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THE INDEX OF CONVEXITY AND
THE VISIBILITY FUNCTION

GERALD BEER

If the integral of the visibility function for a set E is
normalized, one arrives at the Index of convexity of E, a
measure of the relative convexity of £ in terms of the average
“area seen” by a variable point of E. As the visibility function
is upper semicontinuous on a compact set in F,, the Index is
upper semicontinuous on the class of all compact sets in E,
with an appropriate metric. We also investigate natural
generalizations of convex and starshaped sets in terms of the
visibility function.

DEFINITION. The visibility function assigns to each point x of a
fixed measurable set E in a Euclidean space F, the Lebesgue outer
measure of S(x), the set {y: rx + (1 — r)y ¢ E for each 7 in [0, 1]} and
zero to each point of K,/E.

The study of the visibility function is the study of the dynamic
properties of the “star” of a variable point x of E; in effect, the
techniques used may be described as “starshaped analysis.”

If E has positive finite Lebesgue measure, a natural representation
of the relative convexity of E is the following Index of convexity:

_ [ m(S)
I(E) = L o dm(@

providing this expression makes sense. We show that the Index is
upper semicontinuous on the family of all compact sets in E, with
an appropriate metric. Finally, we investigate the natural generali-
zations of convex and starshaped sets in terms of the visibility
function and establish desired decomposition theorems for these objects
in the compact case.

2. Preliminaries. We essentially use the same terminology as
in [3]. We denote ordinary Lebesgue measure in E, by either m or
m, (if more than one measure is under discussion). B,(x) will denote
the closed r-ball about a point #; conv ker E and conv E will denote
the convex kernel of E and convex hull of E, respectively. The
interior of a set E relative to the smallest flat containing E is given
by intv E. Finally, 2y will denote the line segment joining = to y
and L(», y) will denote the line determined by x and y. We begin
with this obvious fact: If E is a closed (open) set in E,, then S(x)
is closed (open) for each x in E. Let us designate the visibility
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function for a fixed set by the letter o.
3. Continuity properties of the visibility function.

THEOREM 1. If OC E, is open, then the visibility function asso-
ciated with O is lower semicontinuous.

Proof. Let xeO and let {x,} — z. Clearly S(x) c Us, N3=: S(®.),
for if pe S(x), there exists a neighborhood about & which sees p via
0. Hence v(x) = m(S(x)) < m(Usr-. N:=: S(x,)) = lim,_.. m(N-. S(x,)) <
lim, ., m(S(z,)) = lim,_., v(x,). Since v(x) = 0 when x ¢ O and O is open,
v is lower semicontinuous.

THEOREM 2. Let KC E, be compact. Then the visibility function
associated with K is wpper semicontinuous.

Proof. Again let e K and {z,} — 2. The compactness of K
implies that S)> N U= S®,). We have v(®) = m(S()) =
m(N7= Uz S@,) = limy... m(Us-, S(@,)) = lim,.., m(S(z;)). The result
now follows as before.

COROLLARY. The wvistbility function for a compact set when
restricted to the set attains a marimum.

COROLLARY. The vistbility fumnction for a closed set ts a Borel
Sfunction.

Proof. Let E be closed and x¢ EF be arbitrary. Then S(z) =
U S®) N B,(0) so that » is the limit of upper semicontinuous
functions.

ExAMPLE. A closed set F on which v is not upper semicontinuous.
Let E be the following set in the plane:

(0, 1) Uel U conv ((/n, 1) U {(r, 0): 7 = }) .
Then »(0,1) = 0 but v(1/n,1) = «~ for all n.

DEFINITION. Let K be a compact set in E,. The e-parallel set
of K, denoted by K., is the compact set U,.x B.(%).

Let S,_, denote the unit sphere in E,. Every x in E,/{0} can be
written uniquely as »r-0 where » >0 and 6eS,_,. If o,_, denotes
the standard surface measure for S,_, and if f is a positive Borel
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function on E,, recall that
§ fdm, = rg P2 (- 0)da (O)dr .
Ey 0 JSp—1

LEMMA. Let f be a nonnegative Borel function defined on S,_;.
If %y, = f(0)-0 for each 0€8S,_;, then Usxs is @ set of n-dimensional
measure zero.

