unless G = 1 since, by defini-

tion, every element of K(F, G) satisfies Γ(l) = 1. If F = G = 1 then
K(F, G) = K and the previous results give no information.

2. G = 1. Equation (2) must hold. Hence Tf(θ) = Σ i ^ W / W
where the ^ are the n points at which F(θ) = 1. By evaluating (2)
with f(z) = Π?=2(s ~ eiθή we find Tf(θ) = r(^)/(^i) Although the
factor r(#i) may depend on θ it is always real and positive. Hence
Tf/fiθj) is a function in A which is real on the boundary. Hence Tf
is constant and r(θj) must be constant also. Similarly for the other
r(θ3). Thus Tf(θ) = Σi=i ^/(^i) where the α< are any n nonnegative
real constants which sum to one. Any T in K(F, 1) is of this form.
The dimension of K(F, 1) is exactly n — 1.

3. F — Z. The previous results give the estimate dim K(Z, G) S
0. Thus K(Z, G) is empty or is a single point. The mapping T
defined by (Tf)(z) = f(G(z)) is the single element of K(Z, G).

4. F = Ax. If F consists of a single Blaschke factor, F(z) =
At(z) = (z - a)/(l - az) then T is in K(Al9 G) if and only if TTAί is
in K(Z, G) where TAι is the automorphism of A defined by (TAlf)(z) =
f(Ay(z)). Thus this case reduces to the previous one and K{AU G)
consists of a single point.

B. Repeated factors.
If F is of the form F = Hk for some non-constant inner function

H, then the previous description simplifies somewhat. If the factors
of F are arranged in the appropriate order then the functions H\
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j = 1, , k — 1 are all among the functions C{ in terms of which the
elements of K(F, G) are described. In this case equation (3) implies
that on Γ, for j = 1, , k — 1,

(8) T(Hk~j) = T{F)Ί\W) .

The previous results showed that the T(Ci) cannot be chosen inde-
pendently of each other. This equation puts the restrictions on the
T(Ci) in a particularly tractable form, especially if F = Z*.

5. F = Zn, G = Zm. In this case equation (4) shows that T in
K(F, G) must be determined by the constants aij9 i — 1, •••, n — 1;
j = 0, , m where

(9) T{Z*) = Σ α ^ .

Equation (8) shows that on Γ, T(Zw-0 = ZWT(Z*) = ZmΣΛJaijZ
j =

Σ ^ m " J ' = Σ S w ^ . But r(Z-*) - Eittc-*)^". Thus for all i
and i we must have α. ̂ ^ = αn_ ί f i or equivalently,

(10) ά^ = αΛ«i>m^ .

We had previously found that the (n — l)(m + 1) complex numbers
ai3- must be restricted to a real subspace of real dimension (n— l)(m + l).
However an explicit description of the subspace was not given. In
this case the subspace is exactly the set of vectors in complex
(n — l)(m + 1) space which satisfy (10). We will now show that the
bounded subset of that subspace which corresponds to elements of
K(F, G) actually has full dimension.

PROPOSITION 4. The set K(Zn, Zm) has real dimension exactly
(n - l)(m + 1).

Proof. We know that the dimension is at most this number. We
now construct (n — ΐ)(m + 1) independent elements. The construction
is the direct generalization of that used in [2] in the case n = 2,
m — 1. n and m are fixed. Pick k and I integers and subject to
the following inequalities. If n — 1 is even then 1 ^ k ^ (n — l)/2
and 0 ^ i ^ m. If π — 1 is odd then either 1 <; /b < (n — l)/2 and
0 ^ ϊ ^ m, or else fc = n/2 and 0 <Ξ Z ^ (m + 2)/2. Thus we have
(n — l)(m + l)/2 or (O - l)(m + 1) + l)/2 pairs (ft, Z) depending on
whether (n — l)(m + 1) is even or odd. For n, m, k, I fixed, for Θ in
Γ and for j = 1, , w define ^ = (m0 + 2πQ" - ϊ))/n. For / in A
define Tf by

(11) Γ/((?) = Σ - ( 1 + cos (kθ3- - lθ))f{θ3) .
i=i n
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Each of the coefficients of the f(Θ3) in (11) is positive. Hence to show
that T is in K(Zn, Zm) it suffices to show that Γ(l) = 1, T(Zn) = Zm,
and that T{Z8) is in A for s = 1, , n - 1. Pick h with 0 ^ h ^ n.

