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ON CLOSE-TO-CONVEX FUNCTIONS OF ORDER 3

JAMES W. NOONAN

For 5= 0, denote by K(B) the class of normalized func-
tions f, regular and locally schlicht in the unit disc, which
satisfy the condition that for each » < 1, the tangent to the
curve C(r) = {f(re®): 0 £ § < 2z} never turns back on itself as
much as Sz radians. K(j) is called the class of close-to-convex
functions of order 5. The purpose of this paper is to inves-
tigate the asymptotic behavior of the integral means and
Taylor coefficients of fc K(5). It is shown that the function
Fg, given by Fp(2) = (1/(2(8 + D){((A + 2)/[(1 — 2))B** — 1}, is in
some sense extremal for each of these problems. In addition,
the class B(«a) of Bazilevic functions of type a > 0 is related to
the class K(1/«). This leads to a simple geometric interpreta-
ticn of the class B(a) as well as a geometric proof that B(«)
contains only schlicht functions.

Let f be regular in U = {z:|z]| < 1} and be given by
(1.1) f(2) =2+ @2 + a2 + «o0 .

Following an argument due to Kaplan [9], we see that fe K(B) iff,
for some normalized convex function @ and some constant ¢ with
le| =1, we have for all z€ U that

(1.2) ‘a 0] ((z)) [ < prj2.
Equivalently,
(1.3) cf'(2) = p()*P'(2) ,

where p(z) = X2, v.2", | D, | = 1, has positive real part in U.

It is geometrically clear that for 0 < 8 < 1, K(8) contains only
schlicht functions. However, for any @ > 1, Goodman [3] has shown
that K(B) contains functions of arbitrarily high valence. K(0) is the
class of convex functions, and K{(1) is the class of close-te-convex
functions introduced by Kaplan [9]. For 0 < a <1, Pommerenke
[13, 14] has studied m-fold symmetric functions of class K(«). The
following theorem shows that the study of these functions is closely
related to the study of K{(B) for arbitrary B8 = 0.

THEOREM 1.1. Let =0 and m be a positive integer. Then
fe K(B) iff there exists an m-fold symmetric function g€ K(G/m) such
that f'(z™ = ¢'(z)™.
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Proof. Suppose f€ K(B), and define g by ¢’(z) = f'(z™)'/. From
(1.3) it follows that

9'(2) = 7mp(z")Fmy’ (2)

where the convex function + is defined by +'(2) = ®'(2™)™. Hence
g € K(B/m), and g is clearly m-fold symmetric. To prove the converse
implication, we merely reverse the above procedure.

Finally, for £k = 2 denote by V, the class of normalized functions
with boundary rotation at most k7. From the proof of [2, Theorem
2.2], it follows that V,c K(k/2 — 1). However, fe V, implies that f
is at most %/2 valent [2], so K(k/2 — 1) is in general a much larger
class than V,. The results in §2 and 3 of this paper are extensions
to K(B) of results of the author [10] for the class V,. These results
also generalize and improve some of the results of Pommerenke [13]
for K(a),0 = a = 1.

2. Behavior of the coefficients. We begin by studying M(r, f') =
max!ler lf,(z) l'

THEOREM 2.1. Let fe K(B). Then (1 — r)/(1 + »)*M(r, f') s
a decreasing function of r, and hence w = lim,_, (1 — r)2M(r, ')
exists and is finite. If w >0 and f is given by (1.3), then there
exists 0, such that '(z) = (1 — ze7*) % and 0 = lim,_, (1 — )| f'(rei%)|.

Proof. Since for each B = 0, K(B) is a linear-invariant family of
order B + 1 in the sense of Pommerenke [12] (See [4, Theorem 3] for
a proof.), the first two statements of the theorem follow. Also, if
@’ is not of the stated form, then 9'(z) = O1)(1 — »)? for some 0 <
0 < 2, and hence from (1.3) we see @ = 0. Finally, if ®» > 0, then
P'(z) = (1 — ze~*%)~?%, and just as in the proof of [10, Theorem 3.1] we
see that ® = lim,_, (1 — 7)#*2| f'(re’®)|.

