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CONCRETE SEMISPACES AND LEXICOGRAPHIC
SEPARATION OF CONVEX SETS

C. EDWARD MOORE

V. L. Klee raised a question concerning lexicographic
separation of disjoint closed convex sets in a locally convex
space by means of a semispace with a representation utilizing
continuous linear functionals. This question is answered and
related results involving hyperplane separation and reflexivity
in Banach spaces are discussed.

1* Introduction* If p is a vector in a real linear space E, then
a semispace at p is a maximal convex subset of E ~ {p}. This notion
was introduced by Hammer [3] in 1955 and the structure of semispaces
was determined by Klee [7] in 1956. The present paper is strongly
dependent upon this work of Klee. The concept of a concrete semispace
in a locally convex space is introduced and a basic representation
theorem for such an object is proved. Concrete separation (lexicographic
separation via concrete semispaces) is defined and a criterion is given
for determining when two sets are not concretely separated. Disjoint
closed convex subsets A and B of a pre-Hilbert space E such that
A — B is dense in E and A — B has nonempty core are exhibited.
These sets cannot be separated concretely and this implies a negative
answer to Klee's question concerning concrete separation of disjoint
closed convex sets in a locally convex space. Hyperplane separation
and concrete separation are contrasted. It is proved that a Banach
space E is reflexive if and only if each disjoint pair of bounded
closed convex subsets of E is concretely separated.

2* Preliminaries• Only real linear spaces will be considered and
these will be denoted by E. The real numbers will be denoted by
R and the natural numbers by N. We write the linear span of a
subset X of E as sp(X). If S is a semispace at p in E then S is a
maximal convex cone with vertex p (deleted) and hence Kothe [9]
calls these objects hypercones. The reflection S* = 2p — S of S is
also a semispace at p and S* is situated so that S* Π S = 0 and
E~ {p} = S u S * . When studying the structure of semispaces it is
sufficient to consider the case where p is the zero vector Θ since S is
a semispace at p if and only if — p + S is a semispace at θ. Hereafter,
unless mention is made to the contrary, "semispace" will mean semi-
space at θ.

If A is a nontrivial subset of E, write x—*y for x, y e A if there
exists zeA~ \y) such that the closed line segment [x, y] is contained
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in [x, z] and [x, z] c A. In this case we say that x can see past y in
A. Write x -V y provided x-+y but not y-+x. If A is convex and
x ρ& y is written whenever x-^y and j/ —>x then ^ is an equivalence
relation on A. If S is a semispace in i? denote by Γ the equivalence
classes of S determined by ^ and observe that, when transferred to
Γ, —• becomes a reflexive partial order. Each member of Γ is a con-
vex set.

A vector a; in a set A is a core point of A if each line in E
through x contains an open line segment about x which lies in A.
The set of all core points of A is denoted by core (A). If A is convex
and x e core (A) and ye A, then the interval [x, y) = {tx + (1 — t)y: 0 <
t <; 1} lies in core (A). Applying these ideas to a semispace S, we
see that if core (S) Φ 0 , then core (S) e Γ and core (S) is the maximal
[minimal] element of Γ with respect to -—•[*—]. The maximality is
due to the fact that if y £ core (S), then no member x of core (S) can
see past y in 8.

We list Theorems 2.1-2.4 which were established by Klee [7].
No originality is claimed by the present author for any of this material,
but it is included here in order to provide the necessary basis for
later definitions and results.

THEOREM [Klee] 2.1. If Mis a linear subspace of E and TcM, then
T is a semispace in M if and only if T = S Π M for some semispace
S in E. If H is a hyperplane in E, Q is one of the open half spaces
determined by B and T is a semispace in H, then T U Q is a semispace
in E. Conversely, if E ϊs finite-dimensional then every semispace
in E has this form.