T{Zh){θ) = Σ - ( 1 + cos (A0, - W))(exp (i0y))*

+ — e x p (i(kθj-lθ)) + — e x p (-i(kθ3—lθ)))exι> (ίhθd)
% 2% 2n '

V e i + e J ^ e j H —
n 2n 2n

= - W ) + ̂ ^ F , + , ( ^ ) + -i-^F,_,(tf) .
^ 2^ 2n

B u t F.(5) = w if 8 = 0, F s (^) = 0 if * = 1, . . . , n - l , and F.(«)
if s = n. Thus T(l) - 1, T(Z*) = Zm, T(Zn~k) = (l/2)Zm~ι, T(Zk) =
(1/2)Z', and T(ZS) = 0 for all other values of s (with the obvious
modifications if n = 2&) Thus T is in iΓ(^ , ^ w ) and if T is expressed
in the form (9) then T corresponds to the matrix (ai3) with akι =
α%_it,m_3 = 1/2 and all other entries zero. Similarly, if the " cosine"
in equation (11) is replaced by " sine " the result is another element
T of K(Z*, Zm) which corresponds to the matrix (α^ ) with akl =
(l/2)i, an_kfm_t = — (l/2)i and all other coefficients zero. Letting k and
I range over the prescribed values and using the choices cosine and
sine in (11), we obtain (n — l)(m + 1) elements of K(Zn, Zm). By
comparing the corresponding matrices it is clear that these elements
are linearly independent over the reals. (When (n — l)(m + 1) is odd,
the choice k = n/2, I = m/2, using the sine gives the zero matrix.
Hence the apparent extra element does not throw the count off.)

6. F = Aΐ, G = BΓ. As with Case 4,

(TBι)-ιoK(Aϊ, B?)oTAι = K(Z\ Z») .

Hence this case reduces to the previous one.
7. F = Z2, G = Z. This is the example considered in the intro-

duction and is special case of Case 5. The two maps constructed in
Proposition 4 are 2\ and T2 determined by Tt(Z) = (Z + l)/2 and
T2(Z) = (iZ - ϊ)/2.

C. Other Cases
8. F = AXA2, G = Z. It is possible to reduce this case to Case

7 as follows. For i — 1, 2, A^z) = (z — ^)/( l — ciiZ). Choose A*(z) =
eiθ(z — &)/(l — bz) so that A3(c) — ̂  and A3(—c) = cc2 for some real
constant c. Hence FoA3 is an inner function with zeros at c and —c.
Thus FoA3(z) = β"'(s8 - c2)/(l - Λ 2) = A4(z2). Let JB be any element
of K(Z\ Z). Let Tγ be the unique element of K(Z, Az). Let Γ2 be
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the unique element of K(A4, Z). Let T = T2RT,. T{F) = T2RTX{F) =
T2R(FoA,) = (T2R)(A,oZ2) = T2(R(A4oZ2)) = T2(A4) = Z. Thus T is in
K(F, G). Furthermore, different choices for R will give different
maps T. Thus dim K(F, G) = dim K(Z\ Z) = 2.

9. Construction by composition. If F and G are given it is
sometimes possible to obtain some elements of K(F, G) by choosing
some non-constant inner function H and noting that if 2\ is in K(F, H)
and T2 is in K(H, G) then T2T, is in iΓ(F, G). For example, if F =
Zn and G is arbitrary, then by choosing H = Z and using the results
of Cases 3 and 5 we find that K(Zn, G) has real dimension at least
n — 1 for any G. Similarly, using the results of Cases 3 and 8 we
see that if F = AγA2 and G is arbitrary then K(F, G) has real dimen-
sion at least two.

It should be noted that the techniques above do not seem to be
sufficient to rule out the possibility that K{F, G) might be empty in
some nontrivial cases.

4* Extreme points* Recall that K is the set of all linear maps
of A into itself which are of norm at most one and which fix the
constants. The relation between the extreme points of K and those
of the various K(F, G) is given by the following proposition.

PROPOSITION 5. If T is in K(F, G) for some F and G then T
is an extreme point of K if and only if it is an extreme point of
K(F, G).

