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NECESSARY CONVEXITY CONDITIONS FOR THE
HAHN-BANACH THEOREM IN METRIZABLE SPACES

M. RlBE

Local convexity appears—by the Hahn-Banach theorem—as
a sufficient condition for the (topological) dual of a topological
vector space to separate points from closed subspaces. The
aim in the present article is to obtain necessary conditions,
in terms of local convexity, for the latter statement to hold
for a metrizable topological vector space. In particular,
certain classes of such spaces are found, for which local con-
vexity is, really, a necessary condition for the dual to separate
points from closed subspaces. The course of proof goes via
consideration of the more general question how two metri-
zable vector space topologies on a linear space must be related
to each other, given that the class of linear subspaces which
are closed in one of them is larger than the class of those
closed in the other.

It was early recognized that a space with point-separating dual
may fail to be locally convex [11]; for the sequence spaces lp with
0 < p < 1 constitute examples of this kind. So do the Hardy spaces
Hp with 0 < p < 1 [12] resp. [7]. However, even if the dual of a
topological vector space separates points from each other, it need not
separate points from closed subspaces. The first example of such a
space was given by Klee [5]. Later, it has been shown that the lp

(0 < p < l)-spaces [8], the Hp (0 < p < l)-spaces [3], and, in fact,
all complete metrizable nonconvex spaces with Schauder bases [10]
are also such spaces.

So it is natural to ask: Are there also quite general conditions—
similar to non local convexity—which imply that the dual of a given,
not necessarily metrizable, topological vector space (over the real or
complex numbers) does not separate points from closed subspaces?
It does not seem so. For consider the remark of Alan Schuchat
presented in [3]: let an uncountably dimensional linear space be
endowed with the finest topology which is compatible with the linear
structure of the space. Then any linear form on the space is con-
tinuous; so it follows from a purely algebraic argument that the dual
of the space separates points from subspaces. On the other hand,
the space is not locally convex; indeed, it is very far from that,
since every uncountably dimensional subspace resp. quotient space fails
to be locally convex. (For a different way of obtaining nonlocally
convex spaces whose duals separate points from closed subspaces, see
[4].)
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Thus—as suggested in [3]—we naturally restrict our attention
to some smaller class of spaces; for instance, the metrizable ones. In
this article, we shall show that if a metrizable space satisfies a certain
condition, which is similar to non local convexity, though stronger,
then the dual of the space must fail to separate points from closed
subspaces; see Corollary A below. This result is got as a special
case of a more general assertion, contained in the Main theorem
below. The mentioned results are followed by applications to more
specific situations.

For instance, we are able to continue the work commenced by
Shapiro [10] of finding certain classes of metrizable spaces, in which
local convexity is, indeed, a necessary condition for the dual to separate
points from closed subspaces; Corollaries E, G, and G', and the
example just before Corollary G below. So in these cases, there is a
kind of converse of the "qualitative part" of the Hahn-Banach theorem.
We see that local convexity is then characterized entirely in terms
of the behaviour of the closed subspaces—thus in terms which do
not explicitly involve convexity.—Of course, the last statements would
not make any reasonable sense unless the space classes in question
did contain spaces which are not locally convex as well as spaces
which are. They do; for example, they contain the lp and H* (with
0 < p ^ oo). This means that to re-establish the known facts that the
duals of these spaces fail to separate points from closed subspaces
when p < 1, one could use either Corollary E or Corollary G below.

It is natural to ask for more general such "non convex" charac-
terizations of local convexity. In this connection, let us mention that
a metrizable space is known to be locally convex as soon as every
weakly bounded subset is bounded [6].

2* Let us now see how our problem can be recognized as a special
case of a more general one.

Remark. Let L be a vector space with a vector space topology
τ. If ^ήr is the O-neighbourhood filter for τ, denote by τx the vector
space topology whose O-neighbourhood filter is {coF |Fe^^}; here
and in the sequel, co denotes "convex hull of". Then we have:

1° τ is locally convex if and only if τ = r l f

2° the dual of (L, τ) separates points from r-closed subspaces
if and only if every r-closed subspace is zv-closed.

(By (L, τ) we mean, of course, the topological vector space whose
underlying linear space is L and whose topology is τ.) Namely, notice
that ΓJL is the finest locally convex topology that is coarser than τ.
From this, 1° is immediate. For 2°, observe that a linear form on
L is continuous with respect to τ if and only if it is continuous with
respect to τ1 (i.e., if a linear form is continuous with respect to r
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and thus bounded on Ve-ΛΪ say, then it is bounded also on coF
and hence rcontinuous; the converse implication is obvious). By an
elementary corollary of Hahn-Banach's theorem, a linear subspace of
L is then rx-closed if and only if it can be separated from any point
outside it by some τ-continuous linear form. Thus, to say that any
τ-closed subspace fulfils the latter condition amounts to the same as
to say that any τ-closed subspace is τrclosed.