We now begin to study the coefficient behavior. Our method is
the major-minor arc technique used by Hayman [5], and the proofs
are similar to the proofs of the corresponding results for the class
V. [10]. Hence we omit details wherever possible. We first require
two lemmas.

LEMMA 2.1 Let fe K(B) and o = lim,.,, (1 — 7)#*2| f'(re*®) | > 0.
Then giver 6 > 0, we may choose C = C(0) > 0 and r, = 7,(0) < 1 such
that for r, < r <1 we have

0

SE | f’(re“’) |do < -(I—:W
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where B = {6: C(0)1 —r) = |0 — 6,| < ).

Proof. Without loss of generality we may assume 6, = 0, so from
Theorem 2.1 and (1.3) we find, with z = »e¥,

[ ()] =1pR[I1—-2z[".
Hence, with C > 0 and E as above, we find

, _ 0 " gegp—oml_ 1
SE|f(z)[d0-_-(T~—T)—FSC“_”6 40 = 0) &t

and the lemma now follows upon choosing C sufficiently large.

LEMMA 2.2. Let fe K(B), ® = lim,_, (1 — »)#*2| f'(re')| > 0, r, =
1-1/n, @, =0 — r,)*f(r.e”), and

’ _ w,,
5@ = g
Let S be a fized but arbitrary Stolz angle with vertex e, and let
D, ={ze8:|¢" — z| < 2/n}. Then as n— oo, f, ~ f' uniformly for
zeD,.

Proof. Again assuming 6, = 0, we have from (1.3) ¢f'(z) =
p()*(1 — 2)7%, and so

’ — [(1 - T’n)p(rn)]ﬂ
fn(z) - C(]. - z)ﬁ+2 .

Thus, to prove the lemma it suffices to show that as % — o,

(1 — ¢ﬂ)p(’rn) 1
@D 0= 2@

uniformly for ze D,.

By a theorem of Hayman [6, Theorem 2], lim,., (1 — 7)p(r) = L
exists, and it is clear that (1 — 2)p(z) is bounded as |z|—1, providing
z€S. By a theorem of Lindelof [8, p. 260], we have for ze S that
lim,., (1 — 2)p(2) = L where the limit is approached uniformly as |z|—1.
But 0 < w = lim,,, (1 — 72| f'(r)| = lim,, [A — 7) | p(*)|]% so L = 0.
Combining these remarks with the inequality

(1 —2)pr)
1 = r)p(r,)
1

= Tty &~ 220 — LI+ L= @ = et
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we see that (2.1) holds, so the proof is complete.
We can now determine the asymptotic behavior of a, as n — co.

THEOREM 2.2. Let fe K(B) be given by (1.1), and let w =
lim,., @ — 72 M(r, f'). Let I"' denote the gamma function. Then

| @ | @

1 = .
noe b g+ 2)

Also, if o = lim,,, (1 — r)#*2| f'(re’®) | > 0, then as n— o«

fr(rﬂeieo)e—i(n—-l) 0o

L2
n'I(p + 2)

where r, =1 — 1/n.
Proof. Suppose first that ® > 0, and define
file) = o, 5 dreinizn

as in Lemma 2.2. We note that

(2.2) g, —_Tm+p+2
" I'(m+ 1DIB+ 2)

so d,, ~ mfT (B + 2) as m — . Computation shows that

1

_ —i(n—1)0) —
2.3 nae, — 0,d, e il —y

S;{f'(’rew) —_ fyi(ﬁ,.ew)}e—i(n—nedﬁ .

