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EXISTENCE OF SPECIAL if-SETS IN CERTAIN LOCALLY
COMPACT ABELIAN GROUPS

FRANK B. MILES

In all that follows, G is an infinite, nondiscrete, locally
compact To abelian group with character group X and Δ is a
nonempty subset of X. In a standard proof of the existence
of infinite (in fact, perfect) Helson sets (see for example
Hewitt and Ross) it is shown that each nonvoid open subset
of an arbitrary G contains a i^-set (terminology of Hewitt
and Ross) homeomorphic to Cantor's ternary set (or, in the
terminology of Rudin, a Kronecker set or a set of type Ka

homeomorphic to the Cantor set). In this paper, it is shown
that iΓ0,j-sets or iΓα,j-sets homeomorphic to the Cantor set
exist in profusion in a large class of infinite nondiscrete
locally compact To abelian groups G, provided that Δ is not
compact. (A nonvoid subset E of G is called a i£o,j-set if for
every continuous function from E to T, the circle group, and
every ε > 0, there is a γ e Δ such that | γ(x) — f(x) \ < ε for all
xe E. Let a be an integer greater than one. A nonvoid
subset E of G is called a iΓα,j-set if it is totally disconnected
and every continuous function on E with values in the set of
a th roots of unity is the restriction to E of some γ £ Δ.)

The following theorems will be proved.

THEOREM I. Let G be compact. Let A be infinite. Suppose that,
except for the character which is identically 1, AA~λ consists solely of

elements of infinite order. {This condition is satisfied automatically

if G is connected, for then X is torsion-free.) Then every nonvoid

open set in G contains a K0,Γset homeomorphic to the Cantor set.

THEOREM II. Let G be locally connected. Suppose that A is not

compact. Then every nonvoid open set in G contains a K0}Γset home-
omorphic to the Cantor set.

THEOREM III. Let G be a compact torsion group. Let J be in-

finite. Then there is an integer a^2 such that every nonvoid open

set in G contains a translate of a Ka>Γset homeomorphic to the Cantor

set.

1* Preliminaries*

NOTATION 1.1. We denote Haar measure on G by m, with
m(G) — 1 when G is compact. When H is a subgroup of G, we write
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A\H for {y\H:yeA}. M{P) denotes the set of all (finite) regular Borel
measures on the compact subset P of G.

C(A, B) denotes the set of all continuous functions from A to B,
where A and B are topological spaces. If B = C, the set of complex
numbers, we write C(A) instead of C{A, C).

Z is the group of integers. R is the group of real numbers. Q
is the (discrete) group of rational numbers. N is the set of positive
integers. When a is an integer greater than one, Zα is the additive
group of integers modulo a and T(β, is the multiplicative group of αth
roots of unity.

1 is the identity element of X.
ΠfezG, is the weak direct product of the groups Gc.

REMARKS 1.2.

(a) In § 5, we give examples which show some of the limitations
of Theorems I, II, and III.

(b) The hypothesis on AA~ι in Theorem I is related to connected-
ness, as will be shown in Theorem 2.1.

(c) When G is compact, a iζ^-set (or Ka>Γset) E is a z/-Helson
set—i.e., a set with the property that every feC(E) has the form
/ = g\E for some g e Lt(X) which vanishes off A. When G is not
compact, a Z"0,j-set need not be a z/-Helson set as the example G —
X — R and A — Q shows.

(d) Our proof of Theorem II for the case where G is metrizable
uses a technique due to Kaufman, [6, p. 184-185 and 7]. The general
case follows from the case where G is metrizable and from Theorem
I. Our proofs of Theorems I and III depend on the notion of an
equidistributed sequence in a compact group. This notion for the
case G = T is due to Weyl [9]. The notion has been generalized by
Eckmann [2] and Hlawka [5]. Eckmann's work offers more than
enough generality for our purposes; relevant parts are given below
in 1.3 and 1.4.

DEFINITION 1.3. Let H be a compact abelian group with Haar
measure μ and μ{H) — 1. Let {a3)°-=1 be a sequence in H. For F czH,
let n(F) be the number of a3- with index j ^ n which are in F. The
sequence {αy}°°=i is said to be equidistributed in H if lim^^ n{F)jn =
μ(F) for all closed F with the property that ^(boundary F) = 0.

THEOREM 1.4. Let H be a compact abelian group with Haar
measure μ and μ(H) — 1. Let {<Xj}J=ι be a sequence in H. The fol-
lowing are equivalent:

(i) {<Xj}J=i is equidistributed in H;
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(ii) for every continuous character 7 of H such that 7 ^ 1 , we
have lim^^ n"1 Σ]=1 7(<x, ) = 0.

