
PACIFIC JOURNAL OF MATHEMATICS
Vol. 44, No. 1, 1973

THE JACOBIAN OF A GROWTH TRANSFORMATION

D. S. PASSMAN

The transformation T, described in a paper of Baum and
Eagon, is frequently a growth transformation which affords
an iterative technique for maximizing certain functions. In
this paper, the Jacobian matrix J of T is studied. It is
shown, for example, that the eigenvalues of J are real and
nonnegative in a large number of cases. In addition, these
eigenvalues are considered at critical points of T. One
necessary assumption used throughout is that the function P
to be maximized is homogeneous in the variables involved.

The author would like to thank P. Stebe for a number of stimu-
lating conversations and useful suggestions,

1* Notation* Let P be a function of the variables xiS with
domain of definition D given by

xi3- > 0 and Σ xiS = 1 .
3

Assume that on this domain both P and all its partial derivatives
dPjdXij are positive. Moreover we assume that the second partial
derivatives of P exist and are continuous. Then the particular trans-
formation T of P which we study here is given by (see [1])

(1.1) T(xu) =
xikdP/dxikΣ

k

Clearly T maps D into D.
We say that P is row homogeneous if for each i P is homo-

geneous of degree Wi > 0 in the variables xil9 xi2y . In this case
(1.1) simplifies by means of Euler's formula and we obtain

(1.2) T(xiS) =

Let us assume now that P is row homogeneous. While the double
subscript on the symbol xiS makes the domain D easier to visualize,
it turns out that a single subscript makes our later computations
neater. Therefore we make the following notational change. Observe
that the variables {xiS} are not all independent because of the con-
straints Σ ^ i = l Thus in each row of the array {xi5) there is one
variable which is dependent upon the others. Let us suppose now
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that there are a total of n' variables of which n are independent.
We can then write the variables {x^} as

Xl9 ^2, * * , Xny %n+l9 e * ' , Xn'

where xu x2, •••,&» are independent and the remaining ones are de-
pendent. Now the set {xn+ι, xn+2, , xn*} clearly contains precisely
one variable from each row so we can certainly use the subscripts
n + 1, n + 2, , n' to designate these rows. Finally we introduce
the function

/: {1, 2, , n} > {n + 1, n + 2, , n'}

so that f(i) indicates the row containing xim

In this single subscripted notation we see that for i, j ^ n, xt

and Xj are in the same row if and only if f(i) — f(j). Thus the
fact that the sum of the variables in the row containing xi is 1
becomes

n

(1.3) 1 — xf{i) = Σ δfd)fU)χ3 for i <, n .
3=1

Also setting y{ — T{x^ equation (1.2) now reads

(1.4) y i = —-—' "%. for i rg n .

Now suppose that Q is a function of xl9 •••,&„/. Then we use
as above dQ/dXt to denote the partial derivative of Q with respect to
x{. On the other hand, Q can be viewed as a function of the inde-
pendent variables xu •••,#*. If we do this, then we use dQ/dxt to
denote the partial derivative of Q with respect to xt for i ^ n. It
follows from (1.3) and the chain rule that

(I K) dQ _ dQ _ dQ f .
l l » u l ———• — ——— Λ.\J1. 1/ ^ IV .

dXi ox i vXf(i)

The Jacobian of the growth transformation T is the n x n matrix

(1.6) J --

It is the matrix which we plan to study.

2. Real eigenvalues. Let N denote the n x n symmetric
matrix
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(2.1) N=\^-(did-dnimj)x
L wf{i)

The interplay of this matrix with J will prove to be of fundamental
importance.

LEMMA 1. N is a positive definite matrix.

Proof. Since the ordering of the variables xl9 x2, , xn does not
effect the nature of N, we may assume that the variables are
grouped together according to the row of the array (xiά) they are
contained in. Then N clearly becomes a block diagonal matrix with
each block corresponding to a row of {xiό). Since it clearly suffices to
show that each of these blocks is a positive definite matrix, it there-
fore suffices to consider the case in which {xi5) has only one row.
Thus n' = n + 1 and

wn+1 N = [δidXi - XiXj] .

Let z be the real row vector z — [zu z2, , zn] Φ 0 and set

u = [V~xl9 V~x2, , Vx~n\

v = [l/xfa, Vx2z2, , Vxnzn] .

