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EXISTENCE OF SPECIAL K-SETS IN CERTAIN LOCALLY
COMPACT ABELIAN GROUPS

FrRANK B. MILES

In all that follows, G is an infinite, nondiscrete, locally
compact 7, abelian group with character group X and 4 is a
nonempty subset of X. In a standard proof of the existence
of infinite (in fact, perfect) Helson sets (see for example
Hewitt and Ross) it is shown that each nonvoid open subset
of an arbitrary G contains a K-set (terminology of Hewitt
and Ross) homeomorphic to Cantor’s ternary set (or, in the
terminology of Rudin, a Kronecker set or a set of type K,
homeomorphic to the Cantor set). In this paper, it is shown
that K, ,sets or K, ,sets homeomorphic to the Cantor set
exist in profusion in a large class of infinite nondiscrete
locally compact T, abelian groups G, provided that 4 is not
compact. (A nonvoid subset E of G is called a K, ,-set if for
every continuous function from F to T, the circle group, and
every ¢ > 0, thereis a y<€ 4 such that | 7(ax) — f(x) | < e for all
xeE. Let a be an integer greater than one. A nonvoid
subset E of G is called a K, ,set if it is totally disconnected
and every continuous function on E with values in the set of
a th roots of unity is the restriction to E of some y€ 4.)

The following theorems will be proved.

THEOREM 1. Let G be compact. Let 4 be infinite. Suppose that,
except for the character which is identically 1, 447" comsists solely of
elements of infinite order. (This condition is satisfied automatically
if G 1is connected, for then X is torsion-free.) Then every monwvoid
open set in G contains a K, ,~set homeomorphic to the Cantor set.

THEOREM II. Let G be locally connected. Suppose that 4 is mot
compact. Then every nonvoid open set in G contains a K, -set home-
omorphic to the Cantor set.

THEOREM III. Let G be a compact torsion group. Let 4 be in-
finite. Then there is an integer a = 2 such that every momvoid open
set in G contains a translate of a K, -~set homeomorphic to the Cantor
set.

1. Preliminaries.

NoratioN 1.1. We denote Haar measure on G by m, with
m(G) = 1 when G is compact. When H is a subgroup of GG, we write
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d| gy for {v|g:ved}. M(P) denotes the set of all (finite) regular Borel
measures on the compact subset P of G.

C(A, B) denotes the set of all continuous functions from 4 to B,
where A and B are topological spaces. If B = C, the set of complex
numbers, we write C(4) instead of C(4, C).

Z is the group of integers. R is the group of real numbers. Q
is the (discrete) group of rational numbers. N is the set of positive
integers. When a is an integer greater than one, Z, is the additive
group of integers modulo @ and T, is the multiplicative group of ath
roots of unity.

1 is the identity element of X.

[1%:G. is the weak direct product of the groups G..

REMARKS 1.2.

(@) In §5, we give examples which show some of the limitations
of Theorems I, II, and III.

(b) The hypothesis on 44" in Theorem I is related to connected-
ness, as will be shown in Theorem 2.1.

(¢) When G is compact, a K, ,-set (or K, ~set) E is a 4-Helson
set—i.e., a set with the property that every f e C(E) has the form
f =gl for some ge L,(X) which vanishes off 4. When G is not
compact, a K, ,~set need not be a 4-Helson set as the example G =
X =R and 4 = Q shows.

(d) Our proof of Theorem II for the case where G is metrizable
uses a technique due to Kaufman, [6, p. 184-185 and 7]. The general
case follows from the case where G is metrizable and from Theorem
I. Our proofs of Theorems I and III depend on the notion of an
equidistributed sequence in a compact group. This notion for the
case G =T is due to Weyl [9]. The notion has been generalized by
Eckmann [2] and Hlawka [5]. Eckmann’s work offers more than
enough generality for our purposes; relevant parts are given below
in 1.3 and 1.4.

DEFINITION 1.3. Let H be a compact abelian group with Haar
measure i and p(H) = 1. Let {a;}7., be a sequence in H. For F C H,
let n(F') be the number of «; with index j < n which are in F. The
sequence {a,;}7, is said to be equidistributed in H if lim, .. n(F)/n =
t(F') for all closed F' with the property that s(boundary F') = 0.