Proof. The only if statement is trivial. We will show that if
T is in K(F, G), T = l/2(7\ + T2) with 2\ and T2 in iΓthen 2\ and T2

are in K(F, G). To do this it suffices to show that Tλ(F) = T2{F) =
G. Recall that if / is in A and of norm one then / is an extreme
point of the unit ball of A if and only if ίlog(l - \f{eiθ)\)dθ = -oo.

Hence G is certainly an extreme point of the unit ball of A. We
know that iβiT^F) + T2{F)) = G and each T{(F) is of norm at most
one. Since G is an extreme point we must have Tt(F) = T2{F) = G.
We note for later reference that the only properties of F and G
which were used were that F is of norm one and that G is an extreme
point of the unit ball of A.

The value of this result is that K(F, G) is a finite dimensional
compact convex set. Hence K(F, G) has extreme points, at least
dim (K(F, G)) + 1 of them, and is the closed convex hull of its extreme
points. Since we have shown a number of the K(F, G) to be non-
empty, a number of extreme points of K can be obtained in this way.
In general, the extreme points so obtained will not be multiplicative.
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We have noted that if K(F, G) has real dimension d then K(F, G)
has at least d + 1 extreme points. There is no reason, however, why
there should not be uncountably many. The problem of finding all
of the extreme points of K(F, G) is equivalent to the problem of
describing K(F, G) completely. It is not clear how to do this in
general but we will do it for the particular case F = Z2, G = Z.
(Hence by the comments in part 8 of the previous section, also for
F = AγA2, G = Z.) We have seen that every element T of K{Z\ Z)
is completely determined by a single complex number a, where T(Z) =
a + aZ.

PROPOSITION 6. The set of a such that there is a T in K(Z2, Z)
with T(Z) = a+aZ is {a: \a\ ^ 1/2}. Those a with \ct\ = 1/2 correspond
to the extreme points of K(Z2, Z).

Proof. We must show that the linear map described as follows
has norm one. Given / in A, f can be written uniquely in the form
f(z) = Uz2) + zflz2) with /, and f2 in A.

(Tf)(w) =Uw) + T(Z)(w)f2(w) .

The condition \a\ ^ 1/2 is necessary to insure that the norm of T(Z),
and hence of T, is at most one. We must show sufficiency. It
suffices to show that for any w in Γ, and any f in A that | Tf(w) \ ^
max{|/(τ/w)|, \f{-Vw)\}. That is

) + T(Z)(w)f2(w)\ £ maxίl/Λw) + Vwft(w)\, |Λ(w) - Vwf2(w)\} .

If f2(w) = 0 we are done. Hence dividing by f2(w), it suffices to show
that for any complex number, c,

I c + T(Z)(w) I ̂  max {| c + Vw\, \ c - V~w\) .

This condition is guaranteed if we show that T(Z)(w) is on the closed
line segment connecting Λ/W and —i/w. But T(Z)(w) —aλ/w +
(1 - α)(—l/w") with a = Re (cn/vϋ) + 1/2.

5* Locally multiplicative maps. Let T be a linear map of A
into itself. If there is a nonconstant element F in A such that
T(F) Φ 0 and for all f in A T(fF) = T(f)T(F), then we will say
that T is locally multiplicative at F. We will denote the set of all
maps which are locally multiplicative at F and for which T(F) = G
by M(F, G). It is immediate that if T is in M(F, G) then Γ(l) = 1.
Furthermore, since T is continuous we must have | |G| | ^ \\F\\. To
see this we note that for any positive integer n, \\G\\n = \\Gn\\ =
\\(TFy\\ =
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For F in A of norm one and G in A, define K(F, G) to be the
set of all elements T of K for which T{F) = G. (If F and G are
inner then this agrees with the previous definition.)

If G is an extreme point of the unit ball of A then the results
of [4] guarantee that K{F, G) S M(F, G) and the comment after Pro-
position 5 shows that that proposition is valid for K(F, G)

Fix F, a non-constant function in A of unit norm, G in A and
T in M(F, G). The basic fact we will use to analyze such T is the
observation that given any w in D the linear functional, I, on A
which sends / to Tf(w) contains in its kernel the ideal generated by
/ — Tf(w). One consequence follows immediately from this.

