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THE JACOBIAN OF A GROWTH TRANSFORMATION

D. S. PASSMAN

The transformation 7', described in a paper of Baum and
Eagon, is frequently a growth transformation which affords
an iterative technique for maximizing certain functions. In
this paper, the Jacobian matrix J of 7T is studied. It is
shown, for example, that the eigenvalues of J are real and
nonnegative in a large number of cases. In addition, these
eigenvalues are considered at critical points of 7. One
necessary assumption used throughout is that the function P
to be maximized is homogeneous in the variables involved.

The author would like to thank P. Stebe for a number of stimu-
lating conversations and useful suggestions.

1. Notation. Let P be a function of the variables x;; with
domain of definition D given by

z; >0 and wx;=1.

Assume that on this domain both P and all its partial derivatives
0P/)ox;; are positive. Moreover we assume that the second partial
derivatives of P exist and are continuous. Then the particular trans-
formation T of P which we study here is given by (see [1])

_ _x;;0P[ox;;
D T = < ploen
Clearly T maps D into D.

We say that P is row homogeneous if for each 7 P is homo-
geneous of degree w; > 0 in the variables x;, @;, ---. In this case
(1.1) simplifies by means of Euler’s formula and we obtain
1.2) T () = Zu0P/0%s

w; P

Let us assume now that P is row homogeneous. While the double
subseript on the symbol x;; makes the domain D easier to visualize,
it turns out that a single subscript makes our later computations
neater. Therefore we make the following notational change. Observe
that the variables {z;;} are not all independent because of the con-
straints >};#; = 1. Thus in each row of the array (x;;) there is one
variable which is dependent upon the others. Let us suppose now
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that there are a total of =’ variables of which % are independent.
We can then write the variables {x;;} as

xl, xZ, c x'll,, wn+1, % Lor

where 2, %, -+, ®, are independent and the remaining ones are de-
pendent. Now the set {®,.., T, **+, %,,} clearly contains precisely
one variable from each row so we can certainly use the subscripts
n+1 n+2 ---, % to designate these rows. Finally we introduce
the function

f: {1527 ”‘3n}_->{n+l’ ’ﬂ/+2, M) n’}

so that f(7) indicates the row containing .

In this single subscripted notation we see that for 4,5 < m, 2,
and z; are in the same row if and only if f(%) = f(j). Thus the
fact that the sum of the variables in the row containing «; is 1
becomes

(1.3) 1— w5 = JZI s 5 %i fori=mn.
Also setting y, = T(x;) equation (1.2) now reads

(1.4) y, = SOP[0%; for i<m.
WD

Now suppose that @ is a function of z, .-+, xz,.. Then we use
as above 0Q/ox; to denote the partial derivative of @ with respect to
z;. On the other hand, @ can be viewed as a function of the inde-
pendent variables z,, ---,x,. If we do this, then we use dQ/dx; to
denote the partial derivative of @ with respect to z; for ¢ < n. It
follows from (1.3) and the chain rule that

(1.5) 99 _ 99 _ o4

for e <n.
dux, 0x; 0% ;5

The Jacobian of the growth transformation 7T is the n X » matrix

(1.6) J = [%] iismn.

It is the matrix which we plan to study.

2. Real eigenvalues. Let N denote the % X n symmetric
matrix
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2.1 N = [ B (6 — af(i)f(i)xj)] .

Wy

The interplay of this matrix with J will prove to be of fundamental
importance.

LEMMA 1. N s a positive definite matrix.

Proof. Since the ordering of the variables z,, «,, ---, z, does not
effect the nature of N, we may assume that the variables are
grouped together according to the row of the array (x;;) they are
contained in. Then N clearly becomes a block diagonal matrix with
each block corresponding to a row of (x;;). Since it clearly suffices to
show that each of these blocks is a positive definite matrix, it there-
fore suffices to consider the case in which (x;;) has only one row.
Thus »’ =n + 1 and

Wy N = [0;;2; — x05] «
Let z be the real row vector z = [z, 2,, --+, 2,] # 0 and set

w= [V, Vi, e, V)
v=[V"2z2,V o2, -, VT.2] .

Then using (, ) for the usual inner product of vectors we have
2w, N)2" = Eﬂl w27 — (Z”,‘ mi@')z
1 1
= (’U, ’l)) - (u9 ,v>2 > (U/, ’U/)(’U, /U) - (u’ ,v)z —2— 0
by Cauchy’s inequality and the fact that
w,w) =0, + 0, + -+, =1—2,,<1.

The lemma is proved.

THEOREM 2. Let P be a row homogeneous function. Then
JN = [x;/wy;0y;/0%;]

18 @ symmetric matric.

Proof. From (1.4) it is clear that y; is row homogeneous of
degree zero. Thus Euler’s equation yields

(2.2) ®(50Ys[0% 5y + kg{ 05y rm®i0Y:/0%, = 0 .