REMARKS 1,5.

(a) In the proofs of Theorems I and III we will use the equiva-
lence of (i) and (ii) in Theorem 1.4 for the cases H = T and H = T(α)

respectively. If H = T we have Weyl's original result: The sequence
{ad}f=1 c T is equidistributed in T if and only if lim^^ n"1 27=1 ar

ό — 0
for all nonzero integers r (or, equivalently, for a l l r e N ) [9] If
jH r=T ( β ), we have: The sequence fe}^ c T(ffi) is equidistributed in
T(α) if and only if for every integer r e {1, 2, , a — 1} we have
lim*^ n~ι Σ%x a

r

ό = 0.
(b) Eckmann's definition differs from Definition 1.3 in that he

omits the restriction ^(boundary F) = 0. This restriction is neces-
sary, as has been pointed out [3].

2* Proof of Theorem I*

2.1. We first investigate the hypothesis on ΔΔ~ι in the statement
of Theorem I and find that it is related to connectedness.

THEOREM. Let G be compact. Let Δ be a countably infinite subset
of X. The following are equivalent:

(i) z/z/ f̂l} consists solely of elements of infinite order]
(ii) G contains a compact connected metrizable subgroup H with

the property that δ —>δ\H is a one-to-one map from Δ to the character
group of H.

Proof, (ii) implies (i): Let δ1 and δ2 be distinct elements of Δ.
Then δx\u Φ δ2\H, so δ ^ 1 ^ ^ 1. Since H is connected, its character
group is torsion-free. Hence, δ^1^ has infinite order and therefore
so does δfiϊ1.

(i) implies (ii): Let Γ be a maximal torsion-free independent subset
of Δ. (Clearly, Δ contains at most one element of finite order, so Γ
is nonvoid.) We have Γ = {yly , 7P} for some positive integer p or
Γ - {%, 72, •}. If Γ is finite, let P - Q3*. If not, let P be the weak
direct product of countably many copies of Q. (In either case, P is
countable.) For n e N (and n g p if Γ is finite) let en be that ele-
ment of P with nth coordinate equal to 1 and all other coordinates
equal to zero. Let Y be the subgroup of X generated by Γ. Since
Γ is independent, the map yn —* en extends to a (one-to-one) homomor-
phism from Y to P. Since P is divisible, this homomorphism extends
to a homomorphism ψ:X—+P. Hence W = X/keτφ is isomorphic to
a subgroup of P. Let H be the annihilator of ker φ in G. Then H
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is a closed subgroup of G and has character group W, which is
torsion-free and countable. Hence, H is connected and metrizable.
Now δtlx = δ2\H if and only if δβ"1 e kerφ. Let δx and δ2 be distinct
elements of A. It is sufficient to show that δjίς1 £ kerφ. Since Γ
is a maximal torsion-free independent subset of A, there exist nonzero
integers rx and r2 such that δp and <%2 are in Y. Therefore there is
a nonzero integer r such that (δ^1)1" e Y. By the hypothesis on Jz/"1,
we have (δ&y^l. Since 0 is one-to-one on Y, rφiδβ"1) = φdδ&ψ)
is not the identity of P. Hence S ^ 1 g ker ̂  and the proof is complete.

LEMMA 2.2. Let G be compact. Let A = {yu γ2, •••} be a count-
ably infinite set of distinct elements of X arranged in any fixed order.
Suppose that AA"1^} consists solely of elements of infinite order.
Then for m-almost all xeG, the sequence {7i(α?)}5U is equidistributed
in T.

Proof. Our proof follows Weyl [9]. For xeG, neN, and r e N ,
define fnr(x) — n~ι Σ%γη

r

ά(x). From our hypothesis on A A"1 we find

that jfΫζ = 1 implies that 7; = 7*. Since G is compact, 1 y(x)dm(x) =
JG

0 when 7 ^ 1 . Thus, we have

\fnr\
2dm = n~A Σl^arMΊΪ(x)dm{x) = n~ι .

JG

Therefore we have J?~=i ll/nvlll < °° a n d hence fni,r(x) —>0 as n—> oo
for m-almost all xeG. Suppose that fn2>r(x) —>0 as ^ι~> oo for all
a ί i r where m(Ar) = 0.

For n G N, let λ(w) be the positive integer such that λ2 ^ ^ <
(λ + I)2. Then we have | nfnr{x) - X2fλ2,r(x) \ ̂  2λ and hence

V.
n

^ 2/ i/¥ .

