ACTIONS OF TORUS T^{n} ON $(n+1)$-MANIFOLDS M^{n+1}

Jingyal Pak

Abstract

Let ξ be a principal T^{l}-bundle over a lens space $L(p, q)$. It is shown here that the total space of ξ can be identified with $L(k, q) \times S_{1}^{1} \times \cdots \times S_{l}^{1}$, for some $k \leqq p$. Let (T^{n}, M^{n+1}) be an effective torus action on an orientable ($n+1$)-dimensional manifold. An elementary examination of the parity of dimensions of the slice S_{x} at $x \in M$ and of the orbit $T^{n}(x)$, shows that the circle subgroups are the only possible stability groups on M^{n+1}. From these two results and the cross-sectioning theorem we can conclude that T^{n+1} and $L(k, q) \times T^{n-2}$ are the only possible types of compact closed orientable ($n+1$)-manifolds which allow T^{n} actions.

It is shown in [3] that T^{4} and $L(p, q) \times S^{1}$ are the only compact closed orientable 4 -manifolds which allow effective T^{3} actions. The purpose of this note is to show, using an argument similar to that of [3], that T^{n+1} and $L(m, q) \times T^{n-2}$ are the only possible compact closed orientable $(n+1)$-manifolds which allow effective T^{n} actions for $n \geqq 3$. Here $L(m, q)$ includes the case of $S^{2} \times S^{1}$ and S^{3}. The key lemma used in the proof of this theorem is that every principal T^{l}-bundle over the lens space $L(p, q)$ can be identified with $L(k, q) \times$ T^{l} for suitable $k \leqq p$. In later papers we intend to work on T^{n} actions on compact closed non-orientable ($n+1$)-manifolds M^{n+1} and ($n+2$)-manifolds M^{n+2}.

Let G, a compact Lie group, act on a space X. If $x \in X, G_{x}=$ $\{g \in G \mid g(x)=x\}$ will denote the stability group, or isotropy group of G at $x \in X . \quad G(x)=\{g(x) \mid g \in G\}$ will be called the orbit of $x \in X$. The orbit space, the set of all orbits, will be denoted by $X / G=X^{*}$ or \bar{X} with the quotient topology, and the orbit map by $\Pi: X \rightarrow X^{*}$. For each $x \in X$, one can find a certain subset S_{x} called the slice at x [1, Chapter VIII], with the following properties:
(i) S_{x} is invariant under G_{x}.
(ii) If $g \in G, y, y^{\prime} \in S_{x}$, and $g(y)=y^{\prime}$, then $g \in G_{x}$.
(iii) There exists a "cell neighborhood" C of G / G_{x} such that $C \times S_{x}$ is homeomorphic to a neighborhood of x. That is, if $f: C \rightarrow G$ is a local cross-section in G / G_{x} then the map $F: C \times S_{x} \rightarrow X$ defined by $F(c, s)=f(c) s$ is a homeomorphism of $C \times S_{x}$ onto an open set containing S_{x} in X. The principal orbits are those for which the stability groups are identity. An action is effective if $g(x)=x$ for every $x \in X$ implies $g=e$. We shall assume that G is acting smoothly and effectively on a smooth orientable manifold. By the slice theorem, given in [1, Chapter VIII], it follows that if T^{n} acts effectively on a
compact closed $(n+1)$-manifold M^{n+1}, then there exist principal T^{n} orbits and the orbit space $M / T^{n}=M^{*}$ is a compact 1 -manifold which we denote by S^{1} or [0,1].

Lemma 1. Let $\left(T^{n}, M^{n+1}\right)$ be a transformation group. Then the circle subgroups of T^{n} are the only possible nontrivial stability groups on M^{n+1}.

Proof. Let $T^{i} \times F, i=1, \cdots, n$, be a subgroup of T^{n}, where T^{i} is i-dimensional torus subgroup of T^{n} and F is any finite subgroup of T^{n} complementary to T^{i}. We assume that if $i=1$, then F is nontrivial.

First we show that no nontrivial finite subgroup F of T^{n} can be a stability group. If $M^{*}=S^{1}$ then every point in M^{*} corresponds to a principal orbit, so that we don't have a finite group as a stability group. In any case, if we have a finite stability group F at x, then x is isolated. The orbit is n-dimensional and the slice is a 1 -dimensional interval. Thus F must be Z_{2} which reverses the orientation (a contradiction, since M is orientable and T^{n} is connected).

Now cosider the case of $T^{i} \times F, i=1, \cdots, n$. The orbit will be ($n-i$)-dimensional, and there is an $(n+1)-(n-i)=(i+1)$ dimensional disk slice on which $T^{i} \times F$ must act as a rotation. But $T^{i} \times$ $F \not \subset S O(i+1)$ for $i=1, \cdots n$. Thus there is no point $x \in M$ such that $T_{x}^{n}=T^{i} \times F$ for $i=1, \cdots n$. This also implies that the fixed point set $F\left(T^{n}, M^{n+1}\right)=\varnothing$ for $n>1$.

Lemma 2. Let (T^{n}, M^{n+1}) be a transformation group. Then the orbit $\operatorname{map} \Pi: M^{n+1} \rightarrow M^{*}$ has a cross-section.

Proof. If $M^{*}=S^{1}$, then the T^{n}-bundle is trivial. If $M^{*}=[0,1]$, then the action corresponding over $(0,1)$ is the trivial T^{n}-bundle, so that we have a cross-section over (0,1). Now we can extend this cross-section trivially to both ends.

