TESTING 3-MANIFOLDS FOR PROJECTIVE PLANES

Wolfgang Heil

Abstract

It is well known that a closed 3 -manifold M contains a (piecewise linearly embedded) essential separating 2 -sphere if and only if $\pi_{1}(M)$ is a nontrivial free product. In this paper necessary and sufficient conditions, in terms of $\pi_{1}(M)$, are given for the existence of a projective plane in M. If M is irreducible this condition is that $\pi_{1}(M)$ be an extension of Z or a nontrivial free product by \boldsymbol{Z}_{2}. In particular this provides a criterion for deciding which irreducible closed 3 -manifolds are not P^{2}-irreducible.

P^{2}-irreducible 3-manifolds have been studied in [2], [4]; if they are sufficiently large then their covering spaces are also P^{2}-irreducible. This property is not shared by irreducible but not P^{2}-irreducible manifolds; in [9] such manifolds are constructed having non prime covering spaces. This leads to the question as to which 3-manifolds are irreducible but not P^{2}-irreducible.
O. Notation and definitions. We work in the piecewise linear category. A 3 -manifold M is a compact, connected 3 -manifold. A surface F in M is a compact 2-manifold embedded in M.

We denote by $U(X)$ a small regular neighborhood of X in M.
$F \subset \operatorname{Int}(M)$ is 2 -sided in M if $U(F)$ is homeomorphic to $F \times I$. M is irreducible if every 2 -sphere in M bounds a 3 -cell in $M . M$ is P^{2}-irreducible if M is irreducible and contains no 2 -sided projective planes. M is prime if it is not the connected sum of two manifolds each different from the 3 -sphere. (Here the connected sum $M_{1} \# M_{2}$ is obtained by removing a 3-ball in the interior of M_{1} and M_{2} and identifying the boundary spheres under an orientation reversing homeomorphism.) F in M is incompressible if the following holds:
(a) if D is a dise in M such that $D \cap F=\partial D$, then ∂D bounds a disc in F, and
(b) if F is a 2 -sphere, then S does not bound a 3 -ball in M.

A homotopy N is a manifold that is homotopy equivalent to the manifold N.

Disjoint surfaces F and G in M are pseudo parallel if there exists an embedding of a homotopy ($F \times I$) into M that has two boundary components, one of which is mapped onto F, the other one onto G. Finally, M is called π-trivial, if $\pi_{1}(M)=1$.

Remark. If the Poincaré conjecture is true, then pseudo parallel
is the same as parallel.

1. Preliminaries. Let S^{2}, P^{2} denote the 2 -sphere and projective plane, resp.

Lemma 1. Let F be a closed surface, let M be an irreducible 3manifold.
(a) If $F \neq S^{2}, P^{2}$ then M is a homotopy $(F \times I)$ if and only if M is homeomorphic to a line bundle over F.
(b) If M is nonorientable and $\pi_{1}(M)=\boldsymbol{Z}_{2}$, then ∂M consists of two projective planes and M is a homotopy $\left(P^{2} \times I\right)$.
(c) If $\pi_{1}(M)=\boldsymbol{Z}+\boldsymbol{Z}_{2}$, then $\partial M=\varnothing$ and M is a homotopy $\left(P^{2} \times S^{1}\right)$.

Proof. Part (a) follows from [5, Proposition 1]. Part (b) follows from [1, Theorem 5.1]. Part (c) follows from [11]: We map M onto a circle such that the inverse image of a point is a projective plane P^{2} in M. Then, by (b), cl $\left(M-U\left(P^{2}\right)\right)$ has as boundary two copies of P^{2} and is a homotopy $\left(P^{2} \times I\right)$.

Lemma 2. If M is irreducible and contains a 1-sided projective plane, then M is P^{3} (the 3-dim. projective space).

Proof. $U\left(P^{2}\right)$ is the twisted line bundle over P^{2}, with boundary a 2 -sphere. Since this 2 -sphere bounds a 3 -cell in M, the result follows.