THEOREM [Klee] 2.2. Suppose S is a semispace in E and ηeΓ.
If ξ€Γ; write ζ-*•'rj provided a?*-*'y whenever xeζ and y eΎJ and let
A denote the union of all ξ —»' η. If Eη = sp (rj) then:

(a) ψ is atfr Open halfspaee in Eη whose bounding hyperplane
contains A, %o that η = core{#) in Eη\

(b) A is convex;
(fc) Sn Erj = A U ψ

Aa &iatί-:refie&ive linear order r tot a total collection F of linear
functional^ on E is said to be usable for F if for eaeh nonzero vector
# iai E Λer^ exists a first metnber fx in F such that /β<«) ^ 0 . In
this case w^ define

and note that S{F, r) is -a setnίspaee at the origin θ in
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KLEE REPRESENTATION THEOREM 2.3. If S is a semispace in E,
there exist a set F of linear functionals on E and a linear order r
on F such that S = S(F, r).

In Klee's proof of 2.3 each / e F is a first functional fx for some
nonzero x in E. A representation S(F, r) for S with this property
is called a Klee representation. By deleting the unused functionals
from G in an arbitrary representation S(G, r') and restricting the
order r', we obtain a Klee representation for S.

THEOREM [Klee] 2.4. Suppose S(F, r) is a Klee representation
for a semispace S in E. If x, yeS then

(a) x -*' y if and only if fyrfx;
(b) x**y if and only if fx = fy.

Thus, if in 2.4 x e η eΓ, then fx = fy for all yeη and there is
a one-to-one correspondence between members of Γ and elements of
F when S(F, r) is a Klee representation for S. Now suppose core (S) Φ
0 and note that F must have a first functional fλ. since the linear
order r on F satisfies

fηrfξ if and only if ξ —»' 27 ,

and ζ —>' core (S) whenever £ € JΠ — {core (S)}. Conversely, if / x is the
first element of F then {x e E: ft(x) > 0} = core (S) Φ 0 , which means
that Γ has a maximal element with respect to —>'. This motivates
us to say that a semispace S Λαs a first functional if S has a Klee
representation S(JP, r) where i*7 has a first member with respect to
the linear order r, which is equivalent to core(S) being nonempty.

3* Concrete semispaces. It is at this point that we begin our
investigation of semispaces in linear topological spaces. For conven-
ience, "locally convex space" will mean "locally convex Hausdorff
topological linear space". Subspaces will be assumed to have the
relative topology. We denote the topological dual of E by E' and
continue the use of the notation established in §2.

A semispace S in a linear topological space E is called concrete
if each rj e Γ is topologically open in Ev. This means that rj is a
topologically open half space in Eη. Our first main result follows.

BASIC REPRESENTATION THEOREM 3.1. A semispace S in a locally
convex space E is concrete if and only if S has a Klee representation
S(F,r) where FaE'.

Proof. Assume that S is concrete, rj eΓ, and A is the union of
all ξ —*•' Ύ). We use the basic separation theorem on the disjoint convex
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sets Ύ] and A (see 2.2) to obtain a linear functional gη on Eη such
that gv(x) > 0 if x e η and gη(x) = 0 if xeA. In fact, rj — {x e £7,:
#,,(#) > 0} and by hypothesis 27 is open in Ev since S is concrete.
Therefore gv is continuous on Eη. By the Hahn-Banach extension
theorem for locally convex spaces there exists for each η an extension
of gη in E' and we denote by fη one such functional. Let F = {fη:
ηeΓ} and denote by r the linear order on F induced by the reverse
of —»' on Γ. It is shown in Klee's proof of 2.3 that S> = S(F, r) and
it is easily seen that S(F, r) is a Klee representation for S.

Now assume S has a Klee representation S(F, r) where F c Ef.
Let Ύ] e Γ and x e η and then note that η = {y e E: fy = fx and fx(y) >
0}. If fx is the first member of F then η = {y e E: fx(y) > 0}, Eη =
η — η = E, and 57 is open in 2£9 since / β e £7'. Assume then that fx

is not the first member of F and define

The set if is a closed linear subspace of £7 and we have

y = HΓί{yeE:f.(y)>0}

since 57 consists of all vectors in E which are annihilated by the pre-
decessors of fx and for which fx is positive. Thus Eη c H and rj is
open in H since FaEf and {y e E: fx(y) > 0} is open in E. But the
linear span of a nonempty open set is the entire space, so H = sp(?7) =
Ev. Therefore rj is open in this and the preceding case which means
that S is a concrete semispace and the proof is complete.