THEOREM 1.4. Let H be a compact abelian group with Haar
measure ¢ and p(H) = 1. Let {a;}7-, be a sequence in H. The fol-
lowing are equivalent:

(1) {a;}7=. ts equidistributed in H;
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(ii) for every comtinmuous character v of H such that v =1, we
have lim,_. n " 27, v{a;) = 0.

REMARKS 1.5.

(@) In the proofs of Theorems I and III we will use the equiva-
lence of (i) and (ii) in Theorem 1.4 for the cases H=T and H =T,
respectively. If H = T we have Weyl’s original result: The sequence
{a;}7., C T is equidistributed in T if and only if lim, .. %' 2" af =0
for all nonzero integers » (or, equivalently, for all »eN) [9]. If
H =T,, we have: The sequence {a;}7., © T, is equidistributed in
T., if and only if for every integer »e{l1,2,---, & — 1} we have
lim, .. »n™" 27, af = 0.

(b) Eckmann’s definition differs from Definition 1.3 in that he
omits the restriction g(boundary F') = 0. This restriction is neces-
sary, as has been pointed out [3].

2. Proof of Theorem 1.

2.1. We first investigate the hypothesis on 447" in the statement
of Theorem I and find that it is related to connectedness.

THEOREM. Let G be compact. Let 4 be a countably infinite subset
of X. The following are equivalent:

(i) 4477\{1} comsists solely of elements of infinite order;

(i) @G contains a compact connected metrizable subgroup H with
the property that 0 — 0|, s a one-to-one map from 4 to the character
group of H.

Proof. (ii) implies (i): Let 0, and d, be distinect elements of 4.
Then 6,|,; # 0,|u, s0 6,07y #= 1. Since H is connected, its character
group is torsion-free. Hence, 0,0;'|, has infinite order and therefore
so does 4,07

(i) implies (ii): Let I” be a maximal torsion-free independent subset
of 4. (Clearly, 4 contains at most one element of finite order, so I”
is nonvoid.) We have I" = {v,, ---, 7,} for some positive integer p or
I ={v, ", ++-}. If I"is finite, let P = Q. If not, let P be the weak
direct product of countably many copies of Q. (In either case, P is
countable.) For neN (and n < p if I'" is finite) let e, be that ele-
ment of P with nth coordinate equal to 1 and all other coordinates
equal to zero. Let Y be the subgroup of X generated by 7. Since
I' is independent, the map v, — e, extends to a (one-to-one) homomor-
phism from Y to P. Since P is divisible, this homomorphism extends
to a homomorphism ¢: X — P. Hence W = X/ker ¢ is isomorphic to
a subgroup of P. Let H be the annihilator of ker¢ in G. Then H
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is a closed subgroup of G and has character group W, which is
torsion-free and countable. Hence, H is connected and metrizable.
Now 6,|y = 0,|5 if and only if §,0;' ¢ ker . Let d, and J, be distinct
elements of 4. It is sufficient to show that 6.0;'¢ ker ¢. Since I”
is a2 maximal torsion-free independent subset of 4, there exist nonzero
integers r, and 7, such that 6;: and 07z are in Y. Therefore there is
a nonzero integer » such that (6,0;)"e Y. By the hypothesis on 447,
we have (0,0;")"s 1. Since ¢ is one-to-one on Y, r$(5,0;") = ¢((0,05")")
is not the identity of P. Hence 6,0;' ¢ ker ¢ and the proof is complete.

LEMMA 2.2. Let G be compact. Let 4 = {v,, 7, +++} be a count-
ably infinite set of distinct elements of X arranged in any fixed order.
Suppose that A4~\{1} consists solely of elements of infinite order.
Then for m-almost all x € G, the sequence {v;(x)}7, s equidistributed
wn T.

Proof. Our proof follows Weyl [9]. For xe G, neN, and r<€N,
define f,.(x) = »™* X7, vi(¥). From our hypothesis on 44~ we find
that v5v; = 1 implies that v; = v,. Since G is compact, g v(@)dm(x) =
0 when v s 1. Thus, we have ¢

Salfnrlzdm = n_zgazy,k=17;(x)%5dm(x) =n"t.

Therefore we have X7, || fu,.1l2 < o and hence f,:,.(x) —0 as n— o
for m-almost all xe€G. Suppose that f,..(r) —0 as n— o for all
x¢ A, where m(4,) = 0.