PROPOSITION 7. // G(D) is not contained in Fφ) then M(F, G) is
empty.

Proof. Suppose there is a point w in D such that G{w) is not
in F(D). Then F — G(w) is bounded away from zero and hence is
invertible in A. Thus the ideal generated by F — G(w) is all of A.
Hence, if T is in M(F, G) then Tf(w) = 0 for all / in A. But Tl(w) =
1. This contradiction shows that there is no such T.

The ideal generated by F — TF{w) is especially tractable if
F — TF(w) has only finitely many simple zeros.

THEOREM 3, Given T in M(F, G) and w0 in D such that F — G(w0)
has only finitely many zeros and all of these are simple zeros in D,
then, denoting these zeros by zu •• ,zn, there are constants k{z^) such
that for all f in A

(12) Tf(w0) = Σ H**W*i)

Furthermore, if G'(w0) Φ 0 then for w in some open neighborhood N
of wQ there are analytic functions zL(G(w)), •• ,zn{G{w)) such that
F(Zi(G(w))) = G(w), Zi(G(w0)) = Zi and for all f in A

(13) Tf(w) = ± k(zi(G(w)))f(zi(G(w)))
* = 1

where the k(Zi(G(w))) are analytic with respect to w in iSΓ

Proof. Equation (12) is immediate. The hypotheses insure that
there is a neighborhood N of G(w0) such that F~ι(N) consists of
disjoint neighborhoods of the s4 on each of which F is analytic and
univalent. The inverse functions of F, mapping N to these neighbor-
hoods, are the required functions Zi(G(w)). Equation (12) gives the
required k(Zi(G(w))). It remains to show that k is analytic with
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respect to w. For w in N, define fw(z) = ΠίU (z — Zi(G(w))). fw

depends analytically on w. Hence, by equation (13)

Tfw(w) = k{zx{G{w)))Π
i=2

Since fw depends analytically on w, so does Tfw and hence so does
the left hand side of the previous equation. The product on the right
hand side of the previous equation is analytic in w and is not zero
at w = w0. Hence k{zx(G{w))) is analytic with respect to w near wo

The argument is the same for the other indices and the theorem is
proved.

Note that we have only shown that k is analytic locally. Implicit
in the above proof is the result that k is analytic globally on some
(possibly disconnected) Riemann surface lying over the disk.

If G = Z then k can actually be defined on a subset of the disk.
However, even in this case the domain of definition of k is rather
complicated. The connected components of the domain of the k pro-
duced in the previous theorem are contained in the connected com-
ponents of D — F~ι(F(Γ)). If, however, further restrictions are placed
on F, then k can be shown to be meromorphic on D — S where S is
a relatively small set. In particular suppose that there is a finite
subset, Slf of Γ such that F can be continued analytically past each
point of Γ — ί?i. Suppose further that for all w in D, F^w) is a
finite set. Let S = F

THEOREM 4. // F is as above and T is in M(F, Z) then there is
a function k such that

1. k is meromorphic in D — S,
2 if k has a pole at z in D — S then Ff has a zero at z and

the order of the zero of Ff at z is greater than or equal to the order
of the pole of k at z,

3. if F~ι(w) consists only of points of D — S at which Fr Φ 0,
then for all f in A

Tf(w)= Σ k(zύf(zύ,

4. if U is an open subarc of Γ 'such that F{U) S ΰ — S and
avoids {F' = 0}, then k(z) = 0 for z in D - S near U.

Proof. Pick zQ in D - S. If F~ι(F(z0)) consists of points of
D — S at which Ff is nonzero then, by Theorem 3, k is defined and
analytic in a neighborhood of zQ. Next, suppose that z0 is in D — S
and F'(z0) Φ 0 and that the other preimages of w0 = F(zQ), namely
zu « , s Λ are all in D - Sx and F'{z%) Φ 0. Let ζ0, •• , ζ Λ be the
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n + 1 inverses of F at w0 such that ζi(wQ) = zt. (Note that ζ.; is
analytic even if zt is in Γ — Sλ.) For w near w0 set / w = Π?=i (s —
ζ<(w)) k is already defined in a dense open subset of a neighborhood
of z0. At those points z, near 20, at which k(z) is already defined
we have

TfF{z){F{z)) = k(ζQ(F(z))) Π (UF(z)) - UF(z))) .