Since we did not use the local convexity of E in the second half
of the above proof we may conclude that concrete semispaces exist in
any linear topological space E whose dual Ef is total. If r well-orders a
total subset F of Ef ~ (0) then S(F, r) is a concrete semispace in E.
It is unknown whether or not concrete semispaces exist in linear to-
pological spaces whose duals are not total. If the locally convex space
E has finite dimension n and S is a semispace in E with the Klee
representation S(F, r), then F = {fu •,/*}, FaE', and S is necessarily
concrete. It is important to observe that in the infinite-dimensional
case a Klee representation for a concrete semispace may utilize dis-
continuous linear functionals.

We list some elementary properties of semispaces which will be
useful later.

LEMMA 3.2. Suppose that S is a semispace in a locally convex
space E.

(a) If the interior of S is not empty then S has a first functional.
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(b) // S has no first functional then S is dense in E.

Proof, (a) This is immediate since interior points are core points,
(b) Recall that - S = S* is also a semispace at θ and E ~ {θ} = S{J
(— S). Suppose U is open and nonempty in E. Since neither S nor
— S can have interior points according to (a) the cone S must meet
U and consequently S is dense in E.

LEMMA 3.3. If S(F, r) is any representation for the concrete
semispace S in the locally convex space E and fx is the first member
of F, then ft is continuous and the interior of S is not empty.

We omit the easy proofs of 3.3 and 3.4.

LEMMA 3β4. A concrete semispace S which is dense in the locally
convex space E can have no first functional.

Disjoint subsets A and B of a linear space E are lexicographically
separated (see Klee [8]) if there is a semispace S at θ which contains
the algebraic difference set A — B. In particular, if A and B are
disjoint convex subsets of E then θ is not in the convex set A — B
and a Zorn's lemma argument shows that there is a semispace S at
θ such that A — BaS. Therefore every pair of disjoint convex subsets
of a linear space is separated lexicographically. In a linear topological
space we say that A and JB are concretely separated (or are separated
concretely) provided there is a concrete semispace which separates A
and B lexicographically. If E is a finite-dimensional locally convex space,
then every disjoint pair of convex sets is concretely separated.

The preceding lemmas permit an easy proof of the following
theorem which provides an extremely useful criterion for determining
when two sets are not concretely separated.

THEOREM 3.5. // A and B are disjoint subsets of a locally
convex space E and if A — B has nonempty core and is dense in E,
then A and B are not concretely separated.

Proof. If S is any semispace at θ which contains A — B then
S must also have nonempty core and be dense in E. Thus S must
have a first functional and Lemma 3.4 shows that S cannot be con-
crete. Therefore A and B cannot be separated concretely.

4* Klee's question concerning lexicographic separation* Follow-
ing Klee's definition and discussion of lexicographic separation in [8],
he asks whether disjoint closed convex subsets of a locally convex
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space E can always be separated lexicographically by a semispace
S(F,r) where FaE\ The example which follows satisfies the hypo-
theses of Theorem 3.5 and Klee's question and consequently it settles
the question negatively. This example was motivated by an example
of Tukey [12].

EXAMPLE. There exists a pre-Hilbert space E which contains a
disjoint pair of nonempty closed convex subsets A and B such that
A. — B is dense in E and has nonempty core.

Let (pn) = (1,2~2/3, •••, τr2l\• ••) in the Hubert space I2.. If G
denotes the subspaee of I2 which consists of the finitely nonzero
sequences, then let

E = sp (G U {(pn)}) = G + R(pn) .