Then using ( , ) for the usual inner product of vectors we have

z(wn+1N)zτ = Σ π&\
1

= (v, v) — (u, v)2 > (u, u)(v, v) — (u, v)2 ̂  0

by Cauchy's inequality and the fact that

(u, u) = xί + x2 + + %n = 1 - %»+i < 1

The lemma is proved.

THEOREM 2. Let P be a row homogeneous function. Then

JN = [Xj/w/ωdyJdXj]

is a symmetric matrix.

Proof. From (1.4) it is clear that yt is row homogeneous joί
degree zero. Thus Euler's equation yields

(2.2) XfωdyJdXfω + Σ Sf(j)fik)xkdyi/dxk = 0 .
fc = l

Let JN = [hi5\. Then by (1.5) and the symmetry of N we have
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flu
Σ -r1

fc=i dxk

Thus (2.2) and (1.3)Jyield

dx
fU)

0Xfϋ)

Therefore we have

hi3- = Xj/Wf

It remains to show that hi3 — hH and to do this we may assume
that iΦj. Then by (1.4)

(Pd*P/dx%3xs
wf{i)wfiJ)P

so the result clearly follows.

COROLLARY 3. Let P be a row homogeneous function. Then J
is diagonalizable and all eigenvalues of J are real.

Proof. Write JN = A. Since N is positive definite we have
N = QQT for some real nonsingular matrix Q. Set R = Q~\ Then
we have easily

(2.3) RJR-1 = RART .

Since RART is real and symmetric by Theorem 2, it is diagonalizable
with all real eigenvalues. Thus (2.3) yields the result.

3. Critical points* In this section we study in more detail the
nature of J at a critical point. It follows from (1.4) and (1.5) that
at such a point we have Xι — Vι and dP/dXi = wf{i)P. Recall that a
critical point is a point at which

(3.1) — = 0 for % ^ n .
dX
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THEOREM 4. At a critical point we have

j _ j , N I" dΨ 1

where I is the n x n identity matrix.

Proof. We start with Euler's equation for the row homogeneity
of P. For i ^ n we have

w/(ί,P = xf{i)dP/dxf(i) + Σ δfwf(k)xkdP/dxk
fc = l

and differentiating this identity with respect to % yields

Observe that the last term is just Sf(i)fU)dP/dxj so the above becomes

Now at a critical point dP/dxj = 0 so

(3.2) 0 - α/(4) A

By (1.5) for i,

(3.3)

and substituting

into (3.2) yields

0 - :

(3.4)

Now clearly

3 ^ n

d2P i
r\/y r)/γ» sj
\Λ/tA/qU/tλ/ή \ΛJ

d dP

d dP

n

i dP d

dΨ d
r7'Ύ* ft *V /ί'Ύ*

n

' i 2Lk °f(i)f(k)

* dxkdXj '

dp
dxf{i)

dP

d d P

XA/tA/j yJtVffk)



286 D. S. PASSMAN

_ d dP _ s „ d dP
dXj dxfik) dxj dxfii)

so (3.4) becomes

A _ d dP

j dxm

Hence by (1.3) we have

/o tr\ d ΘP _ A , ΛΛ d 2 P

dxkdx3

We now compute J at the critical point. By (1.4) and (3.1)

xi d dP
*3 wf{i)Pwf{i)P

+ ^ d dP
wfιi)P dx3- dXi

since at a critical point dP\dxi — wf{i)P. Thus

Let E = [e^ ] denote the latter matrix. Then using (3.3) and
(3.5) we have

wf{i) v dXidXj dXj oxf{i

x n d2P
= — — Σ (δik — δfWfk)xk)W *

and this is the (i, i)th entry in the matrix product

In view of (3.6), the result follows.
Let B denote the matrix

(3.7) B = \-fξ-] .
L dXidxj J

COROLLARY 5. Suppose that at a critical point we have det B ^ 0
and let λ δe cm eigenvalue of J. Then
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( i ) at a minimum, λ > 1
(ii) at a maximum, λ < 1.

Proof. By Theorem 4, λ = 1 + μ/P where μ is an eigenvalue of
NB and by Corollary 3, λ is real. Thus it suffices to show that μ
is positive at a minimum and negative at a maximum.

Let v be a real column eigenvector for μ. Then NBv = μv
yields easily

(3.8) vτBv = μ(uτNu)

where v = Nu. Since N is positive definite by Lemma 1 we have
uτNu > 0.