Let JN = [h;;]. Then by (1.5) and the symmetry of N we have
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2 d'y N
Wyihi; = kZI dmz « %015 — Oryri®;)
= k

dy; Z dy;
= ;%Y 0, S B 2
dx; =0 dx,
= xj( Y: #) — % X 0s00700) %k ,\y
axj 0%z (4 k=1 o,
s
+ @5 Y 0 r % »
0% 54y *=t
Thus (2.2) and (1.3)%yield
a’u,; a/Li 2 7
Wrphi; = xi( — — '—J—> T T — Y
0x; 0T 5) Tii
0Y; 0Y;
+ (1 — 2p) — Yi = g, 25,
0% 15 0x;

Therefore we have
hi; = @;/ws;)0y:/0x; .

It remains to show that %;; = h;; and to do this we may assume
that 7 = j. Then by (1.4

hiy = — 2% (P3*PJow,0w; — (0P[0x)(0P[ox;)
Wiy Wy P

so the result clearly follows.

COROLLARY 3. Let P be a row homogeneous function. Then J
1s diagonalizable and all eigenvalues of J are real.

Proof. Write JN = A. Since N is positive definite we have
N = QQ" for some real nonsingular matrix Q. Set B = @' Then
we have easily

2.3 RJR™ = RAR" .

Since RART is real and symmetric by Theorem 2, it is diagonalizable
with all real eigenvalues. Thus (2.3) yields the result.

3. Critical points. In this section we study in more detail the
nature of J at a critical point. It follows from (1.4) and (1.5) that
at such a point we have z, = y; and 0P/oz; = w;;,P. Recall that a
critical point is a point at which

P _ 0
dwx;

3.1) for i < n.
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THEOREM 4. At a critical point we have

N[ d°P ]

J=IT+2| &L
+P[dx,dxj

where I is the n X n identity matrix.

Proof. We start with Euler’s equation for the row homogeneity
of P. For ¢ <n we have

Wrpy P = x750P[0x ;) + kgl 0 sy im0 P[0,

and differentiating this identity with respect to x; yields
dP d

= ) —
iz 9 G

+ 07wy s (0P)0x; — OP[0x ;) -

W 0P/ox,

0P[0x s + X 0 ran s d
k=1 da;

Observe that the last term is just 6. ,;dP/dx; so the above becomes

dP d
dz; = Ty d—xjap/axf(i)

38 p @~ 0P,
k=1 dw;

J

(Wriy = Osiyrii)

Now at a critical point dP/dz; = 0 so

oPfox, .

d
(3.2) 0=, dn

J

0P[Oy + > 05y % d
k=1 dﬁ';’j

By (1.5) for i,5 < n
#P _d aP d 4P

3.3 EY
(3.3) dxde;  dx; 0x; dw; 0%

and substituting

4 oP_ &P, d 0P
dw; ox, dude;  dwu; 0xpy,

into (3.2) yields

a n
0 = s i—l—)—- + X 0rmram d__op
dw; 0% k=1 dx; 0%su,
(3.4) . =P
+ Y .
IZ; i (L dwd,

Now clearly



286 D. S. PASSMAN

d OP d 0P
Ori - i
F@f0%e i, 3xf(k) rG f(k)xkd T
so (3.4) becomes
= di op <xf<i) + Z afmf(k)xk)
T; 0% 505 =
d*P
+ Z 0 f6) f %k ———=— do kde
Hence by (1.3) we have
d 0P i d*P
3.5 - = = — S s .
(3.5) d, 0z, ;Zf F@F Lk dudz;

We now compute J at the critical point. By (1.4) and (3.1)
dy; _ 5. 0P/ox; Lo d oP

dw; Y Wy P Wy P dxi-ézi'
x; d oOP

Wi P dw; 0w,

= 0;; +

since at a critical point dP/0x; = ws;P. Thus

17Nz d 0P
3.6 J=1 —_
(36) TP P [wfm dx; 0x; ]

Let E = [e;;] denote the latter matrix. Then using (3.3) and
(3.5) we have

0 = % (d*_P iﬁ)
v wf(v,) dm dxj dxj axf(’b)

—_— a‘b - 3 i
W, 2 (0 fi )f(k)xk) kdx]

and this is the (7, 7)th entry in the matrix product

x; _ . d*P
[’wm) (O 5f(i)f(a>xa)] [_dxidxj.l .

In view of (8.6), the result follows.
Let B denote the matrix

[ &P
©.7) B= deidx,-] )

COROLLARY 5. Suppose that at a critical point we have det B = 0
and let N be an eigenvalue of J. Then
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(i) at a minimum, N > 1
(ii) at a maximum, » < 1.

Proof. By Theorem 4, A =1 4 /P where ¢ is an eigenvalue of
NB and by Corollary 3, ) is real. Thus it suffices to show that g
is positive at a minimum and negative at a maximum.

Let v be a real column eigenvector for g. Then NBv = pv
yields easily

(3.8 "By = p(u” Nu)

where » = Nu. Since N is positive definite by Lemma 1 we have
u"Nu > 0.