Given ¢ > 0, we choose C = C(0) and £ as in Lemma 2.1, and
we let r, =1 — 1/n. With % sufficiently large, Lemma 2.1 gives

| 1£ e 1d8 < onet,
E
and clearly this inequality is also true for f,. Hence, we see that
(2.4) || () = Firieeoran| < 20m
E

for »n sufficiently large. We now choose a Stolz angle S, depending
on 0, such that {r.e”:0ec E'} S for large », where E' = [—x, ©]\E.
By Lemma 2.2, we have as #— -« and with e E’,

SF(rae®) — falrae®) = o(L){fi(r.e¥)}

= o()nt*®,

where o(1) is uniform for 6 € E’, and hence as n — ~, we have
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[ (7rre) = firieeoran| < om20@) — 70

= o(l)nf*t .

(2.5)

Note that although o(1) depends on 4§, o(1) — 0 as % — o once J has
been fixed.
Combining (2.3), (2.4), and (2.5), we find

| n@, — @,d, e "0 | < {20 + o(L)}nt*

for sufficiently large n. Since 6 > 0 is arbitrary and since o(1) —0
once 0 has been fixed, we have

d -
an — a),,-—kle i(n—1)0y + 0(1)nﬁ .
n

From (2.2) and the definition of w, we see that as n — oo,

a"n. ~ wne—i(n—l)ﬁgnp/l"(ﬁ + 2)
- f’(rneiﬁa)e—i('ﬂ—l)ﬁo
wI'(B + 2)

In particular,

im o] _ @ .
noee NF re+ 2

We now suppose w = 0. We shall subsequently prove (Theorem
3.1 with A = 1) that if w = 0, then

lim (1 — )5+ S: | F(re?) | dO = 0 .

Using a standard inequality relating coefficients and integral means
[7, p. 11] we have lim,_. |a,|/n* = 0. This completes the proof of
the theorem. Note that if @ > 0, then it follows easily from the
theorem that lim, .. a,../a, = ¢ %%, and so the radius of maximal
growth can be determined from the coefficients.

We now consider the problem of determining

max {|a,|: fe K(B)} .

It is natural to conjecture that for each » = 2 this problem is solved
by the function

B = g {(G22) 1) =2+ 42

Toward this end we have the following theorem.
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THEOREM 2.3. Let fe K(B) be given by (1.1) and let Fy be as

above.

(i) There exists an integer n, depending on f such that |a,| <
A (B) for n = n,.

(ii) If n =B+ 2, then |a,| = A.(B).

(iii) If B is an integer, then |a,| =< A, (B) for all n.

Note that since V,c K(B) with 8 = k/2 — 1, we have from (ii)
that |a,| =< A.(8) for » < k/2+ 1 and from (iii) that |a,| =< 4.(8)
for all » whenever & is an even integer.

Proof. We have from (1.8), with |¢| =1,
of'(z) = p( 2)’P'(2) ,

where p has positive real part and @ is convex. Suppose that p(z) =
< D" 0] = 1, and p()f = 37, q.2". Then it is easily verified
by induection that for m =1,

b= B8 =1 - (8= G — L)p D)

where D;(p) is a polynomial, with nonnegative coefficients, in the
variables p,, Dy, ***, Dpe

Therefore, if £ is an integer, | ¢, | is maximal for all m = 1 when
P, = 1 and p; = 2 for j = 1, which implies p(z) = (1 + 2)/(1 — z). Also,
for any B = 0, we see as above that if » < g8 + 2, then |¢,, | is maxi-
mal for 1<m<n—1 when »p() = 1 + 2)/(1 — 2). In addition, if
P'(2) =1+ 357, u;z"", it is well-known that |u;| < j for all j, with
equality for ®'(z) = (1 — 2)%. But when »{z) = (1 + ?2)/(1 — 2) and
®'(z) = (1 — 2)7%, we have ¢f’(z) = F'(z). Hence, since

n—1
cnRa, = ZO qiUyp—;j
=

where we define u, = 1, we see that (ii) and (iii) are proved.
We now prove (i). We first note that as n— oo,

28 P

(2.6) A,(B) ~ TE+2

Let w = lim,_, 1 — »)#*M(r, f’). If @w = 0, then Theorem 2.2 shows
a, = o(l)n?, and so it is clear from (2.6) that (i) holds. We now
suppose @ = lim,_, (1 — 7)#**| f'(re’)| > 0, and we recall that in this
case @ = lim,_, [(1 — 7)| p(re?)|]*. Hence, from [6, Theorem 2], it
follows easily that w < 2% with equality only if
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But @ > 0 implies also that ®'(z) = (1 — ze~%)%, and thus we have
w < 2% with equality only if ¢f'(2) = Fj(e~*%z), in which case |a,| =
A,(B) for all n, since |¢| = 1. Thus we may suppose ® < 2¢, and
using Theorem 2.2 and (2.6) we see that (i) holds. This completes
the proof of Theorem 2.3.