Proof. By Lusin’s Theorem, ¥V« there exists a continuous function
f. on S,_, such that f, = f on a compact set whose surface measure
differs from that of the unit sphere by less than 1/n. Hence E =
U= {#e: f(0) = f.(0)} is an F,-set differing from ,z, by a set of
measure zero so that U, 2, is measurable. Since the characteristic
function of E is Borel we have

m(WUsw) =m(EB) = | | ryur-0)drdo, .0) = 0

as each ray emanating from the origin intersects E in at most one
point.

The following corollary is indispensable in studying the visibility
function.

COROLLARY. Let E be a compact set in E,. If xc E, the set of
endpoints of all segments im S(x) with one end point x forms a
measurable set and has measure zero.

Proof. We may assume x = 0. Let p, denote the endpoint in
the 6 direction (which may be 0). If we apply the previous lemma
to the upper semicontinuous function f(6) = | p, — 0], the result follows.

4. The index of convexity.

DEFINITION. Let EC E, be a measurable set with measurable
visibility function », and suppose m(E) < . If m(E) > 0, the Index
of convexity of E, I(E), is given by

§E ;m(;/’)2 dm

If m(F) =0, we agree to let I(E) be 1.

Clearly 0 < I(E) <1 for any set E for which the Index makes
sense, and if K has a nonempty interior, the Index is nonzero. It is
evident that the class of sets of Index 1 is closed under countable
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intersections and contains the bounded convex sets as a subclass.

THEOREM 3. Suppose F,C E, and F,C E, are two sets of positive
measure for which the Index is defined. Then I(F, x F,) = I(F)I(F).

Proof. Let v be the visibility function for F, X F,. Clearly
S(x) x S(y) = S(x, y) for every (x, y) € F, x F, so that v(z, y) = v.(x)v,(y),
where v; is the visibility function for F);, + = 1,2. The result now
follows in the obvious way using Fubini’s Theorem.

From the results of Theorems 1 and 2, it is immediate that the
Index makes sense for compact and bounded open sets.

If {E"} is a sequence of compact sets which converge to a compact
set E in the Hausdorff metric, we might expect some relationship
between {I(E™)} and I(E). However, we are working in the wrong
metric space as the two following planar examples show.

(1) Let E=1{z12z]21}U{z|z— 2| =1}, Let E" ={2: |z - 2| <
1} U {z: |z] = 1, Im z = k/n for some integer k}. Then E*— E, I(E™) =1
for every =, but I(E) = 1/2.

(2) Let E={2:0<Imz=<1|Rez| <1} and let E"={z:0 <
Imz<1,1/n < |Rez| <£1}. Then E"— E, I(E") = 1/2 for every =,
but I(E) = 1.

What goes wrong is our improper generalization of convergence
for convex sets, for if convex sets converge in the Hausdorff metric,
they also converge in measure. We define a new metric d on the
class of compact sets in m-space. If A and B are two such sets,
define d(A4, B) = sup {d(A, B), m(A4B)} where d denotes Hausdorff
distance.

Although this metric space is not complete, we can still generalize
that part of Blaschke’s theorem which says that the limit of convex
sets is convex.

THEOREM 4. The Index of convexity is upper semicontinuous on
the metric space d of compact sets im m-space.

Proof. We show that if K, are compact and converge to K(J),
then I(K) = limsup I(K,). We may assume m(K) > 0 by our con-
vention that I(K) =1 if m(K) = 0.

Let K’ = {# e K: x ¢ K, for infinitely many n}. We claim m(K’) =
m(K). We must show m{x: x ¢ KN K; for all but finitely many =} = 0.
Suppose m(Us=: Nase KiN K) >0 > 0. Then there exists N such that
Mm(Nnsy KN K) >06/2. Hence m(K:N K) >6/2 for n > N. But
K:Nn Kc (K4K,), a contradiction to m(K4K,) — 0.

Let v denote the visibility function for K and let v, denote the
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visibility function for K,.

We claim for each z in K', v(x) = limsupwv,(z). Let S,(®) =
{y: yrc K,}. We need only show that for every e > 0, there exists
N such that n > N = (S(x)). © S,(®) whenever ze K,. Suppose not.
Then there exists a sequence of segments {y,x} such that for each
l, y,o C K,, but ¥, is not contained in (S(»)).. Passing to a sub-
sequence we may assume that {y,x} converges in the Hausdorff metric
to a subset D < S(x). Hence if [ is sufficiently large v, » < D. C (S(%)).,
a contradiction.