The next lemma is due to J. Tollefson [13, Lemma 1]:
Lemma 3. A non-irreducible closed 3-manifold M admitting a fixed point free involution T contains a 2-sphere S not bounding a 3 -cell in M such that either $T(S)=S$ or $T(S) \cap S=\varnothing$.

We will also need the following generalization of Tollefson's lemma.

Lemma 4. Let M be a 3-manifold (with or without boundary) admitting a fixed point free involution T. Suppose there exists a 2sphere in M that does not separate M into two components one of which is π-trivial. Then there exists a 2 -sphere S in M having the same property and such that either $T(S) \cap S=\varnothing$ or $T(S)=S$.

Proof. Take a 2 -sphere S in M with the following properties: S does not separate M into two components one of which is π-trivial, $T(S) \cap S$ is a system of disjoint simple closed curves at which the intersection is transversal, and the number $n(T(S) \cap S$) of components $T(S) \cap S$ is minimal. We show that either $n=0$ or there exists an S^{\prime} with
the desired properties such that $T\left(S^{\prime}\right)=S^{\prime}$.
Suppose $n>0$. Let D be an innermost disc on $T(S)$, with ∂D a component of $T(S) \cap S$, (that is, int $(D) \cap S=\varnothing$). D separates S into two discs D_{1}, D_{2}. Let $S_{1}=D \cup D_{1}, S_{2}=D \cup D_{2}$. It is easy to see that at least one of S_{1} or S_{2} does not separate M into two components one of which is π-trivial. Suppose S_{1} has this property. If $T\left(S_{1}\right)=S_{1}$, we are done. If $T\left(S_{1}\right) \neq S_{1}$, then a component S^{\prime} of $\partial U\left(S_{1}\right)$ (U is small wrt T) has the same property as S_{1}, but $n\left(T\left(S^{\prime}\right) \cap S^{\prime}\right)<$ $n(T(S) \cap S$) (since the component ∂D has vanished), a contradiction.

Lemma 5. If M is closed and $\pi_{1}(M) \approx Z$, then M is a connected sum of a homotopy 3-sphere and a S^{2}-bundle over S^{1}.

Proof. Write $M \approx M_{1} \# M_{2}$, where M_{1} is prime and $\pi_{1}\left(M_{1}\right) \approx Z$, $\pi_{1}\left(M_{2}\right)=1$ (see §5). An irreducible manifold with fundamental group \boldsymbol{Z} is bounded (see e.g. [11]). Hence M_{1} is not irreducible. Therefore M_{1} is an S^{2}-bundle over S^{1} (see §5).

2. The closed case.

Theorem 1. A closed irreducible 3-manifold M contains a 2-sided projective plane if and only if $\pi_{1}(M)$ is an extension of \boldsymbol{Z} or a nontrivial free product by \boldsymbol{Z}_{2}.

Proof. Suppose M contains a 2 -sided P^{2}. Thus M is nonorientable and we let $p: M^{\prime} \rightarrow M$ be the 2 -fold orientable covering of M. Then $P^{2} \subset M$ lifts to an essential 2-sphere $S^{2} \subset M^{\prime}$. If S^{2} separates M^{\prime} into M_{1}, M_{2} then $\pi_{1}\left(M^{\prime}\right) \cong \pi_{1}\left(M_{1}\right) * \pi_{1}\left(M_{2}\right)$, a nontrivial free product. (Otherwise, if $\pi_{1}\left(M_{1}\right)=1$, say, from $\partial M_{1}=S^{2}$ it would follow that S^{2} is contractible in M_{1}). If S^{2} does not separate M^{\prime}, let k be a simple closed curve that intersects S^{2} in exactly one point and let $U=$ $U\left(S^{2} \cup k\right)$. Then $\pi_{1}\left(M^{\prime}\right)=Z * \pi_{1}(\mathrm{cl}(M-U))$.