To conclude this section we examine the asymptotic behavior of
the quantity || a,.,| — | a, || for fe K(B).

THEOREM 2.4. Let fe K(B) be given by (1.1). If @ > 0, then

hm ||an+1‘_!anll — B .
oo npt e+ 2

The theorem 1is in gewmeral false when @ = 0.

Proof. If =0 and w >0, then from (1.8) it follows that
cf'(z) = (1 — ze™*)~?, s0 |a, | = 1 for all », and the theorem is trivially
true. Thus, we may assume without loss of generality that g > 0.
The proof will be divided into three parts.

We first claim that given 6 > 0, there exists C(0) > 0 such that

__9
1 -t

where 0, is as in Theorem 2.1 and £ = {#: CO)(1 — r) < |0 — 6,| < 7).
To prove (2.7), we note that @ > 0 implies that

of'(x) = p(R)F1L — 2)7*,

where we have assumed without loss of generality that 6, = 0. Also,
for notational ease, we assume ¢ =1 and p(0) =1, so

1 —2)f'() = pRP/1 - 2) .

Choose A > 1 such that A8 > 1, and let 1/» + 1/A =1. If C is an
arbitrary positive constant, we have from Holder’s inequality that

2.7 lz_];r_ SE (1 — 76500 f'(re?)df | <

@8 | 1a-ar@ld={| 6ol {] 11—z}

Since p is subordinate to (1 + 2)/(1 — z), and since AB > 1,

1

2.9) {l, 12 a0} = o) L.

Also, as in the proof of Lemma 2.1, we have (since \' > 1)
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1
—1 (1 _ ,,.)2/——1 °

Hence, combining (2.8), (2.9), and (2.10), we find

(2.10) L 11— z[%d6 = 0Q1) C},

1 1
1-— "(2)db| = 0(1l) — ————,
1,0 - ar@in|= 0m) o =
which gives (2.7) if we choose C sufficiently large.
From this point on we proceed essentially as in the proof of [11,
Theorem 2], and thus we merely sketch the proof. We define w, as
in Lemma 2.2, \, = arg »,, and

f,(Z) — we'n = weiln i d. g=imloym
* (1 — ze™i0o)s+2 o S ’

Since w, = [(1 — 7,)p(r,e)]?, lim,_.. \, exists by [6, Theorem 2]. As
in [11, Lemma 3] we find that as 7 — o,

» ~ify Wweitn—m—06) _
2.11) a, — e ¥q,_, = & nft 4+ o(L)nf™,
(2.11) . - TG D @)

and hence as % — oo,

it (g —(1—1)0) 1
2.192) =€ M, _ @e [1— 1+01]+01,
(2.12) e TG+l o1 Lro@]+od

where we have used (2.11) and Theorem 2.2. Theorem 2.2 also implies
that as n — oo,

arg eq,, = arg we'»"% 4 o(1) ,
and since lim, . )\, exists we have as n — oo that
(2.13) arg ¢ ihq, , = arg wetn—»=00) + o(1) .

Combining (2.12) with (2.13), we find

fawl = lawsll _ _ B®
0 TTE+d o0

as n — oo, which proves the theorem.
We now show that the theorem is false when @ = 0. Let 3 =0
be given, and define fe K(B) by

1

f’(z):(T——Tz)ﬁ:I.