It is also clear that τγ is metrizable if τ is (since τι must then
have a countable O-neighbourhood base).

From this remark it follows that our problem is a special case
of a more general question, that is:

Suppose that L is a vector space endowed with two topologies τ
and τι which are compatible with the linear structure of the space
and metrizable. Then, if every τ-closed linear subspace of L is τr

closed, how must τ be related to τL?—If τ and τt are both locally
convex, it follows from standard results in duality theory that τx

must be finer than τ (see, e.g., [9]). (In fact, for this conclusion, it
suffices that τ is locally convex; cf. [6].) So the question is, essentially:
Can anything in that direction be said also in the general case,
with no assumptions of local convexity?

The following theorem is a partial answer. What it says is,
briefly, that if τ satisfies a certain condition stronger than failure of
being coarser than τ19 then every τ-closed subspace cannot be ^-closed.

MAIN THEOREM. // a vector space L has vector space topologies
τ and τ1 which are metrizable, and a non void class & of linear
subspaces satisfying the conditions
(C) There is a O-neighbourhood U for τ such that for every K\ e ^

and finite-dimensional subspace F c L, the set

Kγ n Π (K+F+ U)
Keί

fails to be a O-neighbourhood for the subspace topology which τx

induces on K19

(D) The space K± Π K2 belongs to & whenever both Kx and K2 do,
then L has a linear subspace which is τ-closed but not τrclosed. In
fact, if z0 is any point in L\f)Ke^K (closures with respect to τ), then
one can find a τ-closed subspace N, say, so that z0 is outside it but
belongs to its τrclosure.

Furthermore, it will be apparent from our construction of N that
in the case when & is a decreasing sequence of subspaces ULΊ Z) K2~D ,
we get an N so that K3 Π N has finite codimension in N for each
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Proof. For convenience, let τ be metrized by a metric d( , •)
that is given by a pseudo-norm (in the sense of [9]), i.e., a nonnegative
real-valued functional | | on L satisfying

(a) \x + y\ ^ \x\ + \y\, x,yeL,
(b) I Xx I ^ I x I, λ scalar with | λ | ̂  1, # e L,
(c) I x I = 0 implies x = 0 for a? 6 L, and
(d) <Z(&, 2/) = Iα? — i/l, x,yeL.

(This is certainly possible; see, e.g., [9].)
Let us write S(λ) = {x e L \ \ x \ < X} for λ > 0. Then (b) says

precisely that each set S(X) is circled (i.e., balanced); and so every
set S(X) + H, where H is a subspace, is circled. Hence (b) may be
replaced by the stronger statement

(b)' the function X-+d(Xx, H), X > 0, is monotone for every fixed
x e L and linear subspace H; further, d{θx, H) — d(x, H), θ
scalar with | θ\ = 1.

By d{y, H) we mean, as usual, inf {\y — z\ \zeH}. Further, we shall
write Si(λ) = {xe L\ \x\λ < λ}, λ > 0, where | |x is a pseudo-norm for

Let the element z0 not belonging to the r-closures of all the spaces
of ^ be given. (By (C), such elements must exist.) We intend to
construct recursively subspaces Nλ c N2 c , such that

(i) z0 + Nk meets SL(l/k) for every k ^ 1 and
(ii) all the affine subspaces z0 + Nk, k ^ 1, stay away from S(ft)

for some px > 0.
Having done this, form the subspace N = \Jk>iNk (the closure being
taken with respect to τ). Then, by (ii), the point z0 will have
"τ-distance" at least pt to N and will thus be outside N; but by (i),
it will belong to the r rclosure of N. And so, the assertion of the
theorem will follow.

So we only have to construct the finite-dimensional subspaces Nk.
First notice that the r-0-neighbourhood U in condition (C) may clearly
be replaced by a smaller one, so we can assume that U — S(p) for
some p > 0. Take H^^ so that z0 $ Ht. Write NQ = {0} and set
p1 = min do/2, d(z0, fli)/2). We will now employ a recursive procedure,
which will give the Nk as well as spaces Hk e ^ k ^ 2, in such a
way that, in the place of (ii), the even stronger statement

(ii)' d(z0 + N^ + Hk9 0) > ft(l + 1/fc) for fc ^ 1
is valid. It is for k = 1; so suppose that for some k ^ 2, the JVA_2

and £Γfc_! have been found while Nfc_1 and iίfc are wanted. Then since
the function