Conversely, assume $\pi_{1}(M)$ is an extension of Z or of a nontrivial free product G by \boldsymbol{Z}_{2}. Let $p: N \rightarrow M$ be the covering of M associated with \boldsymbol{Z} or G, respectively, and let $T: N \rightarrow N$ be the covering transformation. By Lemma 5 and Kneser's conjecture [12] there exists an essential 2 -sphere S^{2} in N. Therefore, by Lemma 3 we can find a 2-sphere $S \subset N$ not bounding a 3 -cell, such that either $T(S) \cap S=\varnothing$ or $T(S)=S$. The first case cannot occur, since M is irreducible. In the second case, $p(S)$ is a projective plane in M that is 2-sided, by Lemma 2.
3. The bounded case.

Theorem 2. Let M be an irreducible 3-manifold with (nonempty) incompressible boundary. M contains a 2-sided P^{2} that is not pseudo parallel to a component of ∂M if and only if $\pi_{1}(M)$ is an extension of a nontrivial free product by \boldsymbol{Z}_{2}.

Proof. Suppose M contains a 2 -sided P^{2} that is not pseudo parallel to a component of ∂M. Lift P^{2} to S^{2} in the 2 -fold orientable cover M^{\prime} of M, let $T: M^{\prime} \rightarrow M^{\prime}$ be the covering transformation. If S^{2} separates M into M_{1}, M_{2}, we have that $T\left(M_{1}\right)=M_{1}, T\left(M_{2}\right)=M_{2}$, since P^{2} is 2 -sided in M. If $\pi_{1}\left(M_{1}\right)=1$, say, then M_{1} covers a submanifold $M_{1_{*}}$ having fundamental group \boldsymbol{Z}_{2}. By Lemma 1 (b), $M_{1^{*}}$ is a homotopy $\left(P^{2} \times I\right)$, hence P^{2} would be pseudo parallel to a component of ∂M, a contradiction. Therefore, in this case, $\pi_{1}\left(M^{\prime}\right)=\pi_{1}\left(M_{1}\right) * \pi_{1}\left(M_{2}\right)$, a nontrivial free product.

If S^{2} does not separate M^{\prime}, then as in the proof of Theorem 1 , $\pi_{1}\left(M^{\prime}\right) \cong \boldsymbol{Z} * \pi_{1}\left(\mathrm{cl}\left(M^{\prime}-U\right)\right)$. If $\pi_{1}\left(\mathrm{cl}\left(M^{\prime}-U\right)\right)$ would be trivial, then $\pi_{1}(M)=\boldsymbol{Z}+\boldsymbol{Z}_{2}$. By Lemma 1 (c), M would be closed, a contradiction.

Conversely, suppose $\pi_{1}(M)$ is an extension of a nontrivial free product G by \boldsymbol{Z}_{2}. Again, let $N \xrightarrow{P} M$ be the covering of M corresponding to G and let T be the covering transformation. By Kneser's conjecture for bounded 3 -manifolds [6] there exists a 2 -sphere S^{2} in N that separates N into N_{1}, N_{2}, both not π-trivial. By Lemma 4, there exists a 2 -sphere S that does not separate N into two components one of which is π-trivial and such that $T(S)=S$ (the case $T S \cap S=$ $\dot{\phi}$ cannot occur). By Lemma $2, S$ covers a 2 -sided P^{2} in M. If P^{2} were pseudo parallel to a component of ∂M, then lifting the corresponding homotopy ($P^{2} \times I$) we see that S would separate N into two components, one of which would be π-trivial, a contradiction.

Proposition. Let M be irreducible and suppose $\pi_{1}(M)$ is not \boldsymbol{Z}_{2}, and not an extension of \boldsymbol{Z} or of a nontrivial free product by \boldsymbol{Z}_{2}. Then if ∂M contains no P^{2} (in particular, if M is closed) it follows that M contains no P^{2}.