For neN, let M(n) be the positive integer such that ¥ < n <
(» + 1), Then we have |nf,,. () — Mfe, (x)| < 2\ and hence

Furl@) — —j“—szﬂ,mc) <o .

Let ¢ > 0. Fix ¢ A,. Then there is a positive integer M such that
|fe,.(@)| < /2 whenever » = M. Let n = M? and =» > 16/’. Let A
be such that * < n < (A + 1). Then M/n =<1, 2/v'n < ¢/2, and N =
M?, so we have

Fur@)| < |furl) — gfzz,,w) + %fﬂ,xm)i <oPVW +e2<e.

Hence, f,.(x) —0 as n— o for all z¢ A4,.

Let A= UA,. Then m(4) =0 and for ¢ A we have for all
reN that f,.(x) -0 as n— . Therefore, by 1.5(a), {v;(®)}; is
equidistributed in T for all xz¢ A.
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LEMMA 2.3. Let G and 4 be as in Theorem 1. Let V, -+, V,
be nonvoid open subsets of G. Then there exist x;€ V;(1 <5 < k) with
the property that for every € > 0 and for all 2, +-+,2,€T there is a
ved such that |v(x;) — 2| <eQ=j7=k), i.e. there exist x;€V;
1 =37 =k) such that {x, ---, %} is a K, ,set.

Proof. We may suppose that 4 is countable. Let ¢€{1,2, ---, k}.
Let “P(g) holds for «,, --+, x,” mean “z; € V;(1 <5 < ¢q) and {x,, ---, 2}
is a K, set.” By Lemma 2.2, there is an x, € V, such that P(1) holds
for x,. Suppose that 1 <r <k — 1 and that P(r) holds for z, ---, z,.
It is sufficient to show there is an x,,, € V,,, such that P{r + 1) holds
forx, ---, %,.,. Let A ={weV,. ,|P@ + 1) does not hold for x, ---,
x,, w}. It is sufficient to show that m(A4) = 0. Let S be a countable
dense subset of T. Then we A if and only if we V,,, and there exist
peN and s, ---, 8,4, € S such that for all v e 4 either |v{(z;) — s;] = p™*
for some j(1 <7 < 7r) or |v(w) — s,4.| = p~t, i.e.,, we have

A = Usen Usles s Usrﬂes A(p, 51, ++*, 8r11)

where A(p, s, *++, 8,01) = Nres (W€ Vot [Y(¥) — 8,41] = »7* or at least
one [Y(x;) — s;] = 7}
Let

Ap, s, =0y8) ={ved:|v(@) —s;| <p,1=j =<r}.
Then we have

A(p’ Sly ccc, 87‘+1)
={ye Vot [7(y) — 8,5:] = p7* for all ved(p, s, -+, s,)} .

Hence, it is sufficient to show that each A(p, s, ---, s,) is infinite (for
then, by Lemma 2.2, each A(p, s, +-+, s,.,) is m-null and therefore
so is A).

We assume that for some peN and s, ---,s,€S the set 4=
A(p, s, +++,s,) is finite and use this to obtain a contradiction. A basic
neighborhood of the point z = (2, -+, 2,) € T™ has the form B(z,¢) =
fw=(wy, -+, w,): |2, — w;| <e,1<j5 =7} for some ¢ >0. Let s=
(s, *++,8)and x = (¢, -+, 2,). For ved4, let v(x) = (¥(z), -+, 7(z,)).
If J is finite, then {ye 4|v(x) € B(s, p™')} is finite. Then there exist
ze B(s,p™ and € >0 be such that B(z, ¢) c B(s, p™) and B(z, ¢) is
disjoint from {v(x)|ve 4}. This contradicts the induction hypothesis
that P(r) holds for x, ---, #,.

THEOREM 2.4. Theorem I holds when G is metrizable.

Proof. Repeat the proof of [4, (41.5), part I] choosing all charac-
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ters in 4 and using Lemma 2.3 whenever [4] uses [4, (41.3)].

THEOREM 2.5. Let G and 4 be as in Theorem I. Let U be a
neighborhood of the identity in G. Then U contains a K, ,~set home-
omorphic to the Cantor set.

Proof. By Theorem 2.1, G contains a compact connected metriz-
able subgroup H with the property that I" = 4|; is infinite. Let
V = UnN H. Since H is connected, its character group is torsion-free.
Hence, by Theorem 2.4, V contains a K, -set P homeomorphic to the
Cantor set. Clearly, P is a K, ,set contained in U.

