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ON GROUPS OF EXPONENT FOUR
SATISFYING AN ENGEL CONDITION

R. B. QUINTANA, J R . AND C. R. B. WRIGHT

Let B(n) be the Burnside (i.e., freest) group of exponent
4 on n generators. It is known that B(n) is nilpotent of class
at most 3% — 1. This paper exhibits a commutator of length
3n — 1 in B(n) which must be nontrivial if the class is exactly
3w — 1. The methods also yield an easy proof of the following.

THEOREM. Let E(n) be B(n) reduced modulo the identical
commutator relation

(βlf , a2n-4, x, x, (y, z, z, z)) = 1.

Then E(n) is nilpotent of class at most
As an immediate corollary, every ^-generator group of

exponent 4 satisfying the Engel condition (x, y, y,y)~l iden-
tically is of class at most 2n + 3.

The theorem follows from Proposition 1 together with an ele-
mentary commutator calculation. The main point of the Proposition,
however, is that it exhibits the stumbling block to a reduction in the
class of B(n) below 3n — I and at the same time suggests that per-
haps if for some n the class is less than 3w — 1 then the class in
general is at most 2n + k for some fixed k. Recent work of Gupta
and others ([1], [2], [3]) has renewed interest in precise determina-
tion of the class and also in groups of exponent 4 satisfying Engel
conditions. This paper updates the techniques of [4] as they appear
to apply to these problems.

PRELIMINARIES. This paper may be viewed as a continuation of
[4]. Notation is the same, and for i — 1, , 9, A we denote formula
(i) of [4] by (i) here, too. The symbol (i) in the margin at the right
of an equation or congruence indicates that identity (i) justifies it.
The notation <#, , y) stands for the group genarated by {x, , y}.

LEMMA. The following commutator identities hold in a group of
exponent 4.

(B). (x, (u, v, w)) Ξ (a?, u, w, v, )(x, v, w, u) mod (x, u, w, v}δ.
(C). (x, y, y, z, z, z) = 1 mod <α?, y, z)Ί.
(D). (x, y, y, y, {z, w)) = 1 mod <a, y, z, w}7.

Proof. Since
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(x, (11, V, w))

= (x, (u, v), w)(x, w, (u, v)) (3)

= (x, u, v, w)(x, v, u, w)(x, u, (v, w))(x, v, (u, w)) (3), ( 4 )

Ξ (x,u,w,v)(x,v,w,u) , (3)

(B) holds.
Since

(x, y, y, z, z, z) = (x, y, y, zf ~ ((x, y, y)\ z) = 1

by (2) and Theorem 2 of [4], (C) holds.
Finally, since

(z, w, (x, y, y, y)) =. (z, w, (x, y), y, y)(z, w, y, y, (x, y))

= (z, w, x, y, y, y)(z, w, y, x, y, y)

x (z, w, y, y, x, y)(z9 w, y, y, y, x) = 1 (3)

by (7) and (8), (D) holds.

LEMMA. Let G be a group of exponent 4 with Gr+1 — 1, and let
a and x be in G. Then every commutator in G of length r of form

(•• ,x,x,a,x)

is a product of commutators of forms

(α, . . . ,&,&, a)

and

(α, , x, x, δ, x)

each with the same entries as the given commutator.

Proof. By induction on r. Since (x, x, a, x) = 1, and

(6, x9 x, a, x) ΞΞ (6, χz, α, x)

= (a,x\b,x)(a, b,x\x) (3)

= (α, x, x, b, x)(a, 6, x, x, x),

the result is true for r ^ 5. Now by (B),

(c, ...,d, e, x9 x, α, x) = (c, . . . , d, e, x2, a, x)

= {c,...,d,a, x\ e, x)(c, ...,d,(a, e, x2), x) (B)

= (c, . . . , d, a, x2, e, x)(c, ..., d, (a, e), x, x, x)

x {c, ...,d,x,x, (a9e),x) . (3)

The first two factors are products of commutators of the required
forms by (A). The last factor is a product of commutators of forms
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(α, e9 ...,x,x,x)

a n d

(α, β, . . . , a, α, 6, a?)

by the inductive assumption.
A consequence of this result is that Lemma 2 of [4] can be

strengthened by the additional conclusion that yt = xl9 i.e., that the
first entry in (xl9 ...,»») can be held fixed. It is clear from the
proof of Lemma 2 that each commutator which arises has xu . . . , xn

in some order as its entries.

The main results.

PROPOSITION 1. Let G be a group of exponent 4, and let r^Sn^Q.
Modulo Gr+19 every commutator (aίy . . . , ar) in which some n entries
each appear three or more times is a product of commutators of form

(a, O, , Xίy Xiy X2y %2> > Xn—lf $n—ly Cy X n—1> > Xl)

with entries some permutation of ai9 ..., ar.