It follows that

E = {(xn): ln0 e N and r e R 3 if n > n0 then xn = rn~2β}

so that E consists of those sequences which are eventually rn~m for
some r e R. It was noted by Tukey [12] that

D = {(xn) elz: x, >\n(xn- ^ 2 ' % if n - 2, 3, •}

is closed and convex, in I2. Thus., let A — D Π E so that A is closed
and. convex in E. If (xn) G A and xn, = rn~2lz for all n > n0, then

for all n > n0—^which is impossible; unless r= 1. We see that

A = {(xn) 3nQeN3it 2 ^ n ^ n0, then

#i ^ I ^ ( ^ w — ΎΓ2-1*) I and if ^ > 1%, then ίc% — n~2β} .

We define

5 = \(xn) eE:\xn\^±- n~21* for n = 2, 3 . •}

and note that B is closed and convex in E. It is easy to see that
A does not meet B and we leave it to the reader to show that θ e
core (B). Since (pn) is in A it follows that (pn) is a core point of
A - B.

In order to show that A — B is dense in i? we let ε > 0 be given
and suppose that

(O =• (Vi, , l/ 0, 0, •) + (r, , rn~2l\ .)•

is an arbitrary point in E. Since (zn) and (pn) are in ϊ2 we can find
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positive integers nγ and n2 such that

l/2 c / oo \l/2 o

< f and ( Σ «-4/s) < £<— and \Σ^~4 / δj <—

We let nz — m a x {n0, nu n2} and t h e n define (xn) e A by

sup {\m(zm — m~2 / 3)|}, if n = 1

^~2/3 , if n > ?ι3 .

If (un) is defined by

»! — zί9 iϊ n = 1

then (un)eB and, as noted in Tukey [12], (α?n) — (un) is within ε of
(zn). Therefore A — B is dense in i£.

5* Basic properties of concrete semispaces* We continue our
investigation of semispaces in locally convex spaces and then contrast
concrete separation with hyperplane separation. The first theorem is
a very useful analogue of 2.1.

THEOREM 5.1 Suppose that E is a locally convex space, M is a
linear subspace of E and T is a subset of M.

(a) T is a concrete semispace in M if there exists a concrete
semispace S in E such that T = S f] M.

(b) If M is closed in E and T is a concrete semispace in M, then
there is a concrete semispace S in E such that T = S Π M.

(c) If M is a closed hyperplane, Q is one of the open half spaces
determined by M and T is a concrete semispace in M, then S = T (J Q
is a concrete semispace in E with a first functional.

Proof of (a). According to the basic representation Theorem 3.1
S has a Klee representation S(F, r) with F c E'. By the same
theorem, the nonzero restrictions of members of F to M yield a con-
crete semispace in M when given the order induced by r. This
semispace is T.

Proof of (b). Each vector x in E ~ M admits a linear functional
/ in Έ' such that f(x) Φ 0 and f(M) = {0}. Let G, be any collection
of such functionals which is total for E ~ M and let rx be a well-
ordering of Gi For clarity, assume that any functional in Gt which
is not a first functional fx for some xeE~ M has been deleted.
The concrete semispace T has a Klee representation S(G2, r2) where
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Gz c M', according to 3.1. Extend each member of G2 to a linear
functional in E' and denote this collection by G. Now let F = Gλ U G
and denote by r the linear order induced on F by n and r2 where it
is assumed that Gt precedes G. Then S(F, r) is a concrete semispace
and Γ = S(F, r) Π ikf.

Proof of (c). The equivalence classes of S with respect to «
consist of Q and the equivalence classes of T with respect to « , so
it is easy to see that S is concrete.

COROLLARY 5.2. If A and B are subsets of a linear subspace M
of the locally convex space E and these subsets are not concretely
separated in M, then A and B are not concretely separated in E.

The proof of 5.2 is based on part (a) of 5.1.

THEOREM 5.3. Convex subsets of a locally convex space E which
are concretely separated by a semispace with first functional are
separated by a closed hyperplane.