THEOREM' 2.6. Let P be a compact metrizable K, ,set in G,
where G 1is compact and A447\{1} consists solely of elements of infinite
order. Then for almost all xe€ G, zP is a K, ;set.

Proof. Let {fi, f -} be a (uniformly) dense subset of C(P, T).
For each j, there is a sequence {v;;}i>, of elements of 4 such that
v:;; —f; uniformly on P. By Lemma 2.2, there is an m-null set 4;
such that {v,;(x)}, is equidistributed in T whenever zec G\A4;. Let
A = UA;. Then A is m-null. Let e G\A. For each j, let g;(xy) =
fi(y). To show that zP is a K, ,set, it is sufficient to show that each
g; is uniformly approximable by {v;;:4,7 =1,2, ---}. Let ¢ > 0. Fix
j. Then for some 4, we have |v;;(y) — f3(y)| < ¢/2 for all y € P when-
ever 1 > 1, and, since {v;(x)}, is equidistributed in T, there is an
1 > 1, such that |v;(x) — 1| <e/2. For this ¢ we have |v;(xy) —
gi(xy)| < e for all ye P.

Proof of Theorem 1. 2.7. Immediate from Theorems 2.5 and
Theorem 2.6.

3. Proof of Theorem II.

THEOREM 3.1. Let G be locally conmnected. Let 4 be such that
4 is not compact. Let U be a meighborhood of the identity in G.
Then there is a v in 4 such that v(U) = T.

Proof. The topology on X is the restriction of the compact-open
topology on C(G) to the (closed) subspace X of C(G). Hence, 4 is

! In the original version of this paper, the conclusion of Theorem I was as follows:
Every open set in G containing an element of finite order contains a Kpj,s-set homeomor-
phic to the Cantor set and, if G is metrizable, every nonvoid open set in G contains a
Ko, s-set homeomorphic to the Cantor set. Theorem 2.6 and the stronger version of
Theorem I which it yields are due to Robert Kaufman [private communication, December,
1971].
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compact as a subspace of X if and only if it is compact as a subspace
of C(G) with the compact-open topology. Since by hypothesis 4 is
not compact, it follows from Ascoli’s Theorem that 4 is not equicon-
tinuous [1, p.267] and, hence, that 4 is not equicontinuous at the
identity of G. Therefore, there exists ¢ > 0 such that for every
neighborhood W of the identity in G, there is an x¢ W and a ve 4
such that |v(x) — 1] =e. Let S = {e*|0 < ¢ <¢/2}. Let M be a posi-
tive integer with the property that S¥ = T. Let V be a connected
neighborhood of the identity in G such that V¥ c U. Then there
exist e V and ve 4 such that |v(z) — 1| = e. Hence, ¥(V) contains
an arc of length at least ¢. Therefore we have T = v{V)* cy(U) < T.

THEOREM 3.2. Let G be locally connected and metrizable. Let
4 be such that 4 is not compact. Let E be a compact totally discon-
nected subset of R or T. Then there is a first category set H C(E, G)
such that each fe C(E, G)\H maps E homeomorphically onto a K, -set
m G.

Proof. Our proof follows the ideas of Kaufman [7] as given by
Katznelson [6, p. 184-185].

For he C(E,T), fe C(E, G), and ¢ > 0, let “(*) holds for &, f and
€” mean “there is a v e 4 such that [v{f(y)) — h{y)| < ¢ for all ye E.”
Let fe C(E, G). Clearly, fis a homeomorphism of E onto f(&) if and
only if f is one-to-one. Also, if f is not one-to-one, it is clear that
there exist he C(E, T) and ¢ > 0 such that (*) fails for A, f, and e.
Hence, f is a homeomorphism of E onto f(E) and f(E) is a K, ,set
if and only if for every heC(E, T) and every ¢ > 0, (*) holds for
h, f, and e.

Let d be an invariant metric on G compatible with the topology
of G. For f and g in C(E, G), let D(f, gy = sup {d{(f(y), 9{v})|ye E}.
Observe that D(f, g) < - since E is compact.