Now at a minimum, since det B Φ 0, we see that B is a positive
definite matrix. Thus vτBv > 0 and μ > 0 by (3.8). Similarly at a
maximum, B is negative definite so μ < 0. This completes the
proof.

4* Polynomials* We assume here that P is a row homogeneous
function and use the notation of the preceding sections. In addition,
we assume that P is a polynomial with positive coefficients so that
(in single subscripted variables)

(4.1) P = Σ ma
a

where

(4.2) ma = eax?ot%* %£»', ea > 0 .

Here, of course, α designates the w'-tuple. a — (alf a2, •••, an). Let
denote the set of all such α's which occur in P.
Fix some ordering of the α's and let a denote a subset {a, 6} of
with b > α. For each such α set

(4.3) mα = mαm6 , α4 = 6* — α* .

Since P is row homogeneous we have for i ^ n

and hence (4.3) yields

(4.4) α/(4) + Σ δmfij)aj = 0 .

For the row homogeneous polynomial P we define the vector
subspace V(P) ξΞ= Rn' to be the subspace of Rn' spanned by all nf-
tuples (al9 a2, , an) with a = {a, 6}, a, be jzf. In view of (4.4) we
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have certainly

dim V(P) ^ n .

THEOREM 6. Let P be a row homogeneous polynomial. Then
JN is a positive semi-definite symmetric matrix with

rank JN = dim V(P) .

Proof. Let P be given by (4.1) and (4.2). Then by (1,4)

Σma

and we have

Wf^P^jdyJdxj = (Σ ma) (Σ Mi^6) - (Σ
a b a b

= Σ mjn^bib^ — b^) .
a,b

Observe that the inner summand vanishes at a — b. Thus if we
sum over a < b then we obtain

in the notation of (4.3). Thus by Theorem 2

(Λ K\ p2 TJSJ _ f V orvt rv rv Itii in 1
a

Let z = [zlt z2, •", zn] be a row vector of real entries. Then

z(P2JN)zr = Σ ]
(4.6) ^ '

Thus clearly PVΛΓ and hence JN is positive semi-definite.
It remains to compute the rank of JN. Let W(P) ̂  Rn he the

subspace of Rn spanned by all ^-tuples a = (au a2, •••, an). In view
of (4.4) we have clearly

(4.7) dim W(P) - dim V(P) .

Let [ , ] be the inner product on Rn defined by

n
[(Ul9 U2, , Un), (Vl9 V2, , Vn)] = Σ UiVjWfw .
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Then (4.6) becomes

z{P2JN)zτ = Σma [ά, z]2 .
a

Thus z(P2JN)zτ = 0 if and only if ze W(P)λ, the orthogonal com-
pliment of W{P) Finally since P2JN is positive semi-definite we
have

rank P2JN = n - dim W(P)' = dim W{P)

and the result follows from (4,7),

COROLLARY 7. Let P be a row homogeneous polynomial* Then
all eigenvalues of J are non-negative real numbers and hence
det J ^ 0.

Proof. This follows immediately from (2.3) and Theorem 6.
Observe that Theorem 6 implies that det J > 0 if dim V(P) = n

and det J = 0 otherwise. This fact is an unpublished result of L.
Baum.

5* Examples* In this section, we consider a number of examples
with P not homogeneous. Suppose yx is given by

^ = x.dPjdx,

xιdPjdxι + x2dP/dx2

Then

1 _ -j xιdPjdxι

1 — y1 x2dP/dx2

Differentiating with respect to some variable x then yields

dVi = ( 1 _ yiy _d

dx dx V χ2dPjdx<

This formula enables the following computations to be done easily.
Let P(xly x2) = a?! + &ΪCG2. Then

det J - 4 ^ = ( 1 ~ ^ l ) 2 (2a?, - 1)

and this changes sign at xγ = 1/2. Thus Corollary 7 requires that P
be homogeneous.

Now let
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subject to the constraints x1 + x3 = 1, x2 + x4 = 1. Then

(1 - y^x,
x\ .

Thus

• det J =

2x2

2a?!

0 and the right hand determinant is ap-Finally let x2 ~ 1 so α;4
proximately equal to

which changes sign at xx — 1/2. Thus we see that even though P
is homogeneous, Corollary 7 can still fail unless P is row homo-
geneous
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