Let ε > 0. Fix x g Ar. Then there is a positive integer M such that
1/krOO i < ε/2 whenever λ ^ M. Let n ^ M2 and w > 16/ε2. Let λ
be such that λ2 ^ n < (λ + I)2. Then X2/n ̂  1, 2/τ/^Γ < ε/2, and λ2 ^
ikf2, so we have

n"1 - | Λ*.r(») I < 2/V^ + ε/2 < B .
n

Hence, fnr(x) —> 0 as n —• oo for all x i Ar.
Let A — I) Ar. Then m(A) = 0 and for x <£ A we have for all

r e N that /nr(a?) —>0 as ^—>oo. Therefore, by 1.5(α), {y3{x)}7=i is
equidistributed in T for all x ̂  A.
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LEMMA 2.3 Let G and A be as in Theorem 1. Let Vl9 •••, Vk

be nonvoid open subsets of G. Then there exist x3- e V3 (l ^ j ^ k) with
the property that for every ε > 0 and for all zl9 , z* e T there is a
7 e A such that \y(Xj) — z5| < ε(l <̂  j ^ k), i.e., there exist xs e V3-
(1 ^ 3 ̂  k) such that {xl9 , xk} is a KOtJ-set.

Proof. We may suppose that A is countable. Let q e {1, 2, •••,&}.
Let "P(g) holds for xl9 , &g" mean " ^ e Fj (l ^ j ^ q) and {α?i, , α J
is a ur0>i set." By Lemma 2.2, there is an xt e VΊ such that P(l) holds
for x1% Suppose that 1 ̂  r ^ k — 1 and that P(r) holds for α?x, , xr.
It is sufficient to show there is an xr+1 e Vr+ι such that P(r + 1) holds
for xly , xr+1. Let A — {w e Vr+1\P(r + 1) does not hold for xly ,
»r, ^}. It is sufficient to show that m(A) = 0. Let S be a countable
dense subset of T. Then w e A if and only if w e Vr+ι and there exist
p e N and slf , sr+i e S such that for all 7 e J either | y(xj) — s3 \ ̂  p
for some j(l ^ j ^ r) or \y(w) — s r + 1 | ^ p - 1 , i.e., we have

~ι

where A(p, sx, •••, sr+1) = Γ\rej{y£ Vr+1: \y(y) - s r + 1 | ^ p" 1 or at least
one \y(x3-) - s3 \ ^ p" 1}.

Let

, 8t, - . . , sr) = {ΎeA: \7(xj) - Sj\ < p~\ 1 ̂ j ^ r}

Then we have

= {2/ e W+1: 17(2/) - Sr+il ^ P"1 for all 7 6 l(p, s1? , sr)} .

Hence, it is sufficient to show that each A(py su , sr) is infinite (for
then, by Lemma 2.2, each A(p, sl9 •• ,s r + 1) is m-null and therefore
so is A).

We assume that for some p e N and sl9 , sreS the set I =
A(p, 8l9 , sr) is finite and use this to obtain a contradiction. A basic
neighborhood of the point z = (zl9 , zr) e Ύr has the form J?(z, ε) =
{w = (wu .. .y Wr): \zό — Wj\ < ε, 1 ̂  j ^ r} for some ε > 0. Let s =
(sl9 •• , s r ) a n d x = (xl9 , xr). For γ e J , let 7(x) = (7(^), , 7(a?r))
If Δ is finite, then {7 6 J17(x) e B(s9 p"1)} is finite. Then there exist
z G I?(s, p~ι) and ε > 0 be such that 2?(z, ε) c 5(s, p"1) and B(z9 ε) is
disjoint from {y(x)\y e A}. This contradicts the induction hypothesis
that P(r) holds for xl9 •••, α;r.

THEOREM 2.4. Theorem I holds when G is metrizable.

Proof. Repeat the proof of [4, (41.5), part I] choosing all charac-
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ters in A and using Lemma 2.3 whenever [4] uses [4, (41.3)].

THEOREM 2.5. Let G and A be as in Theorem I. Let U be a
neighborhood of the identity in G. Then U contains a K0)Δ-set home-
omorphic to the Cantor set.

Proof. By Theorem 2.1, G contains a compact connected metriz-
able subgroup H with the property that Γ = A \π is infinite. Let
V = U Π H. Since H is connected, its character group is torsion-free.
Hence, by Theorem 2.4, V contains a iΓ0,Γ-set P homeomorphic to the
Cantor set. Clearly, P is a i ^ - s e t contained in U.