Let heC(E,T),geC(E, G},e >0, and n > 0. We now show that
there exist an feC(E, G) such that (*} holds for &, f, and ¢ and
D{(f, 90 <#. Let U bz the open »-ball about the identity ¢ of G. By
Theorem 3.1, there is a v€ 4 such that v(U) =T. Write £ = J~.E;,
where the FE; are disjoint nonvoid open-closed subsets of E and vog
and & both vary by less than ¢/8 on each E,. (The E; exist since
E is totally disconnected.; Let %;¢ E; and suppose that v{g(y,)) = «;
and hly;) = B;, 1 =j < n. Let ;¢ U be such that v{z;) = «,;3;. Define
feC(E G) by fly) = »;9(y) when ye E;. We see that D{(f,g; =
max {d{x;, e)} < 7 and for y e E; we have

IY{f () — | = [v{glyiv@) — v{gly)ve)]
gy () — By | + [h(y) — hy)| < % + 0+ % <e.
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Hence, (*) holds for A, f, and e.

For he C(E,T) and ¢ > 0, let H(h,¢) = {f € C(E, G)| (*) fails for
h,f, and ¢}. It is easy to show that H(h,e) is closed. By the pre-
ceding paragraph, H(h, ) is nowhere dense in C(E, G). Let {h,}r,
be dense in C(E,T). Let H = Uj,-, HMh,,1/k). Then H is a first
category set in the complete metric space C(E, G). Also, we have
feC(E, GY\H if and only if every he C(E, T) can be uniformly ap-
proximated by veo f’s (v e 4), which by the second paragraph of the
proof is true if and only if f is a homeomorphism and f(F) is a

Ko,d'set-
THEOREM 3.8. Theorem II holds when G is metrizable.

Proof. Let U be a nonvoid open subset of G. Let E be the
Cantor set. Let H be as in Theorem 3.2. The result follows from
Theorem 3.2 since C(E, U) is open in C(K, G) and C(E, G)\H is dense
in C(E, @).

THEOREM 3.4. Let G be locally conmnected. Then G is topologic-
ally isomorphic with D x R™ x K, where D 1is discrete, » is a mon-
negative integer, and K 1is a compact, conmnected, locally conmnected
abelian group.

Proof. Let C be the component of the identity in G. Then G
is topologically isomorphic with (G/C) x C. Since G/C is totally dis-
connected and locally connected, it is discrete. Since C is connected
and locally connected, it is topologically isomorphic with R” x K,
where % is a nonnegative integer and K is compact, connected, and
locally connected.

Proof of Theorem II. 3.5. By Theorem 3.4, we may suppose
that G = H x K, where H is locally connected and metrizable and
K is compact, connected, and locally connected. We then have X =
Y x F, where Y and F' are the character groups of H and K, respec-
tively. Let U be a nonvoid open subset of G. We may suppose that
U=V x W, where V and W are nonvoid open subsets of H and K,
respectively. We denote elements of X by (a, 8), where e ¥ and
BeF. Let I' ={geF|(a, B)c 4.

Case 1. I' is finite: There is a B,€ /" such that {(a, B, € 4}~ is
not compact in X. Let 4, = {ae Y|(«a, B,) € 4}. Then 4; is not com-
pact in Y. Hence, by Theorem 3.3, V contains a K, -set P home-
omorphic to the Cantor set. Let ze W. Then P x {z} is a K ,set
in U homeomorphic to the Cantor set.
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Case 2. I isinfinite: Let xe V. Let {(a,, Bx)}ln-1 be a sequence
in 4 such that the g, are distinct and such that a,(®) —seT as
m— co. Let 4, = {B.}o-.. Since 4, is infinite and K is compact and
connected, W contains a K, ,-set P homeomorphic to the Cantor set
by Theorem I. Then {x} x P is a K, ,set in U homeomorphic to the
Cantor set.

4. Proof of Theorem III.

LEMMA 4.1. Let k be an integer greater than one. Let G be
the product of infinitely many copies of T.,. Let 4 be an infinite
subset of X and suppose there is an integer a greater tham one such
that all elements of 4 have order a and that whenever v, and v, are
distinet elements of 4, then v.v;* has order a. Then for every sequence
do = {V1, Vs, +++} of distinet elements of 4, the sequence {7;(x)}7=, 18
equidistributed in T, for m-almost all x < G.