Hence, for z near z0, we can define

= TfF{z)(F(z))lf[ (ζo(F(z)) - UF(z))) .

This definition agrees with the previous definiton of k where both are
defined and shows k to be analytic with respect to z.

We now have k analytic in the required domain. If z0 is a point
of D — S at which k has not been defined then F~ι{F{z)) must contain
some point at which F' = 0. For w near w0 = F(zQ) let ζo(w), , ζ«(w)
be the w + 1 i^-preimages of w. Although the ζ€ cannot all be chosen
to be analytic, they can be chosen so that ζQ(w), •• ,ζd(w) all tend
to z0 as w tends to w0, where d is the order of the zero of Fr

at z0. Thus defining / w as before, we find that for w near w0,
M\\ T\\ S: || Tfw\\ ^ I T/ΛuOl = |fc(ζo(w)) ΠLi (ζo(w) - C<(w))\. Hence
fc((ζo(.w)) = 0(|C(w) - Zo\-d). Similarly, \k(ζt(w))\ = OflWw) - 20|-

d) for
i = 0, , d. Letting w vary over a neighborhood of w0 and i range
from 0 to d, ζQ(w) varies over a neighborhood of zQ. Hence k(z) =
0(| 2;— 2;0Γ

d) a n d fc has a pole of the required order. In particular,
if d — 0 then k has a removable singularity at zo

We must now verify Part 4 of the theorem. Pick a point z0 in
the subarc C7 given in the hypotheses. Let w0 — F(z0). Proceeding
as before we construct a family of functions fw for w near w0 so
that the fw are uniformly bounded, fw is zero on the F preimages of
w not near z0, the fw are bounded away from zero on the F preimage
of w near zQ, and the fw depend analytically on w* Let N be a
neighborhood of w0. Tfw(w) is an analytic function of w for w in
N. Let ζ(w) be the F preimage of w near z0. For those w; with
ζ(w) in Z), a nonempty open subset of N, Tfw{w) = fc(ζ(^))/(ζ(^)).
For those w in N for which ζ(ΐe ) is not in D, again a non-empty
open subset of N, Tfw(w) — 0. Thus Tfw(w) must vanish identically
in N. Hence k(ζ(w)) is zero on ζ(N) Π JD. Thus k vanishes near U.

COROLLARY. // F satisfies the hypotheses of the previous theorem
and there is on subarc U of Γ such that F(U) S D then M(F, Z) is
empty.
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Proof. Since S is finite and the only cluster points of F({z e D:
F'(z) — 0}) in D must be in S, we can find Ό\ a subarc of U such
that the hypotheses of Part 4 of the previous theorem hold for U'.
Hence, if there is a T in M(F, Z) then there is an associated k
meromorphic in a connected open subset of D. The previous theorem
shows that k vanishes identically on an open subset of its domain.
Hence k is identically zero. This is impossible, hence there is no
such T.

COROLLARY, // F satisfies the hypotheses of the previous corollary
then K(F, Z) is empty.

Proof. Z is an extreme point of the unit ball of A, hence K(F, Z)
is contained in M(F, Z) which, by the previous corollary, is empty.

This corollary is clearly not the best possible result of this type
that can be obtained by these methods. For example, the restriction
that S be finite could be weakened. However it is not clear that
similar methods would suffice to prove the following considerably
more general result.

Conjecture. If F in A is of norm one and is not an inner func-
tion then M(F, Z) is empty.

If F is in fact inner and | |T | | = 1 then the function k of the
previous theorem is relatively simple.

COROLLARY. If F is inner and T is in K(F, Z) then the func-
tion k of Theorem 4 is rational.

Proof. S is empty and hence k is meromorphic in D. Equation
(2) can be used to define & as a real valued function on Γ. This exten-
sion is clearly a continuous extension. Thus k meromorphic in D and
can be continuously extended to be real on Γ. Thus by the reflec-
tion principle, k is meromorphic on the Riemann sphere and hence is
rational.

For example, if T is the element of K(Z2, Z) which sends Z to
a + aZ then an elementary calculation shows that k(z) — (a + az2)/2z.
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