THEOREM1 2.6. Let P be a compact metrizable KOf4set in G,
where G is compact and AA~1\{1) consists solely of elements of infinite
order. Then for almost all xeG, xP is a KOfΓset.

Proof. Let {f, f2, •••} be a (uniformly) dense subset of C(P, T).
For each j , there is a sequence {yi3}T=ι of elements of A such that
Ύi3—*f3 uniformly on P. By Lemma 2.2, there is an m-null set A3

such that {Ji3-(x)}T=ι is equidistributed in T whenever x e G\A0 . Let
A = U Aj. Then A is m-null. Let x e G\A. For each j> let g,(xy) =
fj{y). To show that xP is a iίo^-set, it is sufficient to show that each
g3- is uniformly approximable by {yi3-: i, j — 1, 2, •}. Let ε > 0. Fix
j . Then for some iO1 we have \yi3(y) — f3(y) \ < ε/2 for all y e P when-
ever i > i0 and, since {7i3(x)}T=ι is equidistributed in T, there is an
i > i0 such that | Ύi3(x) — 11 < ε/2. For this i we have | Ύi3(xy) —

< ε for all ye P.

Proof of Theorem I. 2.7. Immediate from Theorems 2.5 and
Theorem 2.6.

3* Proof of Theorem II*

THEOREM 3.1. Let G be locally connected. Let A be such that
Δ is not compact. Let U be a neighborhood of the identity in G.
Then there is a 7 in A such that Ί{U) = T.

Proof. The topology on X is the restriction of the compact-open
topology on C(G) to the (closed) subspace X of C(G). Hence, I is

1 In the original version of this paper, the conclusion of Theorem I was as follows:
Every open set in G containing an element of finite order contains a Ko,j-set homeomor-
phic to the Cantor set and, if G is metrizable, every nonvoid open set in G contains a
ϋΓofj-set homeomorphic to the Cantor set. Theorem 2.6 and the stronger version of
Theorem I which it yields are due to Robert Kaufman [private communication, December,
1971].
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compact as a subspace of X if and only if it is compact as a subspace
of C(G) with the compact-open topology. Since by hypothesis I is
not compact, it follows from Ascoli's Theorem that Δ is not equicon-
tinuous [1, p. 267] and, hence, that Δ is not equicontinuous at the
identity of G. Therefore, there exists ε > 0 such that for every
neighborhood W of the identity in G, there is an x e W and a 7 e J
such that \j(x) - 11 ^ ε. Let S = {eiι|0 ^ t ^ ε/2}β Let Mbe a posi-
tive integer with the property that SM — T* Let V be a connected
neighborhood of the identity in G such that VM c U. Then there
exist xeV and 7G/I such that \j(x) — 1| >̂ ε. Hence, 7(F) contains
an arc of length at least ε. Therefore we have T = Ί{V)M C 7(£7) C T.

THEOREM 3.2O Lei G be locally connected and metrizable. Let
Δ be such that Δ is not compact. Let E be a compact totally discon-
nected subset of R or T. Then there is a first category set Ha C{E, G)
such that eachfeC(E, G)\H maps E homeomorphically onto a K0>Γset
in G.

Proof, Our proof follows the ideas of Kaufman [7] as given by
Katznelson [6, p. 184-185]«

For heC(E, T ) , / e C(E, G), and ε > 0, let "(*) holds for h,f and
ε" mean "there is a 7 e Δ such that | y(f(y)) — h(y) | < ε for all y e E"
Let fe C(E, G). Clearly, / i s a homeomorphism of E onto f(E) if and
only if / is one-to-one. Also, if / is not one-to-one, it is clear that
there exist h e C{E, T) and ε > 0 such that (*) fails for h, /, and ε.
Hence, / is a homeomorphism of E onto f(E) and f{E) is a iΓ0,j-set
if and only if for every h e C{E, T) and every ε > 0, (*) holds for
h, f, and ε»

Let d be an invariant metric on G compatible with the topology
of Go For / and g in C(E, G), let D{f, g) = sup {d(f(y), g{y)) \yeE}.
Observe that D(f, g) < ^ since E is compact»

Let h e C{E, Ύ),ge C(E9 G}, ε > 0, and η > (h We now show that
there exist an feC(E,G) such that (*) holds for h,f, and ε and
D\fj ΰ) < V' Let U b3 the open ^-ball about the identity e of Go By
Theorem 3.1, there i s a γ e z ί such that y{U) = T« Write E = XJf^E^
where the E3 are disjoint nonvoid open-closed subsets of E and jog
and h both vary by less than ε/3 on each Eja (The Eό exist since
E is totally disconnected,) Let y5 e E5 and suppose that j(g(yj)) — <xά

and h{y3) = βd, 1 ^ j ^ n» Let xά e U be such that J(XJ) = ajβjo Define
feC(E,G) by f{y) = xsg{y) when yeEja We see that D(f,g) =
max {d{x3Ί e)} < η and for y e Ed we have