Proof. If M is orientable and contains a P^{2}, then $M=P^{3}$, by Lemma 2. If M is nonorientable, let M^{\prime} be the 2 -fold orientable cover of M. If $\pi_{2}\left(M^{\prime}\right) \neq 0$, then the sphere theorem [14] gives us an essential 2 -sphere in M^{\prime} and as in the proof of the preceding theorems, we see that $\pi_{1}\left(M^{\prime}\right)=\boldsymbol{Z}$ or a nontrivial free product. Therefore, $\pi_{2}\left(M^{\prime}\right)=0$ and hence $\pi_{2}(M)=0$. (In fact, M is aspherical.) But any 2-sided $P^{2} \subset M$ would be essential [1, Lemma 6.3].

Remark. A 2 -sided P^{2} in M is incompressible in M. This follows
from the loop theorem and Dehn's lemma [10]. In particular $\pi_{1}\left(P^{2}\right) \rightarrow$ $\pi_{1}(M)$ is an injection.
4. A counterexample to Theorem 2 if M is not incompressible. Let K be a solid Kleinbottle, T a solid torus. Choose $n \geqq 1$ disjoint $\operatorname{discs} D_{1}, \cdots, D_{n}$ on ∂K and a disc D on ∂T. Let M be the manifold obtained from K by attaching n copies of T to K at D_{i} and $D(i=$ $1, \cdots, n)$. Then M is irreducible and does not contain 2 -sided projective planes (otherwise by the preceding remark, $\pi_{1}(M)$ would have an element of order 2 , but $\left.\pi_{1}(M) \cong(n+1) Z\right)$. However, the twofold orientable cover M^{\prime} of M has fundamental group $\pi_{1}\left(M^{\prime}\right) \cong(2 n+$ 1) Z, the free product of $2 n+1$ copies of Z, and therefore $\pi_{1}(M)$ is an extension of the nontrivial free product $(2 n+1) \boldsymbol{Z}$ by \boldsymbol{Z}_{2}.
5. The general case. Suppose M is a compact 3 -manifold such that ∂M contains no 2 -spheres. As in [8, Lemma 1] it follows that if M is prime but not irreducible then M is a S^{2}-bundle over S^{1}. If M is not prime, then there exists a decomposition of M into a finite number of prime manifolds

$$
M \approx M_{1} \# M_{2} \# \cdots \# M_{n},
$$

(if M is nonorientable or with boundary see e.g. [3]). If K denotes the nonorientable S^{2}-bundle over S^{1} then since $K \# K \approx K \#\left(S^{2} \times S^{1}\right)$, we say that the decomposition (\#) is in normal form if at most one $M_{i} \approx K$. Then Milnor's proof in [8] can be generalized to yield the following:

Proposition. Any compact 3-manifold M whose boundary contains no 2-spheres has a unique normal decomposition (\#) into prime manifolds. Each summand M_{i} is irreducible or $S^{1} \times S^{2}$ and at most one $M_{i} \approx K$.

In the decomposition (\#) let m denote the number of prime mani. folds which are not π-trivial ($m \leqq n$).

Theorem 3. Let M be a closed 3-manifold.
(a) If M contains a 2-sided P^{2}, then $\pi_{1}(M)$ is an extension of a free product of $2 m$ nontrivial factors or of a free product of $2 m-1$ nontrivial factors one of which is \boldsymbol{Z}, by \boldsymbol{Z}_{2}.
(b) If $\pi_{1}(M)$ is an extension of a free product of $2 m$ nontrivial factors by \boldsymbol{Z}_{2} then M contains a 2 -sided P^{2}.

Proof. Consider the decomposition (\#). Let $S_{i} \subset M$ be the 2sphere at which M_{i} and M_{i+1} are amalgamated and let M_{i}^{\prime} be obtained
from M_{i} by removing the interiors of the 3-balls which are used in the construction of the connected sum. We can assume that $M_{i}^{\prime} \cap$ $M_{i+1}^{\prime}=S_{i}(i=1, \cdots, n-1)$.