Proof. Suppose A and B are nonempty convex subsets of E and
S is a concrete semispace with first functional such that A — BaS.
If S(F, r) is a Klee representation for S with FaE' and f1 is the
first member of F9 then A — Bcz{xeE: f^x) ^ 0} and A and B are
separated by the closed hyperplane /^(sup/(!?)).

Two subsets A and B of a linear topological space are said to be
nicely separated if they are separated by a closed hyperplane H which
is disjoint from at least one of the subsets. If H is disjoint from
both A and B we say that A and B are strictly separated. The sets
are strongly separated provided H lies between two translates of H
which separate A and B.

THEOREM 5.4. Nicely separated convex subsets A and B of a
locally convex space E are concretely separated by a semispace with
first functional.

It is clear that the hypothesis of nice separation in 5.4 may be
replaced by either strict or strong separation. The following theorem
is a consequence of 5.1 and 5.4, but in this case the semispaces are
not necessarily at θ.

THEOREM 5.5. Each proper closed convex subset C of a locally
convex space E is the intersection of the concrete semispaces with first
functionals which contain C.
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We now list two simple examples in R2 to illustrate some of the
differences between concrete and nice separation. Here each disjoint
pair of convex sets is concretely separated. The convex sets

X = {(α, 6): b < 0} U {(a, b): a ^ - 1, b = 0}

and

Y = {(α, 6): b > 0} U {(α, b): a ^ 1, 6 = 0}

are separated, but are not nicely separated. There is a concrete
semispace which contains X and misses Y and vice versa. The closed
convex sets

X, = {(α, 6): 6^0}

and

Yi = {(α, 6): α > 0, α& ̂  - 1}

are nicely and concretely separated, but there does not exist a semispace
which contains Xγ and misses Yx nor vice versa.

In this example we exhibit two disjoint bounded convex sets in
a normed space which are concretely separated but not separated by
a hyperplane (closed or otherwise). Let E be a vector space with a
countably infinite Hamel basis {en: neN} and equip E with the sup
norm so that ||a?|| = \\Σαnen\\ = sup {\αn\: neN} (see Dieudonne [2]).
There is a corresponding collection of coordinate functionals

F = {fn: neN} where fn(x) = αn if x = Σαnxn .

Each fneF has norm equal to 1 s o F c E " - {0}.

Assume that r is the linear order for F induced by > from N.
Form S = S(F, r) and note that S is a concrete semispace without
first functional. It is pointed out in Kelley-Namioka [4, page 18]
and Kδthe [9, page 178] that each vector x in E is the endpoint of
a line segment [α, x] such that [α, x)αS and α Φ x. Hence S and
— S cannot be separated by any hyperplane. If J7= {xe E: \\x\\ <: 1}
then define

Both A and J5 are convex and bounded and S separates them lexico-
graphically. However, any hyperplane which would separate A and
B must separate the cones S and — S, which is contrary to the above.

6* A characterization of reflexivity for Banach spaces* In this
section we direct our attention towards lexicographic separation by
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concrete semispaces in normed linear spaces. If X is a subset of a
linear subspace M of a linear space then coreM{X) is the set of core
points of X with respect to M. We omit the proof of Lemma 6.1.

LEMMA 6.1. Suppose A and B are subsets of a linear space and
that sp(A) = L and sp{B) = M. If N = L + M, x e coreL (A) and y e
coreM (B)j then z = x + y is in coreN {A + B).

The following theorem serves as a further answer to Klee's question
discussed in §4 and it is the basis for the remaining two major
results of this paper. The construction of the sets A and B in the
first two paragraphs of the proof is that of Klee as found in the
proof of Theorem 4.2 of [6].

THEOREM 6.2. Every nonreflexive separable Banach space E con-
tains a disjoint pair of bounded closed convex sets which cannot be
separated concretely.