\v(f(y)) ~

\h(Vj) - h{y) \< A. + 0 + | -
3
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Hence, (*) holds for h, f, and ε.
For h e C(E, T) and ε > 0, let H(h, ε) = {/ e C(E, (?) | (*) fails for

h,f, and e} It is easy to show that H(h, ε) is closed. By the pre-
ceding paragraph, H(hy ε) is nowhere dense in C(E, G). Let {hn}ζ=1

be dense in C(E,Ύ). Let H= UZk=iH(hn,l/k). Then H is a first
category set in the complete metric space C(E, G). Also, we have
feC(E, G)\H if and only if every heC(E, T) can be uniformly ap-
proximated by 7°/'s (76 Δ), which by the second paragraph of the
proof is true if and only if / is a homeomorphism and f(E) is a
K0>Γset.

THEOREM 3O3. Theorem II holds when G is metrizable.

Proof. Let U be a nonvoid open subset of G. Let E be the
Cantor set. Let H be as in Theorem 3.2. The result follows from
Theorem 3.2 since C(E, U) is open in C(E, G) and C(E, G)\H is dense
in C(E, G).

THEOREM 3,4. Let G be locally connected. Then G is topologic-
ally isomorphic with D x Rn x K, where D is discrete, n is a non-
negative integer, and K is a compact, connected, locally connected
abelian group.

Proof. Let C be the component of the identity in G. Then G
is topologically isomorphic with (G/C) x C. Since G/C is totally dis-
connected and locally connected, it is discrete. Since C is connected
and locally connected, it is topologically isomorphic with Rn x K,
where n is a nonnegative integer and K is compact, connected, and
locally connected.

Proof of Theorem II. 3.5. By Theorem 3.4, we may suppose
that G = H x K, where H is locally connected and metrizable and
K is compact, connected, and locally connected. We then have X —
Y x F, where Y and F are the character groups of H and K, respec-
tively. Let U be a nonvoid open subset of G. We may suppose that
U = V x W, where V and W are nonvoid open subsets of H and K,
respectively. We denote elements of X by (a, β), where ae Y and
βeF. Let Γ = {β e F\ {a, β) e A}.

Case 1. Γ is finite: There is a βoeΓ such that {{a, β0) e Δ}~ is
not compact in X. Let Δo = {ae Y\(a, β0) eJ}. Then Δ^ is not com-
pact in Y. Hence, by Theorem 3.3, V contains a iΓo,io-set P home-
omorphic to the Cantor set. Let ze W. Then P x {z} is a ϋΓOfJ-set
in U homeomorphic to the Cantor set.
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Case 2. Γ is infinite: Let xeV. Let {(αw, /9m)}m=i be a sequence
in J such that the βm are distinct and such that am{x) —> s e T as
m - ^ oo. Let z/0 = {/5TO}m=i. Since z/0 is infinite and K is compact and
connected, W contains a if0,io-set P homeomorphic to the Cantor set
by Theorem I. Then {x} x P is a ZΌ^-set in [7 homeomorphic to the
Cantor set.

4. Proof of Theorem I I I .

LEMMA 4.1. Let k be an integer greater than one. Let G be
the product of infinitely many copies of T(fc). Let Δ be an infinite
subset of X and suppose there is an integer a greater than one such
that all elements of Δ have order a and that whenever 7i and 72 ave
distinct elements of Δ, then Ίι%1 has order a. Then for every sequence
Δo = {7i, 72, •••} of distinct elements of A, the sequence {jj(x)}T=i is
equidistributed in T(α) for m-almost all xe G.

Proof. For r e {1, 2, , a - 1} and n e N, let fnr(x) = 1/n Σ]^ rά{x).

By our hypothesis on A, y3- Φ rrι implies that {ΊfίTΎ Φ l Also, since

G is compact, I j(x)dm(x) — 0 when 7 ^ 1 . Hence we have

\fnr\2dm =\
JG

We thus have Σζ=1\\fn2fr\\l< oo and hence /«?„.(#)—>0 as n—> °o for
m-almost all xe G. Suppose that fn2,r(x) —> 0 as ^ —> oo for all #g Ar,
where m(Ar) = O The device used in the proof of Lemma 2,2 yields
fnr(x)->0 as n-+oo for x$Ar. Let A= Όa

rZ{Ar. Then m(A) =0
and for x $ A we have for all r e {1, 2, , α — 1} that /nr(a?) —> 0 as
^~>oo. Therefore, by 1.5(a), {Ίj{x)}J=ι is equidistributed in T(α) for
all x£ A.