Now at a minimum, since det B = 0, we see that B is a positive
definite matrix. Thus »"Bv > 0 and ¢ > 0 by (3.8). Similarly at a
maximum, B is negative definite so g < 0. This completes the
proof.

4, Polynomials. We assume here that P is a row homogeneous
function and use the notation of the preceding sections. In addition,
we assume that P is a polynomial with positive coefficients so that
(in single subscripted variables)

(4.1) P= g M,

where

4.2) M, = €Lz eee 25w, €, >0,

Here, of course, a designates the »/-tuple. a = (a, a,, --+, a,/). Let

.57 denote the set of all such a’s which occur in P.
Fix some ordering of the a’s and let « denote a subset {a, b} of
7 with b > a. For each such «a set

(4-3) My = MMy ai == b,; - a,; .
Since P is row homogeneous we have for 1 < n
n
Qs + g.lgf(i)f(i)aj = Wy
and hence (4.3) yields
n
(4.4) Qs + ,% Orwr sty = 0.

For the row homogeneous polynomial P we define the vector
subspace V(P) & R™ to be the subspace of R"™ spanned by all n'-
tuples (ay, @, « -+, @,) with a = {a, b}, a, be % In view of (4.4) we
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have certainly

dimV(P)=n.

THEOREM 6. Let P be a row homogeneous polynomial. Then
JN s a positive semi-definite symmetric matric with

rank JN = dim V(P) .

Proof. Let P be given by (4.1) and (4.2). Then by (1.4)

Ja;m,

WY = S
a

and we have

Wy P*w;0Y;/0%; = (57‘: m,) (; b;bym;) — (Za‘l a;m,) (; b;m;)
= Zb m.m,(b;b; — b;a;) .

Observe that the inner summand vanishes at a = b. Thus if we
sum over a < b then we obtain

0Y;
6‘9(;,-

Wy P; = >, memy(b;b; — b:a; + a;a; — a;b)
a<b

= ) Mal;;

in the notation of (4.3). Thus by Theorem 2

(4.5) P*JN = [%‘4 MO0 /Wi Wrii]

Let z = [z, 2,, +++, 2,] be a row vector of real entries. Then
ZP*IN)Z" = 3, 3 MaliQ;2:25 /W W)
2,7 a

(4.6)
= Za‘ ma(; AR/ W)

Thus clearly P?*JN and hence JN is positive semi-definite.

It remains to compute the rank of JN. Let W(P) & R™ be the
subspace of R™ spanned by all n-tuples & = («,, @,, ---, @,). In view
of (4.4) we have clearly

4.7) dim W(P) = dim V(P) .
Let [, ] be the inner product on R” defined by

n
[(uly u’Z’ ) un)’ (?)1, /v2, 0t ,U'n)] = Z{ uivi/wf(iJ .
i=
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Then (4.6) becomes
2(P?JN)z" = >, m, &, 2]* .

Thus 2(P:JN)z” = 0 if and only if ze W(P)*, the orthogonal com-
pliment of W(P). Finally since P?JN is positive semi-definite we
have

rank P°JN = n — dim W{P)" = dim W (P)
and the result follows from (4.7).

COROLLARY 7. Let P be a row homogeneous polynomial. Then
all eigenvalues of J are mnon-negative real mnumbers and hence
detJ = 0.

Proof. This follows immediately from (2.3) and Theorem 6.

Observe that Theorem 6 implies that det J > 0 if dim V(P) =n
and det J = 0 otherwise. This fact is an unpublished result of L.
Baum.

5. Examples. In this section, we consider a number of examples
with P not homogeneous. Suppose y, is given by

- 2,0 P/ox,
' x0P/ox, + x,0P/ox,
Then
1 _ 1 x,0P [ox, )
11—y 2,0P [0z,

Differentiating with respect to some variable x then yields

dy, 2 d 2,0P [0x
D9 — 1 — gy 2 (2000
dx ( v) dx < mzaP/am)

This formula enables the following computations to be done easily.

Let P(z, x,) = ©, + 2%x,. Then

det J = ¥ _ (1_“?/_1)2(29(,-1 -1
dx, (2,2,)*

and this changes sign at x, = 1/2. Thus Corollary 7 requires that P
be homogeneous.
Now let

P2, x5, 03, x,) = 2,03 + 230, + 232,
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subject to the constraints =, + 2, = 1, 2, + @, = 1. Then

2 2
(1 "2‘ 2?/1) 222z, — 1) (1 — y)*2,
J= X123 X123
L—9)2 (L — y)22, | °
L X, 2
Thus
L oow—1) 2o
5 X125 X105
uz! detJ = .
(1 - yl)z (1 - ?/2)2
2334 2971

Finally let 2, ~1 so x, ~ 0 and the right hand determinant is ap-

proximately equal to
22z, — 1)

2,23

which changes sign at x, = 1/2. Thus we see that even though P
is homogeneous, Corollary 7 can still fail unless P is row homo-
geneous.
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