X -> (Z(λ2;0 + JV*_2 + !/•,_,, 0)

is continuous (this is a simple consequence of the triangle inequality),



NECESSARY CONVEXITY CONDITIONS FOR THE HAHN-BANACH 719

there is a number θ\ 0 < θf < 1, such that

(*) d{θ% + Nk_2 + Hk_u 0) >

We are now going to use condition (C); by this, the set

ff*-i n n (K + iv,_2 + -L
\ 1

where A^_2 denotes the linear hull of Nk__0 and {20}, cannot be a 0-
neighbourhood with respect to the topology that τx induces on Hk_x.
Since S^l/k) is such a 0-neighbourhood, we can now take Hk£^ so
that first, Hk c Ήk_γ (possible in virtue of (D)), and second, the set

j±) Π

becomes nonempty. Take a point zk in this set. By its definition,
this zk must satisfy

1° ZitβS^l/k) and

2° d((l - θ')zk, Hk + iV,_2) > p.
Now we define Nk^ as the linear hull of Nk_2 and {zk — z0}. We
must verify (i) and (ii)Ό First, zkez0 + Nk_u whence 1° gives (i).
For (ii)', notice that

d(z0 + Nk_, + Hk, 0) - d(z0 + lin {zk - z0} + Nk_2 + Hk, 0)

= d(z0 + lin {zk - ô}, Nk_2 + iϊ,)

= inf {d(θz0 + (1 - ί)»ifc, iVfc_2 + Hk) \ θ scalar}

with lin meaning linear hull. So we get (ii)' by proving that

d(θz0 + (1 - θ)zh, Nk_2 + Hk) ^ Pl

for every scalar <9. Any ^ occurs in at least one of two cases:
I. 1̂ 1 ^ θ'. Then, by property (b)' of the metric and by (*),

d(θz0 + (1 - θ)zk, Nk_2 + Hk)

^ d(θz0, Nk_2 + Hk + lin {zk})

^ d(^ 0 , iV,_2 + Hk^) , since ΐffc U {zk} c ί ί , . , ,

^ d ( ^ , ΛΓ,_2 + fl ^O > Pι(l + ^

II. |1 - θ\ ^ 1 - θ\ Then, likewise and by 2°,

- θ)zk, Nk_2 + ,fffe)

- θ)zk, Nk_2 + Hk)
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- θ')zk, Nk^ + Hk)

Applied to our original problem, the Main theorem gives the
following corollary. What the latter says is, briefly, that if a metriza-
ble space satisfies a certain condition stronger than non local convexity,
then its dual must fail to separate points from closed subspaces.

COROLLARY A. // a metrizable topological vector space E has a
non void class & of linear subspaces satisfying the conditions
(CC) There is a ^-neighbourhood U in E such that for every Kγ e ^

and finite-dimensional subspace F in E, the set

K,n Π(κ+ F+ U)

does not contain any intersection of a convex ^-neighbourhood
with Ku

(D) The space Kγ Π K2 belongs to ^ whenever both Kt and K2 do,
then the topological dual of E fails to separate points from closed
subspaces.

Proof. Apply the Main theorem with E in the place of (L, r)
and with τ1 defined as in the remark preceding the theorem; the
assertion then follows in virtue of that remark.

3* Before we consider more specific situations where Corollary A
applies, let us return for a while to the more general problem on the
comparison of topologies.

COROLLARY B. Let L be a vector space endowed with vector space
topologies r, τx, and τb, such that τ and τ1 are metrizable, τb is separated
and locally bounded, and such that τι and τb are coarser than T.
Further, let L1ZD L2Z) be a decreasing sequence of linear subspaces
and let τij, τ[ά, and τ\j, resp., denote the topologies defined by τ, τ19

and τb, resp., on LJLj for 1 ̂  i ^ j . If a linear subspace N, such
that every Li Π N has finite codimension in N, is always τrclosed if
it is τ-closed, then there must be a space LiQ for which the topologies
of all its quotient spaces LiJLά, j ^ i0, satisfy

where ZD means ufiner than".

Proof. Apply the Main theorem with ^ = {Lu L2, ...}—taking
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notice of the special assertion for the case when ^ is a sequence.
Namely, we now show that if the space Lio does not exist, this ^
must satisfy condition (C). For U, take any bounded O-neighbourhood
of τb. If Lio does not exist, then, for any given i, the relation τ\j z>
τ\s must fail as soon as 3 is taken sufficiently large. First, let us
see what this means. Suppose that F is a given finite-dimensional
subspace of L. Consider the diagram

canonical isomorphism

LJL, - ^ - (L{ + F)/Lj - ^

where F1 is the finite-dimensional space supplementary to L5 in Lj + F,
where gγ is the imbedding, and where g2, gz, and g± are the quotient
mappings. Here, if L is topologized by any linear topology, we have
(since L{ Z) Lj) the topological isomorphisms