LEMMA 4.2. Let k, G, Δ, and a be as in Lemma 4.1. Let
Vl9 , Vn be nonempty open subsets of G. Then there are x5 e V3 (l ^
j ^ n) such that {xί9 •••,»„} is a Ka,Γset.

Proof. For a positive integer q, yl9 , yq e T(α), and w, e
i ^ g), let J ( ^ , , yq, wl9 , wq) = {yeΔ\y{wό) = yj9 1 ^ i ^ q). By
Lemma 4.1, there is an xι e FL such that for all ^ G T ^ , ^ ^ ) is
infinite.

Let r e {1, 2, •••,%— 1} and suppose that α?,- e F, (l ^ j ^ r) have
been found with the property that for all yu ---,yre T(β), J ^ , , yrf

xl9 « , O is infinite. Fixing (yu , τ/r) e T[α) and applying Lemma
4.1 with A(yu , yr, xu , xr) in place of A, we find that m-almost
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all xeVr+1 have the property that for all yr+1 e T(α), Δ(yl9 , yr+19

xlf , xr, x) is infinite. Hence, ra-almost all x e Vr+1 have the property
that for all yu , yr+1 e T(β), Δ(yl9 , i/r+1, ^ , , a?r, x) is infinite. In
particular, an xr+1 e Vr+1 with this property exists.

Hence, by induction, there are x5 e V3(l <*j^n) such that for
all yl9 , yn e T(β), J ^ , , 3/«, αά, , αΛ) is infinite and, in particular,
nonvoid. Hence, {̂ , • ••,#*} is a ϋΓ^-set.

THEOREM 4.3. Lei fc, G, J, and a be as in Lemma 4.1. Lβ£ G
δe metrizable. Let U be a nonvoid open subset of G. Then U con-
tains a Ka>Γset homeomorphic to the Cantor set.

Proof. Repeat the proof of [4, (41.5), part III], choosing all
characters in A and using Lemma 4,2 whenever [4] uses [4, (41.4)].

REMARK 4.4. We now proceed to reduce Theorem III to the case
described in Theorem 4.3.

LEMMA 4.5. Let k be an integer greater than one. Let X be
the weak direct product of infinitely many copies of Ύik). Let A be
an infinite subset of X. Then there exist an integer a ^ 2 and an
infinite subset Γ of A with the property that whenever y1 and 72 are
distinct elements of Γ, then ΎiT^1 has order exactly a.

Proof. We remark that this result is trivial if k is prime. (Take
a = k and Γ = A.)

Let b0 = k and Ao — A. Let 7i e AQQ Let Γγ — {ΊICΓ1 \ a e Ao}. Since

Γ1 is infinite, there is an integer bly 2 ^ bx ^ b0, such that Γγ contains
infinitely many elements of order 619 Let A1 = {ae A^ΊiCC1 has order
δ j . Suppose that % e N and that 7i, , 7n, A , , A , δi , &« and
Au , An have been found such that for 1 ^ j ^ n we have (i) T, 6
z/i_!, A = {7^~1 |^^ ^i-J, A has infinitely many elements of order δy,
2 ^ bj ^ bj_19 and J^ = {ae ά^y^a"1 has order δ,-}. Observe that from
(i) it follows that (ii) for 1 ^ j ί^n, we have yά g z/y so J^ is a proper
infinite subset of Aά_λ and the 75 are distinctβ

Let 7«+i e 4 Let Γ% + 1 = {Ίnλ-ιa~ι\ae An}. Since Γ% + 1 is infinite,
there is an integer bn+ί with 2 <£ bn+ι ^ δ% such that Γn+ι contains
infinitely many elements of order bn+1* Let Δn+1 = {ae An\yn+1a~ι has
order bn+ί}. Thus, we can define yn,ΓniAn, and bn for all π e N in
such a way that properties (i) hold for all n. Since {bn} is a monotone
nonincreasing sequence of integers greater than one, there exist posi-
tive integers r and a such that bn = a for all n > r. Let Γ =
{τ r + J%eN}. We show that .Γ and a are as demanded. Let n± and
w2 G N with nγ > w2. Then, by construction of the Δn, we have 7r-ΓWl e
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A r + n 2 so 7 r + % 2 77i % 1 h a s o r d e r br+%2 = a.
n2

LEMMA 4.6. Let k he an integer greater than one. Let I be
an infinite index set and let X = Y[feiGn where each Gt is a copy
of Ύ{k). Let A be an infinite subset of X. Then there exist an integer
a >̂ 2 and an infinite subset Ao of A and a finite (possibly empty)
subset Io of I such that projection of Ao onto Y — ΐl?ei\iQGe gives an
infinite subset ΔQ of Y consisting solely of elements of order a and
such that whenever 7i and 72 are distinct elements of Ao, y^i1 has
order a.