We now have by Fatou’s lemma

> SK, lim sup m(vl”{n)z dm
= lim sup iK mv;{”)z dm
— lim sup SK/M iy dm + lim SKn,K/ iy "

= lim sup I(K,) .
Our second example shows that strict inequality may indeed occur.

COROLLARY. If I(K,) =1 for each n and if K,— K in the d
metric, then I(K) = 1.

5. Pseudo kernels. Sets of Index 1 are the obvious generali-
zation of convex sets in terms of “visibility theory.” Analogously,
a set E is starshaped in a more general sense if there is a point 2
of E satisfying m(F) = m(S(z)). In this section we classify in the
compact case sets of Index 1 and “pseudo starshaped” sets.

DEFINITION. Let E be a measurable set in E,. The pseudo kernel
of E is the set {x ¢ E: v(x) = m(E)}. We denote this set by Pker E.
E is pseudo starshaped if Pker F = .

LEmMmMA. If EC E, is open, Pker E is a Gyset. If KcC K, 1is
compact, Pker K is compact.

Proof. If E is open, Pker E = Ny, {x e E: v(x) > m(E) — 1/n}.
If Kis compact and m(K) = 0 the assertion is obviously true; other-
wise, Theorem 2 implies that { € K: v(x) = m(E)} is compact.
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LEMMA. Let K be a compact set in E,. If convker K has a
nonempty interior, then conv ker K = Pker K.

Proof. Let ye Pker K/conv ker K. Since K° is open, y must
see every point of intconv (xz U conv ker K) where e K is arbitrary.
Since K is compact, x e S(y) for every xz ¢ K.

ExAMPLE. A compact set K in E, satisfying dim (conv ker K) = 2
but convker K== Pker K. Let K= {(»,y,2):2*+ v+ 22 <1} U {(z,
y,2): 8+ ¢y < 2,2 = 0}.

The following property of the visibility function peculiar to compact
sets is particularly illuminating in this section.

THEOREM 5. Let E and F be compact sets in E,. If m(EAF) = 0,
then the visibility functions for the two sets are equal.

Proof. We first show the two functions agree on E N F. W.l.o.g.,
we may assume 0 to be an arbitrary point of N F. Let S;(0) be
those points of F' which 0 sees via F' and let S;(0) be those points
of E 0 sees via E. Suppose m(Sz(0)) > m(S:(0)) so that certain segments
in Sz(0) contain segments in F".

Consider the function f defined on S,_, given by f(0) = sup{|z — y|:
zyc F°N Ryn Sz(0)} where R, denotes the ray from 0 through 4.
We claim f is a Borel function. To see this, note that f(8) = inf £,(6)
where f,00) =sup{lz — y|:zyCcF°N Ry N (Sp(0)),,}. However, for
every n the 1/n-parallel set about S;(0) is a compact starshaped set
whose convex kernel has a nonempty interior. Hence, the boundary
is a continuous function of # which implies f, is lower semicontinuous
for every m, so that f is a Borel function. Now we must have
0,_.(f710, «)) > 0. Hence there exists 6 > 0 such that ¢,_, {#: there
exists a2y C F°N Ry N Sp(0), | — ] > 0} > 0. Since this set, which
we denote by M;, is a Borel set, the set of all points in F° N S0)
which project radially onto M, is a Borel set. Denoting this last set
by M we have

[adm, = | " r=gut-0)drdo, .6)
My Jo
>, (M) >0.
n

But Mc S;(0) N F°c EN F°. Hence we have a contradiction to
m(EAF) = 0. It is easy to show that both visibility functions are
zero at any point 2 in FAF since E N F is compact.

Intuitively we should only expect that I(Pker K) =1 and not
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that Pker K is convex. It is surprising that the following theorem
holds.

THEOREM 6. Let K by any compact set in E, with m(K) > 0.
Then Pker K is convezx.

Proof. Again we may assume that 0 is an arbitrary element of
Pker K, and let y be any other element of Pker K. Since m(S(0)) > 0,
every neighborhood of 0 must contain a subset of K of positive
measure so that y must see some point in each neighborhood via K.
The compactness of K implies v sees 0 via K.

We claim 0y c Pker K. Consider the Borel set S(0) N S(y)°, which
has measure zero. We must have for almost every 6 on S,_,

So " Asonswe(r-0)dr = 0.