(Lt + F)/Lj = (L4 x FJ/Lj s (LJLj) x F2 ,

where -F2 is the subspace supplementary to L{ in Li + F. But since
F2 is finite-dimensional and thus can have only one linear topology,
this means that the relation τ[j 3 τ\j holds if and only if the corre-
sponding relation holds between the topologies defined by τx resp. τb

on {Li + F)/Lj. Now, (Li + F)/Lj is also isomorphic to

(((Li + F)/Ld)/g,(Fd) x g,(Fd ,

where gz(Fί) is finite-dimensional; so we can use the same argument
once more to show that τ\5 ZD τ\5 if and only if τ\* Z) τ\\ where τ\j and
τ\s are the topologies defined by τx resp. τb on the space

Lj + F
L3

Further, since U is bounded O-neighbourhood with respect to τh, the
relation τ[j z> τ\j means precisely that the set g2((Li + F) f]U) is a
O-neighbourhood with respect to τ[j. Thus, we find that if the relation
τ\s =) τ\j fails, then flra((J^i + F) f)U) must fail to be a O-neighbourhood
with respect to τ\\

Now we can show that ^ satisfies condition (C) under the assump-
tion that Lio does not exist. For, given Kλ — Li in & and finite-
dimensional F (z L, we notice that the relation τ\5 ID τ\ά must then
fail for j large. As we have just seen, this means that for j large,
the set g2((Li + F) Π U) must fail to be a O-neighbourhood in τ['; so
then, the inverse image under g2 of that set, viz.,
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(L< + F) n U+ Li + F = (Lt + F) Π (Ly + F + U)

cannot be a O-neighbourhood in the topology induced on Li + F by
τ l β Hence, the set

L< Π Π (L3 + F+ U)

certainly fails to be a O-neighbourhood in the topology defined by τ1

on Lif as required.
Let us rephrase this corollary for the special case when τ = τb:

COROLLARY C. Let L be a linear space with a locally bounded
topology τ and a coarser metrizable topology r1# Further, let L1 ID
L2 z> be a decreasing sequence of subspaces. If a linear subspace
N, such that every Lif] N has finite codimension in N, is always
τrclosed if it is τ-closed, then there must be a space Lio for which the
topologies defined by τ and τx coincide on all of its quotient spaces
LJLj, j ^ i0.

4* The remainder of this article will be devoted entirely to our
original problem, which was also dealt with in Corollary A.

Let us first see what Corollary C says on this problem for locally
bounded spaces.

COROLLARY D. If E is a locally bounded space whose dual sepa-
rates points from closed subspaces, then any decreasing sequence Eγ ZD
E2 z> of closed subspaces has a space EiQ, all of whose quotient
spaces E{JEά are locally convex.

(In fact, for the latter statement to be true for a particular
sequence Et =) E2 3 it suffices that the dual separates points from
those closed subspaces N in which all spaces Eif] N have finite codi-
mension,)

Proof. We may assume E to be separated; for, at any rate, the
intersection of all O-neighbourhoods in the locally bounded E must be
a closed linear subspace G; so we may consider E/G, which is sepa-
rated, in the place of E (with EJG in the role of Eu i ;> 1). Apply
Corollary C with E in the place of (L, τ) and with τx defined as in
the remark preceding the Main theorem; the assertion then follows
in virtue of that remark.

Specializing further, we get a converse of the "qualitative part"
of Hahn-Banach's theorem in a specific situation.

COROLLARY E. Let E be a locally bounded space which is isomor-
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phic to the product space E x E. Then the space E must be locally
convex if its dual separates points from closed subspaces.

Proof. Write successively

E = Ko x K\

K\ = Kl0 x Kn

Kn = Kn0 x Knί

all the spaces Ko, Kly Kί0, being isomorphic to E. Considering the
spaces Kl9 Kn, Knu as subspaces of E, we see that these form a
decreasing sequence such that each of the quotient spaces KJKn,
KiJKm, is isomorphic to E. Thus, a fortiori, if E fails to be
locally convex, all these quotient spaces do; and Corollary D shows
that the dual of E fails to separate points from closed subspaces.

REMARK. AS pointed out in the introduction, one can use this
corollary to prove the known facts that the duals of lp resp. Hp

(0 < p < 1) do not separate points from closed subspaces. The corol-
lary is evidently applicable to lp; so it is to Hp, for this space can
easily be seen to be canonically isomorphic to the product of the sub-
spaces

each of which is isomorphic to Hp.
This remark says that there are, indeed, non locally convex (as

well as locally convex) spaces among those locally bounded spaces E
which are isomorphic to their own "squares" E x E. Hence, it
makes sense to call Corollary E " a converse of 'the qualitative part'
of a special case of Hahn-Banach's theorem".

