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A GENERALIZATION OF A THEOREM OF JACOBSON II

SUSAN MONTGOMERY

According to a well-known theorem of Jacobson, a ring
R in which xnlx) = x (n(x) an integer > 1) for each x in R
must be commutative. This paper completes the description
of rings with involution in which the above condition is im-
posed only on the symmetric elements. It is shown that in
any such ring, the Jacobson radical J(R) is nilpotent of index
3, and R/J(R) is a subdirect sum of fields and 2 x 2 matrix
rings. This had been shown previously under the assumption
that R was an algebra over a field of characteristic not 2.
In addition, it is shown that such a ring of characteristic 2
must actually be commutative. These results are best possible,
since if R is 2 torsion free, R need not be commutative unless
R is a division ring. Finally, using these methods, a conjec-
ture of Jacobson on restricted Lie algebras is confirmed in a
special case.

Denote the involution on i? by *, and let S = {x e R\x* = x} denote
the symmetric elements. We also define

(1) V = {x + x* \x e R}9 the "traces" in R and
(2) N = {xx*\xeR}, the "norms" in R.
Whereas in the characteristic not 2 situation the proofs depended

on the Jordan structure of R, in the characteristic 2 case we use the
Lie structure of R. Thus, consider R as a Lie ring with the product
[x, y] = xy — yxo A Lie subring of R is an additive subgroup of R
closed under [, ]β

The center of R will be denoted by Z*
We first examine the situation in characteristic 2, Since the

condition on elements of S may not be preserved in a homomorphic
image, it will be necessary to work with Lie subrings of S.

LEMMA 1, Let R be a ring in which 2x — 0, all xeR, and let
T be an additive subgroup of R such that s e T implies sn e T, all n.
Assume that sn(s) = s for all s e TO Then n(s) can be chosen to be a
power of 2.

Proof. Let s e T, and let n be the smallest integer > 1 such
that sn = So We claim that n is even. If not, n = 1 + 21, some I.
Then s1+n = s, so s2{l+1) = s\ But then (sι+1 + s)2 = 0, which implies
sι+1 = s, since sι+1 + se T and no nonzero element of T can be nilpotent.
By the choice of n, I + 1 ^ n = 1 + 2Z, a contradiction. Thus n is
even. But then there exists t so 2t = 1 (mod n — 1). It is easy to
check that s2t = s.
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LEMMA 2. Let R be a ring with * in which 2x = 0, all xe R.
Let T be a Lie subring of R such that SΞ2 TΞ2 F and that s2n{s) = s,
for every se T. Then

(1) Every symmetric idempotent is in Z
(2) A power of every element of T is in Z.

[ If also R is a prime ring, then
(3) Every nonzero element of T is invertible.

Proof. Let e = β2 be a symmetric idempotent. We show first
that e commutes with S. If not, choose s e S with [s, e] = r Φ 0.
Now r = se + (se)* eVQT, so r2/c = r, for some &. But [r, e] =
[[s, e], e] = [s, e2] = r, and so [r\ e] = [r, [r, e]] = [r, r] = 0; that is, β
commutes with r2

β But since r2?c = r, [r, e] = 0, a contradiction since
[r, e] = r Φ 0»

Now let x be any element of Rβ Since α; + x* e S, (x + x*)e =
e(x + α;*). Thus xe + ea; = ex* + α*e e S 5 so 0 = [xe + e.τ, β] = xe2 +
e2.τ - [x, e]. Thus e e Z.

If t e T, tn = t for some ^ o Then e = Γ"1 is a symmetric idem-
potent, so (2) follows from (1).

Now if R is prime, then Z consists of nonzero-divisors. Since by
part (2) a power (necessarily nonzero) of every element of T is in Zy

no nonzero element of T is a zero-divisorβ Since tn{t) = t, for each
t e T, this implies that every nonzero element of T is invertibleβ

LEMMA 3. Let R be a prime ring with * of characteristic 2, and
assume that sn{s) = s, all seS. Then R is afield algebraic .over GF(2).

Proof, From Lemma 1, s2n{s) = s for all se S and so by Lemma
2, every nonzero element of S is invertible. This implies that R is
a division ring. For if not, say xe R and # is not right invertible.
Then since xSx* ϋ S but xsx* cannot be right invertible, we have
xSx* = 0 . If y is any element of R, then x(y + ?/*).τ* = 0, so xyx* =
α52/*sc* and sĉ /α* e S. Again since x is not right invertible, xyx* = 0.
Since R is prime, αλRα;* = 0 implies x = 0. Thus any nonzero element
of R is invertible.

We can now apply [1, Theorem 1] to see that R is a field algebraic
over GF(2).

The next lemma is crucial in all that follows.