Clearly f is an odd function, and it is easily verified that a,,., ~
nf2I(B + 1) as n— oo, 50
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lim”a““' — [azn“ — limla“'“] — 1 .
n—oo nbt n—r00 ’}’l,ﬁ_l 2F(,8 -+ 1)

However, ® = lim,_, (1 — 7)#**M(r, ') = lim,_, (1 — 7)/(1 + r)*** = 0, so
the theorem is false when w = 0. This is in sharp contrast to the
corresponding result [11] for V,, where the result is true for all
k> 2 even if w = 0.

3. Behavior of the integral means. In this section we shall
investigate the behavior of I;(r, f’) and I;(r, ), where for x > 0 we
define

Lr,0) = 5 | lg(re") o .

Our results again include as special cases previous results of the
author [10] for the class V, as well as generalizing results of Pom-
merenke [13] for the classes K(a), 0 < o < 1. Although the details
of the proofs given here are slightly more involved than those for
Vw we refer to [10] whenever possible. We first need two lemmas,
the first of which is proved in exactly the same way as [10, Lemma
4.1].

LemMMA 8.1. Let fe K(B), ® = lim,_, (1 — 7)**2| f'(re*) | > 0. Let
C > 0and ) > 0 be fixred, and for 0 < R < 1define E = {0: C(1 — R) <
|6 — 6,| £ 7}, B' = [—7x, 7|\E. Define o(R) = (1 — R)***| f'(Re**") | and

fitg) = —2B)

Then as R—1,
S | fr(Re) ’df ~ g | f/(Re¥) |*do .
B’ E’

LEmMA 3.2. Let fe K(R), w >0, and fi be as above. If NG +
2) > 1, then as r—1,

Lir, f') = L(r, f7) + o)A — 7)!72#
Proof. By definition, with z = re’, we have
2 | Lir, ) = Lr, £ 1 = | 1r@pas + | 171 a0
|, {lr@r - £y pas,

where E and E’ are as in Lemma 3.1. If @ = 0, then w > 0 implies
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f'(® =1 —27% and so the lemma is trivial. With 8 >0, let v =
1+2/gand ¥ =1+ B/2, so 1/y + 1/v' = 1. Recalling that in (1.3)
we have ¢'(z) = (1 — 2)7? since @ > 0, we have from Holder’s inequality
that

2/(p+2)

SE | () lz do < {SE [ p(2) |1(p+2) dﬁ}ﬂ/(ﬁw){EE 11—z ’—x(,a+2) dﬂ}
As in the proof of (2.9) and (2.10) it follows that
[, 1p@ e ds = Oyt — ry=ees
E

Also, with 6 > 0, it follows that

_ 0
SEII_ZIA(,&+2)d0<m:2)—:;
for C(0) depending on 6 and for M8 + 2) > 1, and therefore

0

|, 1@ ke <

for r sufficiently close to 1. Clearly this inequality also holds for f,,
and so using Lemma 3.1 we have for r sufficiently close to 1 that

2 | L(r, ) = Lir, ) < oo+ o0 | [£266) P8

(1 _ ,,.)2(ﬂ+2)—1
25 0(1)0)(,’.)1 (1—r)C(d)
(l . 7.)2(;9+2)—1 + (1 . ,r)l(ﬂ+2) So dﬁ
< 20 L oo(r)*C()

(1 _ ,,.)1(p+2)—1 (1 _ 7.)1(;9+2)—1 ¢

Since 0 > 0 was arbitrary and since o(l) approaches zero once ¢ has
been fixed, the lemma follows.