Proof o By Lemma 4O5, there exist an integer aι Ξ> 2 and an in-
finite subset Γt of A such that whenever 7i and 72 are distinct ele-
ments of Γl9 7i7Γx has order αlβ Let Γ1 be an infinite subset of Γλ

consisting of elements all of the same order δx It is clear that b1 ^ aλ.
(If 7i and 72 are distinct elements of Γ19 then Ύ^1 has order at most
δlβ But ΊiΊϊ1 has order aλ.) If δj. = a19 we are done. (Take Io = 0,
AQ = Γ19 and a = ax.) Suppose 6X > αlβ Let 7i e Λ There is a finite
subset I: of / such that the rth coordinate of 7i is the identity of
Ge for rg/ 1 # Let Xί = ϊ[?ei\i1Gc. Since Ix is finite and Γλ is infinite,
projection of Γ1 onto Xγ (denoted by πt) gives an infinite subset A1 of
X1 consisting of elements of order at most αL. (For a e Γ19 order of
πλ(a) in Xι = order of π^ay^1) in Xι ^ αlβ) Applying Lemma 4.5 to
Xι and A1 we get an integer α2 with 2 ^ a2 ^ at and an infinite subset
Γ2 of J x such that whenever 7i and 72 are distinct elements of Γ2,
then 7172"1 has order a2. Let Γ2 be an infinite subset of Γ2 consisting
of elements all of the same order b2. Then we have α2 ^ δ2 ^ αx < δ :.
If α2 = δ2J we are done. (Take Io = lu a — α2, Y — X^ and J o =
{a e AI π^α) e Γ2) Suppose α2 < 62 ^ α! < δlβ Pick 72eΓ2; let I 2 =
{c e I\Ii\ ^th coordinate of 72 is not the identity of GJ; project Γ2

onto X2 = ΠΓeΛd^/g) Gc; ••• etc. We must eventually have bn = an

for some n (otherwise, {bn} would be an infinite strictly decreasing
sequence of positive integers). For that n, we have a finite subset
Jo = I, u ••• U /Λ_i of / and an infinite subset Γw of F = H?eiv0Gc

such that all elements of Γn have order αn = bn and such that when-
ever 7i and 72 are distinct elements of Γn, 7172"

1 has order an. Let
j 0 ~ {α G z/|π(α) e Γπ), where π is the projection of X onto Y.

THEOREM 4.7. Le£ k be an integer greater than one. Let G =
ΐlceiGc, where each Gc is a copy of T(/c) and I is infinite. Let A be
an infinite subset of X. Then there is an integer a greater than one
such that every neighborhood of the identity of G contains a KafJ-set
homeomorphic to the Cantor set.
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Proof. We may suppose that Δ is countable. We identify X
with Π?e/G> Let a, Io, Y9 and ΔQ be as in Lemma 4.6. Let It =
{c e I\IQ I some 7 e Δo has t th coordinate different from the identity of
Ge}. Plainly Iλ is countably infinite. Let J2 = I\(I0 U /1). Let Gά =
ILeeijG i, and let G3 have character group Xj9 j = 0, 1, 2. Since Iγ is
countable, G1 is metrizable. Since /0 is finite, Go is finite. Let A
be the image of the projection of Δo onto Xlβ We may suppose that
our neighborhood of the identity of G has the form U — {e0} x Vι x F2,
where e0 is the identity of Go and Fy is open in G3, j = 1, 2. Apply-
ing Theorem 4.3 to k, Gu ΓQ, and α, we find a subset Px of F x home-
omorphic to the Cantor set which is a ίΓα,Γo-set. Let P = {e0} x Pi x {e2}>
where e2 is the identity of G2. Then P is a Ka,Γset in C7 homeomorphic
to the Cantor set.