LEMMA 4. Let R be a prime ring with * of characteristic 2 in
which v2niv) — v, all veV. Then either

(1) R is a commutative domain
( 2) R is a division ring
(3) R = F2, the 2 x 2 , matrices over a field.
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Proof. Assume that R is neither a commutative domain nor a
division ring. Now if V — 0, x = x* for all x e R, and so R would
be commutative. But then since R is prime, R would be a domain,
a contradiction. Thus we may also assume that V Φ 0. Since R is
not a division ring, by the argument in Lemma 3 there exists se S,
s Φ 0 such that s is not invertible. However, it follows from Lemma
2 that every nonzero element of V is invertible. Since sVs £ V, sVs = 0
since every nonzero element of V is invertible. Thus R has zero-
divisors since V Φ 0.

We claim that R is simple. If not, let I Φ 0 be a proper ideal
and let J = IΓ\ I*. J Φ 0 since R is prime, so choose xe J, x Φ 0.
Then x* e J, so x + x* e J. This implies x + #* = 0, for otherwise /
would contain an invertible element. Thus x = £* all $ e J, and so
J is commutative. But this implies R is commutative, and so R is
an integral domain, a contradiction.

Next we show [V, s] = 0. If not, there exists v e V so vs + sv Φ 0.
Since vs + sv e V, (vs + sv)2ζ: = vs + sv, some A, and thus (vs + sv)n =
1 where % is odd. Expanding, since sVs = 0, we see that

(vs + sv)n = vsxvs + svysv = 1

where # and 7/ are monomials in s and v. But then s2 = s 1 s —
s(vsxvs + svysv)s — 0. Also [v, s]s = vs2 + svs = 0. Since [v, s] =
vs + sv is invertible, s = 0, a contraction. Thus [v, s] = 0β

Now if dimz .K > 4, then F generatates i? as a ring [7, Theorem
1] and so seZ. This is impossible since s2 = 0. Thus dimz R = 4
and R = F2 since i? is not a division ring.

We point out that the conclusions of Lemma 4 still hold if we
only assume that the nonzero elements of V are invertible. It then
follows that [5, Theorem 9, p. 3.32] can be generalized to assuming
only that the traces are invertible. However, the proof is more com-
plicated and the more general result is not needed here.

LEMMA 5. Let R be a prime ring with * of characteristic 2.
Let T be a Lie snbring of R such that S 3 T3ΛΓU V and fn{t) = t
for all te To Then either

(1) R = F, a field algebraic over GF(2) or
(2) R = JP2, the 2 x 2 matrices over such a field, with the sym-

plectic involution. In the second case, every element in T is a scalar
matrix.

Proof. By Lemma 2, every nonzero element of T is invertible.
Choose se S. Then s2 = ss* e iVg T, and so (s2)n = s2 for some n. If
s2 Φ 0, then s is invertible and so s2n~ι = s. Thus if s2 Φ 0 for all
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nonzero s e S, then R is a field by Lemma 3. We may therefore as-
sume that there exists s0 e S, sQΦ 0, with s2

0 = 0. Thus R is not a
domain. We could now conclude by a theorem on alternative rings
[5, Theorem 9, p. 3.32] that R must be F2 with the symplectic in-
volution. Instead, however, we show this directly by a simple com-
putation o

Since R is not a domain, R = F2 by Lemma 4. Note that * fixes
every element of F. For, say aeFand a Φ a*. Then as0 + (αs0)* =
(a + a*)soe 7 g T. Since every nonzero element of T is invertible,
(a + a*)sQ Φ 0 is invertible, a contradiction since sj = 0.

Now let e Φ 0, 1 be an idempotent in F2. Since e$F = Z, e* Φ e
by Lemma 2, and thus e + e* ^ 0. Since #e* and e*e are in T but
not invertible, eβ*= 0 = e*e. Thus (e + e*)2 = e + e*, and so e + e* = l,
by Lemma 2. That is, β* = 1 + e for every idempotent e Φ 0,1 in
.P2. In particular, consider the matrix units eih i — 1, 2. We have
β* = 1 + en = e22, and also e22 = en. Let t ing e — en + eί2, e* = 1 +

0ii + ei2 = 022 + 0i2 = en + 0i2 Also e* = e* + β12; combining these

statements, we have e*2 = e12. Similarly e* = β21. Thus * is the usual
symplectic involution; that is

a 6\* _ Id b

c d) \c α,

This means that

fa b
S =

\c a
Now for any se S, s2 is a scalar matrix, so any s which is not a scalar
matrix cannot satisfy s2% = s, for any n. Since by hypothesis se T
implies s2%κs} = s, every element of T is a scalar matrix.

As the first application of Lemma 5, we are now able to com-
pletely describe the situation in characteristic 2.