We can now determine the asymptotic behavior of I,(r, f’) when
MB + 2) > 1. For notational convenience, define

rMg+2 -1
210 (M8 + 2))/2}

GO\, B) =

THEOREM 3.1. Let fe K(B) and MB + 2) > 1. Then
lim (1 — )@ L(r, f') = @'G(\, B) -

Proof. If w >0, then the theorem is an immediate consequence
of Lemma 3.2 and Pommerenke’s result [13] that as » —1,
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1 S 0 1—m I'(m—1) _

3.1 — | L+ re¥|™d) ~ —=— L _(1 — y)'™™

(3.1) o ), [T+ me”l R 1-7

whenever m > 1. Hence, we now assume @ = 0, and we divide the
proof into two cases. We first assume that in (1.3) @’ is not of the
form (1 — ze~®)~%. Then, as is well known, M(r, #') = OQ)A — »)"
for some 0 < v < 2. Without loss of generality we assume YA(8 + 2)/2
>1. As in the proof of Lemma 3.2, we find

[C1r@ra < {]" s a)™ ™

2

T | /() | da}z/(ﬂw

0

and
{gu [ p(z) |16+ da}ﬁl(ﬂn) = O(1)(1 — p)plte+a=2s
0

Also, since @ is convex, z®' is starlike and schlicht, so from [7,
Theorem 3.2] we have

2z 2/(p+2)
{g | P'(z) |He+2r2 dﬁ} = O(1)(1 — rHe—r1
Hence
Szl | f'(2) *d8 = O(Q)(L — r)t—2en |

and since ¥ < 2 we have as r—1
1 — )21 (r, ) — 0.

It remains only to consider the case @ = 0 and @’(z) = (1 — ze~#)™2
for some 6,. Assuming without loss of generality that 6, = 0, we
find from (1.8) and our hypothesis @ = 0 that

0=1m®@ — rp(r) .
As in Lemma 2.2, it now follows that for z in a Stolz angle with

vertex at 1, we have lim,_, (1 — 2)p(z) = 0 where the limit is ap-
proached uniformly as |z|— 1. Hence, since (1 —7) | p() | = |1 —2]||p(?)|,

mw|§{&L

for z in the Stolz angle, where i(r) — 0 as » — 1. Thus, given C > 0,
C(1—r) C(1—r)
| ir@rde =T @ L — a0
0

< {SC(r—-r) [ ( )[2(ﬁ+2) de}p/(,en){ c(1—r) 1 IR 2/(g+2)
(3.2) =3, [p@ & 11—z }



274 JAMES W. NOONAN
< __ (Chm)* | o)
= (1 _ ,’,)pz—ﬂ/(ﬁ+2) (1 — ,,.)21—-2/(,34-2)

_ o(1)
- ,,.)z(,e+2>—1

where we have used (3.1). Exactly as in the proof of Lemma 3.2
we also have, given 6 > 0,

T , 2 3
¢ Yoo 170 <
for an appropriate choice of C = C(0), and hence from (3.2) and (3.3)

lim (1 — )= L(r, f) = 0,

which completes the proof of Theorem 3.1.
To complete this section, we examine I,(r, f).

THEOREM 3.2. Let fe K(B) and let G\, B) be as in Theorem 3.1.
(i) If v=1, then

liminf (1 — 7L, £) = LG 6)

rol Qa1

(ii) If v=1 and M8 + 1) > 1, then

. _ 2 1)—1 wZG(X’ B)
hr?—fup (1 ) L(r, ) < (:8 T1-— (1/7\'))1 ¢

Note that when o = 0, lim,_, @ — )2, (r, f) = 0, and when © >0
the growth of IL(r, f) is regular in the semse that lim sup,., and
lim inf,_, are either both positive or both zero.

Proof. The proof of (i) is very similar to that of [10, Theorem
4.4], and so we omit the details. To prove (ii), we first note that

flrei?) = S Fr(te?)dt .

Since A = 1, a generalization of Minkowski’s inequality [15, p. 260]
gives

Ir, ) < S LG, F)"dt .

Since Theorem 3.1 gives us the asymptotic behavior of I,(¢, f') as
t—1, a straightforward argument shows that whenever Mg + 1) > 1,
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@*G(\, B)
(B+1—1n)

lim sup (1 — 7)**0 U (r, f) <
r—l1

In conclusion, it should be noted that the basic result under-
lying the theorems of §§2 and 3 is the existence of w = lim,_,
A —7r)*"M(r, f'), where « = 8 + 1. Since this limit exists whenever
f belongs to a linear-invariant family of order «, it is interesting to
speculate as to whether the results of the previous sections remain
true if we assume only that f belong to such a linear-invariant family.
Nothing seems to be known concerning this question. The similarity
between the results of the previous sections and results of Hayman
[5] on mean p-valent functions should also be noted. In this direc-
tion, W. E. Kirwan has recently shown (unpublished) that given
feV, with 2 < k < 4, there exists a constant d(f) such that f — d(f)
is circumferentially mean-k/4 valent.