Since R, N S(0) N S(y)° is either empty or contains open segments,
we have R, N S(0) N S(»)° = @ for almost all §. This means that y
sees every line segment in S(0) in its entirety except a set of lines
whose union forms a set of measure zero. Hence any point in intv Oy
has the same property. Since almost every point of K is in S(0),
Oy c Pker K.

COROLLARY. Let K be a compact set in E,. Then I(K) =1 iff
K = F U C where C is compact and convex and m(F) = 0.

COROLLARY. (Helly’s Theorem for compact sets of Index 1.) Let
{K.} be a collection of compact sets of Index 1 in E, such that every
n + 1 intersect im a set of positive measure. Then N K, # Q.

COROLLARY. If KC E, is a compact set which is the closure of
an open set and I(K) = 1, then K 1is convex.

As a consequence of Theorem 5 we have the following

COROLLARY. If a compact set K C K, satisfies m(K) > 0, (K) =1
and v(x) > 0 for every x in K, then K is convex.

We are now in a position to classify those compact sets with
nonempty pseudo kernels.

THEOREM 7. Let K be a compact set in E, with m(K) > 0.
Suppose Pker K + @&. Then K =S UF where m(F) =0 and S is a
compact starshaped set with convexr kernel Pker K. In addition,
m(S(x)) = 0 for every xcF.
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Proof. Let {a,}] be a countable dense subset of Pker K.
m{Us;-. K/S(a,)) = 0 so that m(N;-; S{a,)) = m(K). The compactness
of K implies

N S@ = A Sa.) so that m(K) = m( N (9(:)) )
z € PkerK n=1 ze PkerK

Let ¥ € MNaeprerx S{®) and x,€ Pker K be arbitrary. If g eintv xy,
we have conv(q U Pker K) Cconv(y U Pker K) C K so that ¢ € MN,e precxS(®).
Hence N,cprrex S(®) is starshaped with respect to Pker K, is compact
and is of full measure. If ¥ € K/.ecrrerx S(&), Theorem 5 again implies

v(y) = 0.

We note that any compact pseudo starshaped set has a visibility
function identical with the visibility function of some compact star-
shaped set.

THEOREM 8. Let {K,} be a sequence of compact sets of positive
measure with nonempty pseudo kernels {P,} and suppose {K,} — K(d).
Then K has a pseudo kernel which contains a subsequential limit of
{P.}.

Proof. Let K,=S, U F, where S, is compact and starshaped with
respect to P, and m(F,) = 0. By the Blaschke convergence theorem
for starshaped sets, passing to a subsequence we may assume {S,} — S
and {P,} — P in the Hausdorff metric, where P C convker S. We have
m(S) = lim sup m(S,) = lim m(K,) = m(K). Since S K, we have
m(KJS) = 0.

Since the compact pseudo starshaped sets include all compact sets
of measure zero, it follows from Theorem 8 that they form a closed
metric subspace of the metric space of all compact sets under d. I
fails to be continuous on this subspace; to see this, we note that the
unit disec in F, is the limit of a sequence of radial Cantor sets of
positive measure.

No classification theorem for open sets of Index 1 has yet been
established. Clearly, if E is a bounded open set of Index 1, then
¢l F is convex which implies that a regular bounded open set is convex
iff it has Index 1. It seems reasonable to conjecture that the Index
of a pseudo kernel of a bounded open set would be 1. A property
shared in common with convex open sets is the following.

THEOREM 9. Let {E,} be a countable collection of bounded open
sets in K, of Index 1 such that every n + 1 contain a translate of some
closed ball B. Then o= E,, * O.
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Proof. The collection {cl (E,)} satisfy the hypotheses of the
following theorem of Klee [1]: If {K,} is a collection of compact convex
sets in F, such that the intersection of every subfamily of cardinality
n + 1 contains a translate of some convex compact set K, then N K,
contains a translate of K. Therefore, Ng-,cl (#,) contains B + p
for some pe E,. Now bd E, is nowhere dense in B + p for each m.
Since B + p is a complete metric space, M-, E, is nonempty.

ExampLE. For each (r, r,) € E,, let
B, ={@,9):0<2<1,0<y <1, (2,9 # (r, )} -
It is easy to see that the intersection of any three such sets contains
a ball of radius 1/12, but N, ez, B, = @
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