We first note that M contains a 2 -sided P^{2} if and only if one of the M_{i}^{\prime} contains a 2 -sided P^{2}. For, by general position we can assume that $P^{2} \cap \cup S_{i}$ is a system of simple closed curves. If $P^{2} \cap S_{i} \neq \varnothing$ then an innermost intersection curve on S_{i} bounds a disk on P^{2} (since P^{2} is incompressible) and on S_{i}. Replacing the disk on P^{2} by the disk on S_{i} and pushing it slightly off S_{i}, we reduce the number of intersection curves of $P^{2} \cap \cup S_{i}$.

Second, we note that we can assume that in the decomposition (\#) no M_{i} has trivial fundamental group i.e. that $n=m$. For otherwise we consider the manifold M_{*} obtained from M by deleting all the homotopy spheres M_{i} which occur in (\#). Clearly, $\pi_{1}\left(M_{*}\right)=\pi_{1}(M)$ and M_{*} contains a 2 -sided P^{2} if and only if M does.

Now assume M contains a 2 -sided P^{2}. Let $p: N \rightarrow M$ be the 2 fold orientable covering and let $N_{i}=p^{-1}\left(M_{i}^{\prime}\right)$. If N_{i} is connected then $\pi_{1}\left(N_{i}\right) \neq 1$, because otherwise $\pi_{1}\left(M_{i}^{\prime}\right)=Z_{2}$, and since ∂M_{i}^{\prime} consists of 2-spheres only, M_{i}^{\prime} is orientable (Lemma $1(\mathrm{~b})$). But then M_{i}^{\prime} lifts to two copies, hence N_{i} would not be connected. Similarily, if N_{i} is not connected then no component of N_{i} is π-trivial, because otherwise M_{i} would be π-trivial. Now each $S_{i} \subset M$ lifts to two 2 -spheres $S_{i}^{\prime}, S_{i}^{\prime \prime}$ in N, and N is obtained from the N_{i} by identifying N_{i} and N_{i+1} along S_{i}^{\prime} and $S_{i}^{\prime \prime}(i=1, \cdots, m-1)$.

Construct a manifold N^{\prime} as follows. If both N_{1} and N_{2} are connected, identify N_{1} and N_{2} along one 2 -sphere only, say S_{1}^{\prime}. Otherwise identify N_{1} and N_{2} along both S_{1}^{\prime} and $S_{1}^{\prime \prime}$. The result is a manifold $N^{(1)}$. If N_{3} is connected, identify $N^{(1)}$ and N_{3} along S_{2}^{\prime} only, otherwise identify along S_{2}^{\prime} and $S_{2}^{\prime \prime}$, etc. In this way we obtain a maximal connected manifold N^{\prime} such that N is obtained from N^{\prime} by identifying pairs of 2 -spheres in ∂N^{\prime}. Then $\pi_{1}\left(N^{\prime}\right)=G_{1} * \cdots * G_{k}(0 \leqq k \leqq 2 m-1)$, where each G_{j} is the fundamental group of a component of some N_{i}. We obtain N from N^{\prime} by adding $(2 m-1)-k$ handles $S^{1} \times S^{2}$ or K, hence $\pi_{1}(N)=G_{1} * \cdots * G_{k} * Z * \cdots * Z$ is a free product of $2 m-1$ nontrivial factors.

Now $P^{2} \subset M_{j}^{\prime}$, say $(1 \leqq j \leqq m-1)$. Then M_{j}^{\prime} is nonorientable and N_{j} is connected. Therefore by the above construction, $\pi_{1}\left(N_{j}\right)$, is one of the groups G_{i} in the above decomposition of $\pi_{1}(N)$. Closing the boundary spheres of N_{j} with 3-balls we get a 2 -fold covering $\hat{N}_{j} \rightarrow M_{j}$, and it follows from the proof of Theorem 1 that $\pi_{1}\left(\hat{N}_{j}\right)$ and hence $\pi_{1}\left(N_{j}\right)$ is Z or a nontrivial free product. This proves part (a) of Theorem 3.