4. Bazilevic functions and K(B8). For any « > 0, define B(x)
to be the class of functions g which are regular in U and which are
given by

(1) 0@ = {a| e=p(e) (K Yaef ",

where pe.? the class of functions P regular in U satisfying
Re P(z) > 0and P(0) = 1, and where he.”*, the class of normalized
starlike functions. The powers appearing in (4.1) are meant as
principal values. It is known [1] that B(a) contains only schlicht
functions, and it is easy to verify that for various special choices of
«, p, and h, the class B(a) reduces to the classes of convex, starlike,
and close-to-convex functions. However, in general very little seems
to be known about the geometry of B(a). In this section we shall
relate B(a) to K(1/a). This relationship will allow us to give a sim-
ple geometric interpretation of B(a) as well as a simple geometric
proof that B(a) contains only schlicht functions.
We first need a technical lemma.

LEMMA 4.1. Let g be given by (4.1). Then g is locally schlicht
and vanishes only at the origin.

Proof. If a =1, then it is easily seen that g is close-to-convex,
and hence the lemma is trivial. Thus we assume a = 1. Let z,# 0
be given. We claim that g(z,) = 0 iff ¢'(z) = 0. If g(z,) # 0, then
(9(2)/2)* is regular in a neighborhood of z,, and from (4.1)

(4.2) (9(2)/2)*7'9'(2) = p(2)(h(2)[2)* .
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Since neither p nor % vanish at z, it then follows that ¢'(z,) = 0.

Suppose now that ¢'(z) = 0. We must show g(z) # 0. Since the
zeros of ¢g and ¢’ are isolated, it is clear that we may choose (even
if g(z,) = 0) an arc v ending at z, such that (4.2) holds for ze€ v, z = z,
and such that ¢’(z) # 0 for zev. Therefore, for z€7,

e (2

lim | g()/z[* = ,
22
and hence (since a # 1) ¢(z,) = 0, which establishes our claim.

To prove the lemma, it is now sufficient to show that g vanishes
only at the origin. Suppose not; that is, suppose ¢g(z) = (z — z,)"q(2)
where m =1, q(z,) # 0 and z,% 0. We choose an arc v ending at z, such
that for zev (z # z,) we have g(z) # 0, 9'(z) = 0, and such that (4.2)
holds. Then with zev,

a—1 a
(e — (L) - 2)¢'@) + ma@)] = pE)(L2Y".
z z

We now allow z — 2z, and we find that ma = 1. We now define G
for ze U by G()™ = g(z™). From (4.1) it follows that G is close-to-
convex with respect to H, given by H(z)™ = h(z™) where & is as in
4.1). But G@EY™™ = g(z,) = 0 and 2™ = 0, which contradicts the
fact that G is schlicht. This proves the lemma.

We now define K(B) to be that subclass of K(B8) such that in
(1.3) we have ¢ =1 and p(0) = 1. Therefore, fe K\(B) iff

(4.3) @) = w12
where pe & and he.¥*. We also assume g8 > 0.
THEOREM 4.1. If fe K\(B), then ge B(1/B) where
_ 1 (* ’ 1/pe—1 £
0@ = {3 ererreaef .
Conversely, if g€ B(a), then fe K(1/a) where

7@ = || (L) @y

0

Proof. Suppose first that fe K,(8) and is given by (4.3). Then

@ = p@(22)",

?

and from the definition of B(1/8) it follows that g defined as in the
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theorem belongs to B(1/8).