THEOREM 1. Let R be a ring with involution in which 2x = 0,
all x e R. Assume that sn{s) — s, all se S. Then R is commutative.
In fact, R is a subdirect sum of fields algebraic over GF(2).

Proof. First note that R is semi-simple. For, let J(R) be the
Jacobson radical of R. Then J(R) n S = 0, since a power of every
symmetric element is an idempotent. But if xeJ(R), then x*eJ(R),
and so x + x* e J(R) n S = 0. Thus x + £* = 0 , or x = x*. But then
xeJ(R) n S = 0 and so J{R) = (h

Since R is semi-simple, R is semi-prime and so R is a subdirect
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sum of its prime images. We will show that any prime image of R
is a field. Let P be a prime ideal of R.

First consider the case when P* g P. Then T = P + P*/P is a non-
zero ideal in R = i2/P. If α 6 P + P*, a? = a + δ, where aeP,be P*.
Then 6* e P. Now b + 6* = x + (δ*-α) Ξ α? (mod P); that is, every
element x e T is the image of a symmetric element of R, Thus
£*(*) _ %f a u ^ G Jy a n ( j s o J i s commutative by Jacobson's theorem
[4, p. 217]. Since R is a prime ring containing a commutative ideal,
R itself is commutative, and so an integral domain. But then every
nonzero element of 7 is invertible. Thus I = R and R is a field.

Next consider the case when P*ξΞ:P, In this situation R/P has
an induced involution given by (x + P)* = $* + P, for every element
£ = x + P of B/P. Let Γ denote the image in Λ of the symmetric
elements of R. By Lemma 1, s2n(s) = s for all seS, and so s2n(s) = s
for all seT. It is trivial that T satisfies the other hypotheses for
Lemma 5. Thus T is in the center of R.

Combining this with the case P*^P above, it must be that
SSZ. Choose x, yeR. Then x + x* eS^Z, so [x + x*, y] = 0, or
[x, y] = [x*9 y] all x, y e R since 2x = 0 in R. Thus [a?, #] = [x*9 y*] =
[α;, i/]*, all x, y e R and so [#, i/]GSg^; that is, every commutator is
in the center. This property must be preserved in any homomorphic
image of R. In particular, F2 cannot be a homomorphic image of R
(for, let x = elu y = e12; then [x9 y] =y$Z). Thus by Lemma 5, R/P
must also be a field when P* ξΞ: P.

We are now able to improve the main results of [6] by eliminat-
ing the assumption that R is an algebra over a field of characteristic
not 2,

THEOREM 2 O / / R is any ring with * such that sn{s) = s for all

s e S, then any primitive image of R is either a field or the 2 x 2

matrices over a field.

Proof. Let P be a primitive ideal of Ro If P*£P, then just
as in Theorem 1, R/P is a field. We therefore assume that P * s P ,
and so R/P has an induced involution

First consider the case when the characteristic of R/P is not 2.
Let x be a symmetric element of R/P. Then 2x = x + x* =~x + x* Φ 0,
and so (2x)n = 2x, some n > 1, since 2x is the image of a symmetric
element of R. Thus 2(2%"1x% - x) = 0, and so 2n~ixn = χo Since
x = 2?/, where y = y*, we must have ^m = x as above. Since every
symmetric element x of R/P satisfies xn{x) = xy R/P is a field or the
2 x 2 matrices over a field by [6, Theorem 1].

We may thus assume that R/P has characteristic 2, Let T denote
the image of the symmetric elements of R in R/P. By Lemma 1,
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s2n{s) = s for all s e T. It is trivial that T satisfies the other hypotheses
of Lemma 5, Thus RjP is a field or 2 x 2 matrices over a field.

THEOREM 3. Let R be a ring with in which sn{s) = s, all seS.
Denote the Jacohson radical of R by J(R). Then

(1) x e J(R) implies x2 = 0, and J(R)d = 0
(2) R/J(R) is a subdirect sum of fields and 2 x 2 matrix rings

over fields
( 3 ) R satisfies S4(xly x2, x3, x4)

2, where S4 denotes the standard
identity of degree 4.

Proof. (2) follows immediately from Theorem 3, since R[J(R) is
a subdirect sum of primitive images of R.

For part (1), first observe that S Π J(R) = (0), since a power of
every symmetric element is an idempotento But then if xeJ(R),
x + x* e J(R) n S = ( 0 ) , and so x* = — x. We claim that 2x = 0 implies
x — 0, all x e J(R). For if 2x = 0, then x = — x and so x* = x. Then
xeJ(R) Γl S — (0). (1) now follows from the characteristic not 2 case
[6, Theorem 2],

Since any 2 x 2 matrix ring over a field satisfies 84, R/J(R) satisfies
S4 But then S4(xly - , x4) eJ(R), all ^ , •• ,α?4ei2, and so &(#!, o β j
α;4)

2 - 0 by (2).