5* We are now going to cosider cases where the subspace class
^ (occurring in the Main theorem and in Corollary A) is of quite
another type than in the applications till now (cf. the proof of Corol-
lary B).

COROLLARY F. The dual of a metrizable space E can separate
points from closed subspaces only if E has the property
(P) For any ^-neighbourhood V in E, the weak closure of V + F

contains a convex ^-neighbourhood for some finite-dimensional
subspace F c E.
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Thus, a metrizable space whose dual separates points from closed
subspaces must refrain from possessing a certain kind of non local
convexity, that is, failure of (P). Notice that this kind of non con-
vexity also involves "smallness" of weak closures—in other words,
plentitude of continuous linear forms. It might seem a bit odd that
a statement of the latter sort is a part of a sufficient condition for
the dual not to separate points from closed subspaces. But the ques-
tion is whether a non locally convex metrizable space with "lack"
(in some suitable sense) of continuous linear forms could have a
general "lack" of closed linear subspaces, to the effect that the dual
would be able to separate points from closed subspaces.

Of course, this corollary would not be very relevant to our problem
unless there were spaces without property (P). However, we shall
soon take advantage of the fact that for certain classes of spaces
(with "plenty" of continuous linear forms, but not always being locally
convex), property (P) is, indeed, equivalent to local convexity.

Proof of Corollary F. Suppose that (P) fails for E. We shall
apply Corollary A with <g* equal to the class of all closed subspaces
with finite codimension. To that end, condition (CC) must be verified,
i.e., a O-neighbourhood U such that

coVΠKι\n^(K+F+ U)Φφ,

for any O-neighbourhood V, Kx e ^ , and finite-dimensional F, must be
found. Notice that Γ\Ke^(K + F + U) is contained in the weak
closure of F + U; so it will do to take U according to the following
sublemma.

SUBLEMMA. If a topological vector space fails to have property
(P) [resp. fails to be locally convex], it has a O-neighbourhood U such
that for any closed subspace Kt of finite codimension, every set coFΠ
Klf where V is an arbitrary O-neighbourhood, reaches outside the weak
closure ofF+U for any finite-dimensional subspace F [resp. reaches
outside U].

Proof of sublemma. By assumption, there is a O-neighbourhood
W so that every coF reaches outside the weak closure of every
F + W [resp. outside W] We shall take the O-neighbourhood U
such that U + Ua W. Then, if w denotes weak closure, we get

(t) w(F + U) + Ud w(F + W)

for any F. Let K2 be a subspace supplementary to Kγ—by assump-
tion, K2 is finite-dimensional—and let πx resp. π2 be the (continuous)
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projections onto Kx resp. K2 vanishing on K2 resp. Kx. Since K2 is
locally convex, π2 is continuous also with respect to the topology with
O-neighbourhood filter {co V), where V runs through the O-neighbour-
hood filter for the original topology. Thus, 7Γ2(co V) c U for V small.
Since π^x) — x — τu2(x), and since co V has elements outside the weak
closure of F + W [resp. outside W] for any given F and arbitrarily
small V, this means, by (t), that π^co V) must reach outside the
weak closure of F + U [resp. outside U], which certainly gives the
assertion. (For, notice that by continuity of πί9 the class of sets
{TΓJXCO V)} is the O-neighbourhood filter for the topology induced on Kx

by the topology with O-neighbourhood filter {co V}).

6* The Corollary F will yield more significant consequences when
applied to certain cases in which E can be embedded into a complete
metrizable space that has a Schauder basis. Remember that a
Schauder basis in a complete topological vector space E is a sequence
{xk} of elements thereof such that, for every element x in E, there
is one and only one scalar sequence {ξk} which makes the sequence
{Σ2=iζk%k}n converge to x as n—> oo. The scalars ξk are given by
continuous linear forms ξk( ) on E—the coordinate functionate.

Suppose that the complete space E is metrizable and has a
Schauder basis. Introduce the mappings

of E into itself (notations as above). The following statement is a
consequence of the definition of Schauder basis.

(B) The class {πn}n is equicontinuous.
This can be seen from the fact that if | | is a pseudo-norm on E,

then I |i = sup {|Σϊ=i ?*(•)*&* I \n ^ 1} is an equivalent pseudonorm; for
a verification, which rests upon the open mapping theorem, of the
latter assertion, see [1], proof of Th. 2.

Next, we give some conditions for property (P) of Corollary F to
be equivalent to local convexity.

PROPOSITION. Suppose that E is a topological vecter space for
which one of the following statements (a)—(7) is valid:

(a) The conditions
(N) There is a O-neighbourhood base consisting of weakly closed

sets in E, and
(S) There is a O-neighbourhood U of E such that Γh>oλ£7" = {O},

are both fulfilled',
(β) The space E is locally bounded and fulfils (N); or
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(7) The space E is the dense subspace which is the linear hull
of the set of basis vectors in a complete metrizable space
with Schauder basis.