Proof. We may assume that Gr+ι = 1, that r > 3n, by Theorem
3 of [4], and that no entry in (al9 ...9ar) occurs more than three
times, by Theorem 1 of [4]. Say each of xu ...,xn appears three
times among alf . . . , ar. Since r > 3%, we may suppose that a1 =
a${xu ...,xn}f by (A) of [4]. Since n ^ 2, some x{ (say xλ) appears
three times among α3, . . . , ar. By Lemma 2 of [4] as just strengthen-
ed, we need only consider the forms

( I ) (a, ...9xl9xl9xd

a n d

( I I ) (α, ...,xlfxlt 6 , ^ ) .

Case (I). By (7), (I) is equivalent to

(α, b,xuxuxu ...) .

At least two of the last r — 5 entries here are the same, say x29

since n ^ 2 and a Φ x2. By repeated use of (D) and (3) these entries
can be brought forward to give

( α , b, x u x l 9 xί9 x i 9 xi9 . . . ) .

By (7), (α, δ, x9 x, x, y, y) = (α, 6, y, y, α?, x9 x9), and now (C) applies.
So (al9 . . . , ar) is trivial in this case.

Case (II). We have
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\df C, , Xl9 Xί9 Oy Xι)

= (α, c, x l 9 x l 9 d, x ί 9 . . . , 6) ( 9 )

= (α, c9 x l 9 d, x\9 . . . , δ ) ( 8 )

= (α, c, (xl9 d), x\, ..., b)(a, c, d, xlf xt, xl9 ..., δ) ( 3 )

= (a9 xι, {xu c),d, . . . , δ) ( 5 ) and Case ( I ) .

= (a, x\, c, xί9 d, ..., δ)(α, xl9 xu xl9 c9d, ...,&) ( 3 )

- (α, a?ϊ, c, a?!, d, . . . , δ ) ,

the last step by the argument of Case (I).
Suppose inductively that we have reached the form

(a, Xι, *, X{, c, Xj, , xl9 •)

with 1 ^ i < n. Some three of the last r — 3i — 2 entries are the
same, say xi+2, and the argument just given yields the form

\d9 Xl9 , Xi9 Xi+i9 C, %i+ι, Xi, . , fl/i, •) j

where the improved Lemma 2 is used to keep the starting block of
length 3ΐ - 2 at the front. The proposition follows by finite induc-
tion, using (9).

Together with (D), Proposition 1 shows in particular that
B(ri)3n^ι = 1 precisely if all commutators of form

(<X , Xί9 X2, #3, , Xn-l, Xl, Xn—1> > ^3> #2)

are trivial.

PROPOSITION 2. Lβί G be a group of exponent 4. Let m ^ 9 . //
every commutator of length m — 1 in G of form

(...9x9x9 (w9y9y9y))

is in Gm+ί, then every commutator of length m in G of form

{...,x,x,y,y,z,y,x)

is in Gvn

Proof. We may assume that Gm + 1 = 1. Now for a e Gm^τ

(α, x, x9 y9 yf z, y9 x)

= (α, x9 x, z, y, y,x,y) ( 9 )

= (α, x9 x, z, y\ (x9 y)){a, x, x9 zy y, y,y,x) ( 3)

= (α, x, x9 (x9 y), y\ z)(a9 x, x9 (x9 y, z9 y
2))

x (a9x9x9y9y9y9z9x) (B), ( 7 )
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= (α, x, x, x, y, y, y, z)(a, x, x, y, x, y, y, z)

x (a,x,x,(x,y,z,y2) ( 3 ) , ( C )

= (a, x, x, x, y, z, y, y)(a, x, x, (x, y, z, y2)) ( C ) , ( 8 ) , ( 9 )

= (a, x, x, (y, x, z, y2)) (C )

= (α, x, x, (y, x, y2)(y, z, y2)(y, xz, y2)) = 1

by hypothesis.
Now let n ^ 3 and let E(ri) be B{n) reduced modulo the identical

relation

(α1? . . . , α2n_4, x, xf (y, z, z, z)) = 1 .

By Proposition 2 with m = 2n + 3, every commutator of length 2n + 3
in E(n) of form (•..,&,#, y, y, z, y, x) is in E(n)2n+i. Hence, by Pro-
position 1, every commutator of length 2n+4 in E(n) in which three
or more entries each appear three times is in E(ri)2n+ι. Finally, by
Theorem 1 of [4], every commutator of length 2n + 3 in E(n) in
which some entry appears four or more times is in E(n)2n+Jί. The
theorem stated in the introduction now follows.

Added in proof. By substituting uv for y in (C) and linearizing,
one obtains (u, v, x, z, z, z) = 1 mod (u, v, x, z}7, which shortens some
of the arguments given above.

1. D. ϊvanjuta [Certain groups of exponent four, Dopovϊdϊ Akad.
Nauk Ukrain RSR Ser. A (1969), 787-790)] has shown that every n-
generator group of exponent 4 satisfying (x, y, y, y) = 1 identically
has class at most 2n. His methods are specific to such groups, how-
ever, and do not apply readily to B(n) or E(n).
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