Proof. Let F be a nonreflexive closed subspace of E of infinite
deficiency, which exists according to Theorem 4.1 of [6], and let C
be the closed unit ball of F. Let {xn: neN} be a dense sequence in
{xeE: \\x\\ = 1} and let K be the closed convex hull of

Λθ, xu - xly -*-, — xn, xn,
I n n

This set is compact and E is complete and by a theorem of Mazur
[10] it follows that K is compact. If A is the convex hull of C U K
then A is closed and it can be shown that θ& core (A). It follows
that there exists xQ in E~ {θ} so that (0, l]x0 Π A = 0 . Observe
also that θ is a nonsupport point of K and hence of A.

Since F is nonreflexive there is, according to [6, Theorem (/))],
a decreasing sequence CΊ z> C2 3 of nonempty bounded closed convex
subsets of F such that Π?=i Cn — 0 . We may make further assump-
tions about the first two sets, namely that CΊ = (1/2)C and C2 = (1/4)C
Note that tx0 + C misses A whenever t > 0. Let B be the closed
convex hull of \Jn=ι((l/ri)x0 + Cn). Since the intersection of the sequence
{Cn} is empty it follows that B c \Jt>0 (tx0 + C) and therefore that
A Π B = 0 . A proof of the preceding inclusion is found in that of
Theorem 1 of Klee [5]. However, the distance from B to (1/2)C is
zero, so every closed hyperplane separating A from B must contain
C and hence support A at θ, which is impossible. Therefore the
disjoint bounded closed convex subsets A and B cannot be separated
by a closed hyperplane in E.
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Now let N = sp ({x0} U A) and note that B is a subset of N. If
L — sp (A) then L = (J~=i ̂ ^ a n d # £ corez (A) since A is convex and
symmetric about θ. The set I? was constructed so that it contains
x0 and (l/2)^o. If M = Rx0 = sp φ ) where D = [(l/2)a?0, #o]> then 7/ =
(3/4)̂ 0 is core^φ). Since DczB and N — L Λ-M, it follows from
Lemma 6.1 that — yeo,oreN{A — B). If S is a semispace at θ in i\Γ
which contains A — B then S must have a first functional. If in
addition S is a concrete semispace, then Theorem 5.3 implies that
A and B are separated in N by a closed hyperplane H. The Hahn-
Banach theorem shows that there is a closed hyperplane Hx in £7
such that H = Hi Γ\ N. This means that i?i separates A from B,
which is impossible. Therefore S cannot be a concrete semispace in
ΛΓ if A — Bcz S. Corollary 5.2 shows that A and B are not concretely
separated in E and the proof is complete.

THEOREM 6.3. A Banach space E is reflexive if and only if any
two disjoint bounded closed convex subsets of E are concretely separated.

Proof. Tukey [12] proved that when E is reflexive every pair
of disjoint bounded closed convex subsets of E is strongly separated.
Theorem 5.4 shows that such sets must also be concretely separated.

It is known (see Day [1, page 58], for example) that a Banach
space is reflexive if and only if each separable closed subspace is
reflexive. The proof is complete as a result of Theorem 6.2.

We conclude with a theorem which yields further insight into the
contrast between hyperplane and concrete separation and provides our
strongest answer to Klee's question in §4.

THEOREM 6.4. Every nonreflexive separable Banach space E
contains a disjoint pair of bounded closed convex subsets which cannot
be separated concretely, but which can be separated by a closed hyper-
plane.

Proof. There is a closed hyperplane M in E containing θ which
is not reflexive. Construct the disjoint bounded closed convex subsets
A and B in M just as was done in the proof of Theorem 6.2. There
is a unit vector x1 not in M and we define Ax to be the convex hull
of {xx} U A and we define B1 to be the convex hull of {— ajj U B.
Observe that Aγ and Bγ are disjoint bounded closed convex subsets
of E which are nontrivially separated by the closed hyperplane M.
If S is a concrete semispace which contains At — Bt then part (a) of
Theorem 5.1 shows that S Π M is a concrete semispace in M which
contains A — B—which is impossible. Therefore A1 and B1 cannot
be concretely separated in E.
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