Then E has property (P) if and only if E is locally convex.

We need three lemmas.

FIRST LEMMA. // V is a closed and circled subset, which contains
no ray from the origin, of a separated topological vector space, then
V + F is closed for every finite-dimensional subspace F.

SECOND LEMMA. If V is a closed, circled subset of a separated
topological vector space with a finite-dimensional subspace F such
that V + F is a ^-neighbourhood and V Π F is a compact ^-neighbour-
hood in F, then V + V + V is a ^-neighbourhood.

THIRD LEMMA. Let E be a metrizable space whose completion E
has a Schauder basis such that E contains all the basis vectors and
thus also their linear hull G, say. For any ^-neighbourhood W in
E, there is a ^-neighbourhood U in E such that for any finite-dimen-
sional subspace F of G, the weak closure ofU+F is contained in
the closure of W + F.

Proof of first lemma. Let α be a cluster point of V + F, and
let s/ be a filter on V + F, converging to a. It must be shown
that a belongs to V + F. Write

j#[ = {{x - y\xe A, y e V} n F\Aej^} .

Clearly, s^[ is filter base on F. If A1 has a cluster point b, it is
seen that a — b must belong to the closed set V; thus, a = a — b + be
V + F, as required.

Suppose that jy? does not have any cluster point; this will be
shown to give a contradiction. Let J ^ be the trace of s/x on F\{0}.
If I I is an ordinary Euclidean norm on F, define the positive number
X(x) for any xeF\{0} so that |λ(α?)a?| — 1. By compactness, the image
of J^£ under x —> X(x)x has a cluster point z0. In virtue of the assump-
tion that J^l has no cluster point, the local compactness of F is also
seen to be contradicted unless {X{A)\Aej%f2} converges to zero. On
account of the continuity of multiplication, the filter base

= {{X(x)y I x e A2, y e A} \ A2 e s*f%, A e

also converges to zero (since j ^ was convergent). Now, let p be
an arbitrary positive number; the definitions of z0 and sfx show
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that pz0 is a cluster point to the filter base

x - y)(x -y)\xeA,ye [{x} - (F\{0})] Π V}\ Ae j*) .

Since J^J converges to zero, this means that pz0 is also a cluster
point to

(ί) {{- PX(x -y)y\xeA,ye [{x} - (F\{0})\ n V) \ A e sf) .

But {X(A) IA 6 J^J} converges to zero, so the coefficient ρ\(x — y) in
(t) must be smaller than one for A small; and so, since V is circled,
px(x — y)y in {%) belongs to V for A small. We have thus seen
that pz0 is a cluster point to a filter base on F. But V is closed,
whence pz0 e F. The point z0 being distinct from zero and p arbitrary-
positive, the assumption that V contains no ray from the origin is
contradicted.

Proof of second lemma. The boundary Z, say, of V Π F + FΠ
F in F is disjoint from V f) F. Further, Z is compact. Hence, by
a standard argument (cf. [2], II. 4.3), we find a circled O-neighbour-
hood W so that V + W is disjoint from Z. But (V + W) f] F is
circled, and Z meets every ray from the origin; so (V + W) Π F a
VPi F + Vf]F. The set U = (V + F) n W, which, by assumption,
is a O-neighbourhood, clearly fulfils Ua V + (V+ U) Π F (for, writing
u = v + / , i; G F, / G JP, given u e !7, we get / G - V + Z7 = V + Ϊ7).
Thus,

7 , by the choice of W,

c F+ F+ F,

whence the assertion.

Proof of third lemma. On account of property (B) of Schauder
bases, we take the O-neighbourhood U so that ττn(U) c W for every
n >̂ 1. To see that this suffices, let z be an arbitrary point outside
the closure of W + F (for any fixed finite-dimensional FczG). It is
to be shown that z is also outside the weak closure of U + F. By
the relation F a G, there is an m ^ 1 such that ξk(F) = {0} for k ^
m (with £*(•) denoting the coordinate functionals as in the explana-
tions before (B) above). Choose n ^ m so that πn(z) £ W + F. Since
n ^ m, the space î 7 is contained in the range P, say, of πn, and we

have ττn(F) = F. Of course, the subset (W + F) Π P of the finite-
dimensional space P is weakly closed, and thus, so is the set

+F)ΓιP)= ic?(WVi P) + F
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the equality follows from what was just said about F. This weakly-
closed set contains U + F but not z, whence the assertion.

Proof of propositon. The "if"-part being trivial, we prove the
"only if "-part for the different cases (a) — (7).