Now suppose $\pi_{1}(M)$ is an extension of a product G of $2 m$ nontrivial groups by \tilde{Z}_{2}. Let $p: \widetilde{M} \rightarrow M$ be the covering associated to G. Then
as above $\pi_{1}(\tilde{M})=\pi_{1}\left(\widetilde{M}_{1}\right) * \cdots * \pi_{1}\left(\tilde{M}_{k}\right) * Z^{2} * \cdots * \boldsymbol{Z}$ is a product of $2 m-1$ groups, where each \widetilde{M}_{i} is a component of $p^{-1}\left(M_{j}^{\prime}\right)$, for some j. (It is possible that some $\pi_{1}\left(\widetilde{M}_{i}\right)=1$.) It follows from Kurosh's Theorem [7] that at least one factor, $\pi_{1}\left(\widetilde{M}_{1}\right)$ say, is a nontrivial free product. If \widetilde{M}_{1} covers M_{j}^{\prime}, then either $\pi_{1}\left(M_{j}\right) \approx \pi_{1}\left(\widetilde{M}_{1}\right)$ or $\pi_{1}\left(M_{j}\right)$ is an extension of $\pi_{1}\left(\widetilde{M}_{1}\right)$ by Z_{2}. In the first case M_{1} can not be a handle and by Kneser's conjecture can not be irreducible, therefore this case can not occur. In the second case we apply Theorem 1 to obtain a P^{2} in M_{1} and hence in M.

It should be noted that the hypothesis in case (a) of Theorem 3 can not be weakened: If $M=\left(P^{2} \times S^{1}\right) \#\left(S^{2} \times S^{1}\right)$, then $\pi_{1}(M)$ is not an extension of a free product of 4 factors by \boldsymbol{Z}_{2}.

It is now easy to see how to obtain an analogous result for 3manifolds with incompressible boundary.

References

1. D. B. A. Epstein, Projective planes in 3-manifolds, Proc. London Math. Soc., (3) 11 (1961), 469-84.
2. C. D. Feustel, A generalization of Kneser's conjecture, to appear.
3. W. Haken, Ein Verfahren zur Aufspaltung einer 3-Mannigfaltigkeit in irreduzible 3-Mannigfaltigkeiten, Math. Z., 76 (1961), 427-467.
4. W. H. Heil, On P2-irreducible 3-manifolds, Bull. Amer. Math. Soc., 75 (1969), 772775.
5. On the existence of incompressible surfaces in certain 3-manifolds $I I$, Proc. Amer. Math. Soc., 25 (1970), 429-432.
6. - On Kneser's conjecture for bounded 3-manifolds, Proc. Cambridge Phil. Soc., 71 (1972), 243-246.
7. A. G. Kurosh, The theory of groups II, Chelsea, N. Y. 1960.
8. J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math., 84 (1962), 1-7.
9. W. H. Row, Jr., Irreducible 3-manifolds whose orientable coverings are not prime, Proc. Amer. Math., Soc., 34 (1972), 541-545.
10. J. Stallings, On the loop theorem, Annals of Math., 72 (1960), 12-19.
11. - On Fibering Certain 3-manifolds, Top. of 3-manifolds, (1962) Prentice Hall, Englewood, N. J.
12. -, Grushko's Theorem II, Kneser's conjecture, Notices Amer. Math. Soc., 6 (1959), Abstract 559-165, 531-532.
13. J. Tollefson, Free involutions on non-prime 3-manifolds, Osaka J. Math., 7 (1970), 161-164.
14. J. H. C. Whitehead, 2-spheres in 3-manifolds, Bull. Amer. Math. Soc., 64 (1958), 161-166.

Received August 11, 1971 and in revised form April 7, 1972. Partially supported by NFS grant GP 19964.

The Florida State University