Proof. Forref{l,2,.--,a— 1} and neN, let f,.(x) = 1/n 37, vi(x).
By our hypothesis on 4, v; # v, implies that (v,77")" = 1. Also, since

G is compact, g Y(x)dm(x) = 0 when v = 1. Hence we have
G

SGJ Forldm = n‘ngZ;?,l=ﬁ§(x)3'{_(_aE§dm(x) = nt.

We thus have 37, ||f,e-|2 < o and hence f,,. (x)—0 as n— o for
m-almost all x € G. Suppose that f,..(x) —0 as n— o for all z¢ A4,,
where m(A4,) = 0. The device used in the proof of Lemma 2.2 yields
Sur(®) — 0 as n— o for x¢A,. Let A= UZtA,. Then m(A) =0
and for ¢ A we have for all re{1, 2, ---, a — 1} that f,.(x) — 0 as
n — oo. Therefore, by 1.5(a), {v;{x)}7-, is equidistributed in T, for
all x¢ A.

LEMMA 4.2. Let k,G, 4, and a be as in Lemma 4.1. Let
Vi, +++, V., be nonempty open subsets of G. Then there are x;€ V(1 =
J < n) such that {x,, ---, ®,} ts a K, ;-set.

Proof. For a positive integer q, y,, ---, ¥, € T(a)» and w; e V;(1 <
I=q), let Ay, ooy ypy wyy oo, w) = {ved|v(w) =y;,,1<j <q}. By
Lemma 4.1, there is an z, € V, such that for all y, e T, 4(y,, #,) is
infinite.

Let re{1,2, --+, n — 1} and suppose that x;¢ V;(1 <5 < r) have
been found with the property that for all y, ---, y, € Tw), 4(¥s, ***, Y
%, +++,x,) is infinite. Fixing (v, ---, y,) € T%, and applying Lemma,
4.1 with 4(y,, -+, y,, 2, +++, 2,) in place of 4, we find that m-almost
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all xe V,,, have the property that for all ,.,€T.), 4, **, Yris
2, -+, %, «) is infinite. Hence, m-almost all x € V,,, have the property
that forall , +++, ¥,1. € Ty, 4y, *+, Yprs, @1, *++, %,, ) is infinite. In
particular, an x,,,€ V,,, with this property exists.

Hence, by induction, there are ;e V;(1 <j < n) such that for
ally, «+-, y.€Tw), 4¥s, ***, Y, 2, =+, x,) is infinite and, in particular,
nonvoid. Hence, {z,, ---, 2,} is a K, ,-set.

THEOREM 4.3. Let k, G, 4, and a be as in Lemma 4.1. Let G
be metrizable. Let U be a nonvoid open subset of G. Then U con-
tains a K, ,set homeomorphic to the Cantor set.

Proof. Repeat the proof of [4, (41.5), part III], choosing all
characters in 4 and using Lemma 4.2 whenever [4] uses [4, (41.4)].

REMARK 4.4. We now proceed to reduce Theorem III to the case
described in Theorem 4.3.

LEMMA 4.5. Let k be an integer greater than one. Let X be
the weak direct product of imfinitely many copies of T,. Let 4 be
an infinite subset of X. Then there exist an integer a = 2 and an
infinite subset I of 4 with the property that whenever v, and v, are
distinct elements of I', then v ¥;' has order exactly a.

Proof. We remark that this result is trivial if &k is prime. (Take
a=Fkand I" = 4.)

Let b=k and 4,= 4. Let v,e4,. Let I'y = {v.a '|ac 4}. Since
I", is infinite, there is an integer b, 2 < b, < b,, such that I", contains
infinitely many elements of order b,. Let 4, = {a € 4,|v,&™" has order
b}. Suppose that zeN and that v, -+, v,, "y, *++, [y, b,+--, b, and
4y, +++, 4, have been found such that for 1 <j < n we have (i) v;¢
4; 4, I'; = {v;a~'|ae 4;_}, I'; has infinitely many elements of order b;,
2<0b; <b;_,, and 4; = {ae d;_|v;a " has order b;}. Observe that from
(i) it follows that (ii) for 1 < j < », we have 7v; ¢ 4; so 4, is a proper
infinite subset of 4,_, and the v; are distinct.