Now we suppose g € B(«), and we define f as in theorem. By
Lemma 4.1 f is regular in U, and since g€ B(w) we have from the
definition of f that

@ = s 22

where pe.&” and he .&¥*. Hence fe K(1/@).

Note that although for 8 >1 f may be of arbitrarily high valence,
it is always true that the corresponding ¢ is schlicht. Also note that
since V,c K(k/2 — 1), we have a relation between V, and B2/(k — 2)).

We now investigate the geometry of B(a). We shall assume that
g is regular and locally schlicht in U, is normalized as in (1.1), and
vanishes only at the origin. Also, for 0 < r < 1, we define the curve
C(r) = {g(re?®y*: 0 < 0 < 2x}.

THEOREM 4.2. With the above notation and hypothesis on g, we
have that g € B() ioff for all 0 < r < 1 the tangent to C(r) never turns
back on itself as much as © radians.

Proof. If ge B(a), then we see from Theorem 4.1 that fe K(1/a)
where

F@ = (LY @@

Denote by T(f, re’) the tangent to the curve f(|z| = 7) at f(re”).
Then with z = re,

arg T(f, re?®) = (1 — 1/a) arg g(2) + (1)) arg z¢'(z) + ©/2,

from which it follows by a standard argument that

0 oy — 1 ') . 1 29" ()
S 278 1, 7¢) = (1~ 1) Re 2080 - 2 Re{1+ g,(z)}.

Since fe K,(1/a),

Saz-?_ arg T(f, re")d0 > —ja
0, 00

for any 6, < 6, < 0, + 2m, and so

25 29'(2) b2 29" (2)\
4.4 -1 Re 2% (g Re(l +=22Vdo > —7.
4.9 ( )Sol e e + Sel e( + g’(z)/ > -7

Noting that locally we have (g%(z))’ = ag(z)*"'¢'(z), we see by a standard
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argument that (4.4) is equivalent to the fact that the tangent to C(r)
never turns back on itself by as much as 7 radians.

To prove the converse, we have from Lemma 4.1 that for z + 0,
(9{(»))* is locally regular, so we may assume that (4.4) holds. If f is
defined by

7@ = | (£) @iz

then f is regular in U and from (4.4) we have

g

(4.5) S * 9 arg T(f, re")df > —jax
0, 00

for any 6, < 6, < 0, + 2w. Since f’ never vanishes, an argument due

to Kaplan [9] shows that (4.5) implies fe K,(1/a), and thus

f@=pMW%?

where pe. & and he.*. We now see from the definition of f
that
L (o E) )
0@ = {a | emne) (B2 ) as)

and so g€ B{a). This proves Theorem 4.2.
In conclusion, we prove geometrically that B(a) contains only
schlicht functions.

COROLLARY 4.3. B(x) contains only schlicht functions.

Proof. Suppose g € B(r) and g is not schlicht. For each 0 < » < 1,
let C(r) = {g(re””): 0 < 0 < 2r}, and let R = inf{r: C(r) is not a simple
curve}. Since ¢’(0) =1, it is clear that R > 0. Also, R < 1, since
it follows from the argument principle that there exists » < 1 such
that ¢ is not schlicht on [z]| = 7.

Consider now the curve C(R). Clearly C(R) is nonsimple, and ¢
is schlicht in {z: |z2| < R}. Hence we may choose w, 2, = Re®1, and
2, = Re': (with 6, < 6,) such that ¢g(z)) = ¢g(2,) = w, and such that the
curve C(R) is simple for 6e (@, 0,).

C(R)
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By Lemma 4.1 g is locally schlicht and vanishes only at the
origin, so from Theorem 4.2, with z = Re®,

8. 6.
(a — I)S:dargg + S:dargzg’(z) > -7,
1 1
8
However, by the choice of 4, and 0, we have S:d argg = 0, and so
1

[
(4.6) S:d argzg’ > —7.
1

But it is clear geometrically that between 6, and 6, the argument of
the tangent vector to C(R) turns back on itself by = radians, which
contradicts (4.6). Therefore g must be schlicht.
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