Proof of Theorem III. 4.8. If G is a compact torsion group,
then there are integers ru , rq greater than one and disjoint infinite
index sets Il9 , Iq and there is a finite abelian group F such that
G is topologically isomorphic t o F x f t x •• x G 3 , where Gά = ΓLe^-ίC
and each Kc is a copy of Ύirj) when ^eiy (1 ̂  j ^ g). Let Gy have
character group Xό (1 ̂  j <^ q). Then for some jQ, the image Γ of
the projection of Δ onto X io is infinite. Let α be as in Theorem 4.7
applied to Gjo, Xh, and P . Let U be a neighborhood of the identity
of G. We will prove that U contains a iΓα, rset homeomorphic to the
Cantor set. Clearly, this will establish Theorem III. We may suppose
that U has the form {eF} x Uι x x Uq, where eF is the identity
of F and U3 is a neighborhood of the identity e3- of G3- (1 ̂  j ^ q).
By Theorem 4.7, Ϊ7io contains a iΓα,Γ-set P i o homeomorphic to the
Cantor set. Let

P = {eF} x {ej x x {eio_J x Ph x {eio+1} x x {βJ .

Then P is a JE^-set in U homeomorphic to the Cantor set.

5* Examples^

5.1. The hypothesis that Δ Ί$ not compact is necessary in Theorem
II. If J is compact, then there is a nonempty open UaG which
contains no i ^ - s e t and no Ka>Γset for any integer a 2> 2. Indeed,
let U = {xeG: |τ(a?) - 11 < 1 for all 7 € J) . Then Ef is an open neigh-
borhood of the identity in G and Re y(x) > 0 for all x e U and all
jeΔ. Hence, the function —1 cannot be matched within 1 on any
nonvoid subset of U by any 7 e Δ, nor can the function ωa (where
ωa is an a th root of unity with Re ωa < 0) be matched on any nonvoid
subset of U by any 7 e A for any integer a 2> 2. Hence, no subset
of U is a ifo,j-set or a Ka,Γset.
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5.2. The phrase "a translate o f is a necessary part of the con-
clusion of Theorem III, as is shown by the following example. Let
G = T(2) x H, where H is the product of infinitely many copies of
T(3). Write X = Z2 x Y, where Y is the character group of H. Let
Δ = {1} x Y. Let U = {-1} x JET. Then U is open in G and y(x) e -T ( 3,
for all x e U and all 7 e J, so the constant function 1 cannot be
matched on any subset of U by any 7 e A. Hence, no subset of U is
a Ka,Γset for any integer a Ξ> 2.

5.3. The hypothesis that G is a compact torsion group in Theorem
III cannot be weakened to the hypothesis that G is compactly gener-
ated and contains a compact open torsion subgroup. For example,
let H be an infinite compact torsion group and let G = Z x H. Take
Δ = T x {e} (where e is the identity of the character group of H)
and U = {0} x H. Then y(x) = 1 for all a? e U and all 7 e Δ. Hence,
whenever P c G is such that a translate of P is contained in U, we
have 7 constant on P. Therefore, no such totally disconnected P
containing more than one point can be a Ka,Γset for any integer
a ^ 2.

5.4. The hypothesis of local connectedness or something closely
related to connectedness (cf. Theorem 2.1) in Theorems II and I re-
spectively cannot be weakened to the hypothesis that G is not a
torsion group. Indeed, there exist a compact metrizable group G
which is not a torsion group and an infinite subset Δ of X such that
G contains no Z^-set. For example, let G = ΠΓ=2T(2i). Then, writ-
ing X— Π£5Z2J and letting Δ — {72, 73, •••} where ΊO has ith coor-
dinate equal to j and the rest zero, we have Ί3{x) — ± 1 for all x e G
and all i, so every nonempty subset of G fails to be a ifo,j-set.

Also, there exist a compact metrizable group G which is not a
torsion group and an infinite subset Δ of X such that no subset of
G containing more than one point is a lfα,j-set for any integer α ^ 2.
Let G = ΠΓ=iT(Pi, where p3- is the jth prime. Write X = UfZZp.
and let A — {7i, 72, •••} where y3- has ith coordinate equal to 1 and
the rest zero. Let P be a subset of G containing at least two points.
Let a ^ 2 be an integer. We will show that P is not a Ka>Γset.
Let pfc be a divisor of α. The open-closed sets in G form a basis for
the topology of G, so there are two distinct T(P/cΓvalued (and, hence,
T(aΓvalued) continuous functions, fx and /2, on P both different from
1. If either ft is matched on P by some ys, it must be matched by
j k since no other 7y attains values in T(Pfc) different from 1. Thus
either /Ί or /2 is a T(α)-valued continuous function not matched on P
by any 7y. Hence, P is not a ϋΓ^-set.
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