Let v,.,e4,. Let I',,, = {v,..a'laed,}. Since I",,, is infinite,
there is an integer b,,, with 2 <b,,, < b, such that I",., contains
infinitely many elements of order b,,,. Let 4,., = {ae 4,|7,..a™" has
order b,.,}. Thus, we can define v,, I",, 4,, and b, for all neN in
such a way that properties (i) hold for all ». Since {b,} is a monotone
nonincreasing sequence of integers greater than one, there exist posi-
tive integers » and a such that b, =a for all n >r». Let I' =
{Y,+nln e N}. We show that 7" and a are as demanded. Let #, and
#, € N with n, > n,. Then, by construction of the 4,, we have Ve, €
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i1 C4yiny SO Vypn,Vria, has order b,.,, = a.

LEMMA 4.6. Let k be an integer greater than ome. Let I be
an infinite index set and let X = [[%,;G., where each G, is a copy
of T.,. Let 4 be an infinite subset of X. Then there exist an integer
a =2 and an infinite subset 4, of 4 and a finite (possibly empty)
subset I, of I such that projection. of 4, onto Y = [[/.n;,G. gives an
infinite subset A, of Y consisting solely of elements of order a and
such that whenever v, and v, are distinct elements of zTo, 7Yt has

order a.

Proof. By Lemma 4.5, there exist an integer a, = 2 and an in-
finite subset 77, of 4 such that whenever v, and v, are distinet ele-
ments of 7, v,v;' has order a,. Let I’, be an infinite subset of I,
consisting of elements all of the same order b,. It is clear that b, = a,.
(If v, and 7, are distinct elements of I°,, then 7,v;' has order at most
b. But v,7' has order a,.) If b, = a,, we are done. (Take I, = @,
4,=T,, and a = a,.) Suppose b, > a,. Let ¥, el',. There is a finite
subset I, of I such that the ¢th coordinate of ¥, is the identity of
G, for ¢e 1. %et X, =11/, G. Since I, is finite and I, is infinite,
projection of I, onto X, (denoted by 7,) gives an infinite subset 4, of
X, consisting of elements of order at most a,. (For ael’,, order of
m(a) in X, = order of w (a7} in X, < a,.) Applying Lemma 4.5 to
X, and 4, we get an integer a, with 2 < a, < @, and an infinite subset
I, of 4, such that whenever v, and v, are distinct elements of I7,
then v,7;* has order a,. Let I°, be an infinite subset of I, consisting
of elements all of the same order b,. Then we have a, < b, < a, < b,.
If a,=0b, we are done. (Take I,=1I1,a=a, Y =X, and 4,=
fae d|mla)e I’} Suppose a, < b, =a, <b. Pick %,¢ Iy let I, =
{ceI\I,| ¢th coordinate of ¥, is not the identity of G.}; project I,
onto X, = [I;inuumy G -+ ete. We must eventually have b, =a,
for some n (otherwise, {b,} would be an infinite strictly decreasing
sequence of positive integers). For that n, we have a finite subset
I,=I,U +-+ UI,, of I and an infinite subset I, of Y = Ins, G.
such that all elements of I°, have order a, = b, and such that when-
ever v, and v, are distinct elements of r . 775" has order a,. Let
4, = {ae d|n(a) e I',), where m is the projection of X onto Y.

THEOREM 4.7. Let k be an integer greater than one. Let G =
1l.c: G., where each G, is a copy of T, and I is infinite. Let 4 be
an tnfinite subset of X. Then there is an integer a greater than one
such that every meighborheod of the identity of G contains a K, -set
homeomorphic to the Cantor set.
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Proof. We may suppose that 4 is countable. We identify X
with [[%,G.. Let a, I, Y, and 4, be as in Lemma 4.6. Let I, =
{ce I\I,| some e d, has ¢th coordinate different from the identity of
G}. Plainly I, is countably infinite. Let I, = I\([,U I,). Let G, =
Il.c;;G, and let G; have character group X;, j =0,1,2. Since I, is
countable, G, is metrizable. Since I, is finite, G, is finite. Let I,
be the image of the projection of 4, onto X,. We may suppose that
our neighborhood of the identity of G has the form U = {e} X V, x V,,
where ¢, is the identity of G, and V; is open in G;,j = 1,2. Apply-
ing Theorem 4.3 to k, G, I",, and a, we find a subset P, of V, home-
omorphic to the Cantor set which is a K, ,-set. Let P= {e} X P, x {e;},
where ¢, is the identity of G,. Then P is a K, ,-set in U homeomorphic

to the Cantor set.