Lemma 3. If M^{n+1} is a principal T^{n-2}-bundle over $L(p, q), n \geqq 3$, then M^{n+1} can be written as $L(k, q) \times T^{n-2}$ for some integer $k \leqq p$.

Proof. By taking a circle subgroup T_{1}^{1} of T^{n-2} and the complementary subgroup T^{n-3} to T_{1}^{1} in T^{n-2}, we can consider M / T^{n-3} as a principal T_{1}^{1}-bundle over $L(p, q)$. Without loss of generality we can take T_{1}^{1} be the first factor of $T^{n-2}=T^{1} \times \cdots \times T^{1}$. But, this bundle is classified by $[L(p, q), K(z, 2)] \cong Z_{p}$, and (see [5]) for any element $f_{i} \in[L(p, q), K(z, 2)], i \in Z_{p}$, the total space of the principal T_{1}^{1}-bundle determined by f_{i} is $L(m, q) \times S^{1}$, where $m=\operatorname{gcd}(i, p)$. Take a circle
subgroup T_{2}^{1} in T^{n-3} as in the first case and denote the complementary subgroup by T^{n-4}. Then M / T^{n-4} is principal T_{2}^{1}-bundle over $L(m, q) \times$ S^{1}. This bundle is also classified by

$$
\left[L(m, q) \times S^{1}, K(Z, 2)\right] \cong H^{2}\left(L(m, q) \times S^{1}, Z\right)
$$

Let $\xi \in\left[L(m, q) \times S^{1}, K(Z, 2)\right]$ and denote its total space by $E^{\prime \prime}$. Consider the following diagram:

Here $E^{\prime \prime}$ is the total space of ξ restricted to $L(m, q) \times t$, where t is any chosen point of S^{1}. Here Π^{\prime} and $\Pi^{\prime \prime}$ are bundle maps and Π is the projection map onto the first coordinate $L(m, q)$. Now E^{\prime} is the pull-back of $E^{\prime \prime}$ relative to the projection map Π, so that we have $E^{\prime}=E^{\prime \prime} \times S^{1}$. Since ξ restricted to $L(m, q) \times t$ is an element of $[L(m, q), K(Z, 2)] \cong Z_{m}$ we can consider $f_{j} \in[L(m, q), K(Z, 2)]$, for some $j \in Z_{m}$ as representing this bundle element whose total space is $E^{\prime \prime}$. But $E^{\prime \prime} \cong L(d, q) \times S^{1}$ as before, where $d=\operatorname{gcd}(j, m)$. Hence $E^{\prime} \cong$ $L(d, q) \times S^{1} \times S^{1} \cong L(d, q) \times T^{2}$. Repeating this process a finite number of times we eventually get $M \cong L(k, q) \times T^{n-2}$ for some $k \leqq p$.

Theorem. If T^{n} acts effectively on a compact closed orientable $(n+1)$-manifold M^{n+1}, then M^{n+1} must be either T^{n+1} or $L(k, q) \times T^{n-2}$ for $n \geqq 3$.

Proof. If $M^{*}=S^{1}$, then every point on S^{1} corresponds to a principal orbit, and the total space is a T^{n}-bundle over S^{1}. But these bundles are classified by

$$
\left[S^{1}, K(Z, 2) \times \cdots \times K(Z, 2)\right]=H^{2}\left(S^{1}, Z+\cdots+Z\right)=0
$$

so that the bundle is trivial and $M=S^{1} \times T^{n}=T^{n+1}$.
If $M^{*}=[0,1]$, then by Lemma 1 there are only two circle subgroups of T^{n} corresponding to the stability groups at 0 and 1. Let T_{0} be a subgroup generated by these two circle subgroups. Then any ($n-2$)-dimensional subgroup T^{n-2} of T^{n} which is complementary to T_{0} acts freely on M. Then M / T^{n-2} is a 3 -dimensional orientable manifold \bar{M} and T_{0} acts on it so that $\bar{M} \backslash T_{0} \cong[0,1]$. But T_{0} actions on 3-manifolds whose orbit spaces are isomorphic to [0,1] are classified as lens spaces $L(p, q)$ in [2]. Now, since T^{n-2} acts freely on M, M is a principal T^{n-2}-bundle over $L(p, q)$. But these bundles can be written as $L(k, q) \times T^{n-2}$ by the Lemma 3 .

Remark. Since the maximal torus subgroup of $S O(m)$ is T^{n} where $m=2 n$ or $m=2 n+1$, we see that $\left(T^{n}, M^{m}\right)$ can have no fixed points unless $m>2 n$ or $m>2 n+1$. Also we can see from the theorem that a compact simply- connected ($n+1$)-manifold does not allow effective T^{n} actions for $n \geqq 3$. Thus extending a result of R. Richardson, Jr. [4] which says that T^{3} cannot act effectively on the 4 -dimensional sphere S^{4}.

References

1. A. Borel, et al., Seminar on transformation groups, Ann. of Math. Studies, No. 46, Princeton Univ. Press, Princeton, N. J., 1960.
2. P. Orlik and F. Raymond, Actions of the torus on 4-manifolds. 1, Trans. Amer. Math. Soc., 152 (1970), 531-559.
3. J. Pak, Actions of torus T^{3} on 4-manifolds M^{4}, to appear.
4. R. Richardson, Jr., Groups acting on the 4-sphere, Illinois J. Math., 5 (1961), 474485.
5. M. Thornton, Total spaces of circle bundles over lens spaces, to appear.

Received October 18, 1971.
Wayne State University