Before proceeding, we need the following theorem due to Herstein
(unpublished). It is a strengthening of [i, Theorem 1] in charac-
teristic 2o

THEOREM (Herstein). Let D be a division ring with * of charac-
teristic 2 such that vn(v) = v, all v e V. Then D is a field.

Proof. Choose v e V and let CD(v) denote the centralizer of v in
D. We claim that CD(v) is commutative. Now CD{v) is a division
ring closed under *. Let s e CD(v) n S. Then svs e V and so (svs)k =
svsf some k. Also vι = v, some I, so if we let n = (k — l)(l — 1) + 1,
we have both vn = v and (svs)n = svs. Since sv — vs, s2nvn — s2v, and
so s2n~ι = s; that is, s is periodic. By [1, Theorem 1], CD{v) is a field
algebraic over GF(2).

Now if Z Π V Φ 0, we would be done, for if v e Z f] V, v Φ 0 then
CD{v) — D is a field by the above. We may thus assume that Z Π
V = 0. Now choose v G F , v ί 2 . Since vk — v, some k, there exists
α e ΰ so ava~γ — vi Φ v by [2, Lemma 3.1.1]. Since conjugation by a
induces an automorphism of the finite field GF(2) (v), there is some
n so anva~n = v. This gives an e CD(v), and so a is algebraic over
GF(2). But now the subdivision ring generated by a and v over
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is finite, and so must be commutative by Wedderburn's theorem.
This contradicts avar1 Φ v. Thus it must happen that V — 0. This
implies DQS, and so D is commutative.

Note that the above proof works equally well if the division ring
has characteristic not 2 and V is replaced by the set of skew elements,
and so gives a simpler proof of [1, Theorem 3],

Using the theorem of Herstein, we can improve Lemma 4 to the
following:

LEMMA 6, Let R be a prime ring with * of characteristic 2 in
which v2nW = v, all ve V. Then R is a commutative domain or the
2 x 2 matrices over a field*

We now apply our results to a problem in Lie algebras. Jacobson
has made the following conjecture [3, p. 196]:

"If Jzf is a restricted Lie algebra of characteristic p such that

The following theorem confirms Jacobson's conjecture in a special
case.

THEOREM 4. Let S^ be a restricted Lie algebra of characteristic
2 such that a2n{a) = α, n(a) > 0 for all a e Jίf. Assume that Jέf has a
faithful (restricted) representation φ into RL, where R is an associa-
tive algebra with involution, such that φ(Sf) 2 V, the traces of R.
Then Sf is abelian.

Proof. To simplify notation, assume that ^f is actually contained
in RL. Let J(R) be the Jacobson radical of R. Then J{R) n ^f = (0),
since a power of every element of Sf is an idempotent in R. Thus in
R = R/J(R), £f = ΊF, where JSF = £f + J(R). We may therefore
assume that R is semi-simple. Then R is a subdirect sum of its
prime images, so let P be any prime ideal of R. We will show that
oSf, the image of Sf in R/P, is abelian.

Now if P* £P, then R/P is a field by exactly the same argument
as in Theorem 1. Thus, assume that P*ξiP. Let S1 denote the
symmetric elements of R/P, and let T =~ΊP> Π S,. Now T 3 F , and'
so by Lemma 6 either R/P is a field (and we are done) or R/P = F2,
2 x 2 matrices. To finish the Theorem, it will be enough to show
that any Lie subring A of F2 such that a2n{a) = a, all a e A, is abelian.

Choose a, be A. Then [α, b]2e Z (This is true for any commutator
in F2) and so [a, b] e Z since [a, b]2k = [α, 6], some k. Thus [[a, δ], a] =
0 = [δ, a2]; that is, δ commutes with α2. But a2k — a, some k, and
thus [δ, α] = 0. We have shown that A is abelian.
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It should be pointed out that R in Theorem 4 is not necessarily
commutative, as it may happen that φ{£f) does not contain all of S.
As an example consider F2, where F is algebraic over GF(2). With
the symplectic involution, V — {all scalar matrices}. If S^ — {al +
β(en + e12)\a, βeF), then ^f satisfies the hypotheses of Theorem 4
but S£j^ and ^ ^ S .

Note also that the converse of Theorem 4 is trivially true. For
if £? is abelian, let R be the u-algebra for £f [3, p. 192]. Then
the identity map is an involution on R (since R is commutative), and
V = {x + x*} = {x + ή = 0? s o ^ 3 F .

Added in ProofΌ I. No Herstein has now shown that Theorem 4
is true for any characteristic, if V is replaced by the skew elements
of R.
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