Case (a): Suppose that E has property (P). First, we see that
for every O-neighbourhood V, there must be a finite-dimensional sub-
space F so that the set V + F itself contains a convex O-neighbour-
hood. For, by (N), we may assume that F i s weakly closed (replacing
it by a smaller O-neighbourhood if necessary); likewise (S) permits us to
assume that V contains no ray from the origin, i.e., in virtue of the
first lemma just given (applied to the linear space E endowed with
the weak topology), that V + F is weakly closed for any F. Hence,
(P) says that V + F contains a convex O-neighbourhood for suitable
F.

In other words: the set U + F must be a O-neighbourhood for
the topology τx with O-neighbourhood filter {co V), where V runs
through the O-neighbourhood filter of E, for some finite-dimensional
F, whenever a O-neighbourhood £7 is given. Once again taking account
of (N) and (S), let U be an arbitrarily small O-neighbourhood which
is weakly closed (and thus τrclosed) and which fulfils Γ\χ>0^U = {0}
(so that UCϊF is compact for finite-dimensional F). Hence, our
second lemma, applied to the space E with topology τl9 shows that
U + U + U contains a convex O-neighbourhood. The U being arbitra-
rily small, E must be locally convex.

Case (β): If E is separated, this is a special case of (a). The
general case is easily reduced to the separated case (cf. proof of
Corollary D above).

Case (7): We use the notation introduced in connection to state-
ment (B) above. Write

Pk = lin {xl9 , xk} and Hk = lin {xk+1, xk+2, ...} .

Suppose that E is not locally convex; by the sublemma of the proof
of Corollary F above, it follows that there is a O-neighbourhood Wx

for which co V Π Hk reaches outside Wλ Π Hk for every k ^ 1 and
every O-neighbourhood V. Now, one can easily see that property (B)
of Schauder bases stated above would be violated unless there were
a O-neighbourhood W, such that for any k ^ 1, an element in Hk and
outside Wx must also be outside Pk + (W + W); and then, of course,
outside Pk + W. Summing up, we see that every set co V reaches
outside Pk + W. By the third lemma just given (applied with
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G = E)y there is a O-neighbourhood U such that the weak closure
of Pk + U (k ^ 1) does not contain any co V. Since every finite-dimen-
sional F is in some Pk, the space E cannot have property (P).

By the preceding Proposition, we can use Corollary F to obtain
converses to the "qualitative part" of Hahn-Banach's theorem for
specific situations.

EXAMPLE. If we let E in Corollary F be the linear hull of the
basis vectors in a complete space with Schauder basis and apply (7)
of the mentioned proposition, we re-obtain a result of Shapiro [10]:
A complete metrizable space with Schauder basis must be locally
convex if the dual separates points from closed subspaces.

COROLLARY G. Let E be a metrizable space that is embeddable
into a complete metrizable space with Schauder basis (or let E be a
metrizable space that elsewise fulfils condition (N) of the Proposition),
and that also satisfies
(S) There is a ^-neighbourhood U of E such that Γίλ>o^U = {0}.
Then the space E must be locally convex if its dual separates points

from closed subspaces.

Shapiro [10] proved this for the case of complete E, embeddable
into a separated locally bounded space with Schauder basis.

(Notice that (S) must be satisfied e.g. if E can be endowed with
a coarser topology, which is separated and locally bounded.)

Proof. To see that we can use Corollary F in combination with
case (a) of the proposition just given, we must verify that condi-
tion (N) of this proposition is always fulfilled. This is done by the state-
ment of the following two sublemmata. The first of these is a par-
ticular case of third lemma before the proof of proposition, i.e., the
case with E — E and F = {0}. The second one is immediate.

FIRST SUBLEMMA. A complete and metrizable space with Schauder
basis must fulfil (N).

SECOND SUBLEMMA. The property (N) is inherited by all linear
subspaces of a space with that property.

In view of this corollary, the question of [3] and [10] whether
for every (or for every complete) metrizable space, local convexity
must be present if the dual's ability to separate points from closed
subspaces is so, can be decomposed into two partial questions; namely
the questions whether conditions (N) resp. (S) may be eliminated in
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this corollary. Concerning the second of these questions, it is easily-
seen that (S) may be replaced by some less restrictive condition, e.g.,
as in

COROLLARY G\ Let E be a metrizable space that is embeddable
into a complete metrizable space with Schauder basis (or let E be
a metrizable space that elsewise fulfils condition (N) of the proposition),
and that also satisfies
(SA) There is a ^-neighbourhood W of E such that Γlχ>o^W is con-

tained in a linear subspace S of E with infinite codimension.
Then the space E must be locally convex if its dual separates points
from closed subspaces.