Proof of Theorem III. 4.8. If G is a compact torsion group,
then there are integers r,, -+, r, greater than one and disjoint infinite
index sets I, ---, I, and there is a finite abelian group F' such that
G is topologically isomorphic to F' X G, X -+« X G,, where G; = [].. K.
and each K, is a copy of T, when cel; 1=j=¢q). Let G, have
character group X; (1 <j <¢q). Then for some j, the image I of
the projection of 4 onto X is infinite. Let a be as in Theorem 4.7
applied to G;, X;, and I". Let U be a neighborhood of the identity
of G. We will prove that U contains a K, ;set homeomorphic to the
Cantor set. Clearly, this will establish Theorem III. We may suppose
that U has the form {e;} x U, X --- X U,, where ¢, is the identity
of F and U; is a neighborhood of the identity e¢; of G; (1 =j =< g).
By Theorem 4.7, U, contains a K, set P; homeomorphic to the
Cantor set. Let

P ={ep} X {e} X «o+ X {ej1} X Pjy X {ejp} X +o+ X {eg} «

Then P is a K, set in U homeomorphic to the Cantor set.

5. Examples.

5.1. The hypothesis that 4 is not compact is necessary in Theorem
II. If 4 is compact, then there is a nonempty open Uc G which
contains no K, ,set and no K, ~-set for any integer a = 2. Indeed,
let U={weG:|v(®) — 1] <1 forall yed}. Then U is an open neigh-
borhood of the identity in G and Re~v{x) > 0 for all xe U and all
ve4d. Hence, the function —1 cannot be matched within 1 on any
nonvoid subset of U by any ve 4, nor can the function w, (where
®, is an a th root of unity with Re w, < 0) be matched on any nonvoid
subset of U by any ve 4 for any integer a = 2. Hence, no subset
of U is a K, ,set or a K, ,set.
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5.2. The phrase “a translate of” is a necessary part of the con-
clusion of Theorem III, as is shown by the following example. Let
G = T, X H, where H is the product of infinitely many copies of
Ts. Write X = Z, X Y, where Y is the character group of H. Let
4={1} x Y. Let U= {~1} x H. Then Uisopen in G and v(x) € — T
for all xe U and all ve4, so the constant function 1 cannot be
matched on any subset of U by any ve 4. Hence, no subset of U is
a K, ,set for any integer a = 2.

5.3. The hypothesis that G is a compact torsion group in Theorem
III cannot be weakened to the hypothesis that G is compactly gener-
ated and contains a compact open torsion subgroup. For example,
let H be an infinite compact torsion group and let G = Z x H. Take
4 =T x {e} (where e is the identity of the character group of H)
and U = {0} x H. Then v{®) =1 for all e U and all vye 4. Hence,
whenever Pc G is such that a translate of P is contained in U, we
have v constant on P. Therefore, no such totally disconnected P
containing more than one point can be a K, ,set for any integer
a=2.

5.4. The hypothesis of local connectedness or something closely
related to connectedness (cf. Theorem 2.1) in Theorems II and I re-
spectively cannot be weakened to the hypothesis that G is not a
torsion group. Indeed, there exist a compact metrizable group G
which is not a torsion group and an infinite subset 4 of X such that
G contains no K, ,-set. For example, let G = [, T(sjy- Then, writ-
ing X = [1}52Z,; and letting 4 = {v,, s, +++} where v; has jth coor-
dinate equal to 7 and the rest zero, we have v;(x) = + 1 for all ze G
and all j, so every nonempty subset of G fails to be a K, ,-set.

Also, there exist a compact metrizable group G which is not a
torsion group and an infinite subset 4 of X such that no subset of
G containing more than one point is a K, ,-set for any integer a = 2.
Let G = [I7- T, where p; is the jth prime. Write X = [[}5Z,,
and let 4 = {7, 7., +++} where v; has jth coordinate equal to 1 and
the rest zero. Let P be a subset of G containing at least two points.
Let « =2 be an integer. We will show that P is not a K, ,set.
Let p, be a divisor of a. The open-closed sets in G form a basis for
the topology of G, so there are two distinct T, -valued (and, hence,
T, -valued) continuous functions, f; and f,, on P both different from
1. If either f; is matched on P by some v;, it must be matched by
v, since no other 7; attains values in T, different from 1. Thus
either f, or f; is a T -valued continuous function not matched on P
by any v,;. Hence, P is not a K, ;-set.
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