Proof. Suppose that E is non locally convex. By this, there is
a closed 0-neighbourhood U which contains no convex 0-neighbourhood,
and which can play the role of W in (SA). We shall define recur-
sively finite-dimensional subspaces .Ni. c iV2 c . Let {Vk}k be a
countable 0-neighbourhood base of open sets. Put iVΊ = {0}; let us
find Nk given Nk^ (k^2). By the assumptions for U, the set
coVk\U is nonempty and open; so we can take zk in this set and out-
side S + JNfc_i (for S has infinite codimension, so this is a proper linear
subspace of E and thus is nowhere dense). However, (for the same
last-mentioned reason) we have eoVk = co (Vk\(S + iSΓAr_1)), so there is
a finite subset Z, say, of Vk\(S + Nk^) such that zk is in co Z. Then
define Nk as the linear hull of Nk^ and Z.

By sublemmata of proof of Corollary G, the space N = U**i -W*
satisfies condition (N). Further, the construction of N shows that
SftN^ {0}, so by (SA), we get f|^>oλi7n N = {0}, so N satisfies (S)
of Corollary G. But by its construction, N is also non locally convex,
whence this corollary (applied to N) says that in N, points are not
separated from closed subspaces by the dual; and so, of course, this
must be so also in E. The proof is complete.

7* Finally, we state a sufficient condition for a certain inverse
limit space to be locally convex.

COROLLARY H. Let {Ea, faβ} be an inverse system with countably
many metrizable spaces Ea embeddable into complete metrizable spaces
(or with countably many metrizable Ea that elsewise fulfil condition
(N) of the Proposition preceding Corollary G), and with continuous
linear mappings faβ: Eβ —• E*. Further, assume that for some a, the
space Ea fulfils condition (SA) of Corollary G', and the faβ(β ^ a) are
surjective. If every closed subspace K of any Ea is the intersection
of images faβω(Hc) of weakly closed subspaces Hc of suitable spaces
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Eβω, then the inverse limit space lim Ea is locally convex.

Proof. We shall recognize this corollary as a special case of
Corollary G'—with lim Ea in the place of the space E. To that end,

two verifications must be made (except the simple proof of the fact
that lim Ea is metrizable; it follows from the condition that the Ea

are countably many; i.e., letting a run through the index set and
letting V run through a countable O-neighbourhood base of each Ea,
we get fά'ι{V) running through accountable O-neighbourhood of lim Ea;

see [2], 1.4.4.) First, lim Ea satifies conditions (N) and (SA). Denoting

by fa: lim Ea —> Ea, any a, the projection, we get a O-neighbourhood

base in \imEa consisting of all sets fΰι{U) where U is an arbitrary

weakly closed O-neighbourhood in Ea (remember that (N) holds for Ea,
in view of sublemmata of proof of Corollary G) and where a is arbi-
trary; see [2], 1.4.4. But of course, each such fa\U) is weakly closed
in limϋ^; so this space fulfils (N). Let Ea satisfy (SA) and fa be

surjective; if W and S c Ea are as in (SA), it is seen that f«ι(S) c
limjE^ are related to each other as l̂ Fand S are in (SA). Thus, (SA)

is fulfilled also for the limit space lim Ea.

Second, suppose that every closed subspace in any Ea is the inter-
section of images of weakly closed subspaces in the way stated; we
must then show that an arbitrary closed subspace K in lim Ea can

separated from any element x outside it by a continuous linear form
on lim Ea. We can write K = Πafa'ifjK)) (see [2], 1.4.4). So fixα

with fa(x) $fa(K). By assumption, there is a space Eβ with a weakly
closed subspace H so that fa(K) afaβ(H) and fa(x) £faβ(H).

It follows that x is outside, while K is contained in, the weakly
closed subspace fiι(H) of lim Ea; this is what we need.

Notice the following special case of Corollary H: Let L be a
linear space with finer and finer metrizable topologies τx c τ2 c τ 3 c ,
each fulfilling conditions (N), and (SA) or (S). Here the corollary says
that if a subspace closed in some topology τi can always be separated
from a given point outside it by a suitable linear form, continuous
in a suitable topology τy, then the supremum topology of all the τlf

τ2, must be locally convex. And the conclusion can be rephrased:
any O-neighbourhood of an arbitrary τi must contain a convex O-neigh-
bourhood of a suitable τά.

END REMARK. It may be noticed that for the methods and results
presented above, it is never, really, essential whether the spaces in
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question are complete or not. When completeness occurs in our
assumptions, it does so only indirectly, as in Corollary G. (However,
the example before that corollary is an exception.) Of course, we
could not possibly say whether this reflects that completeness is im-
material to the problem, or just that our methods are not general
enough to deal with cases where one would have to assume complete-
ness in order to get any results of the desired kind.
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