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WILD ARCS IN THREE-SPACE
2: AN INVARIANT OF NON-ORIENTED LOCAL TYPE

JAMES M. MCPHERSON

An invariant of the oriented local type of a Fox-Artin arc
has already been developed in the previous paper in this
sequence. This paper is concerned with finding: an invariant
of the non-oriented local type of an arc whose only wild point
is an endpoint, where the arc has penetration index at least
five, and where the penetration index with respect to solid
tori is equal to one.

This paper contains most of the results announced in §3 of [5],
and forms the first chapter of the author's Ph. D. thesis [4], written
under the supervision of Professor N. Smythe.

l Preliminaries* Rather than work with 3-cells as in [6], our
cutting and pasting arguments will be applied to sequences of solid
tori, making use of the theorems of H. Schubert ([7], §§16, 17). The
notations Bd, Cl, Int, N(X), v{k Π X) are used as in [6].

1. & is an oriented arc in Euclidean 3-space R3 (the orientation
of R3 is fixed), and k is tame except at the endpoint p.

2. A handlebody of genus g (Henkelkorper von Geschlechte g,
[8], p. 219) is a tame closed regular neighbourhood of a wedge of g
circles. If g — 1, such a handlebody is a solid torus (i.e., the topo-
logical product of Sι with a 2-disc, called "Vollring" in [7]), and if
ίf = 0we have a 3-cell.

The penetration index Pg(k, p) of k at p, relative to handlebodies
of genus g, is the smallest integer n such that there exist arbitrarily
small neighbourhoods of p which are handlebodies of genus g, each
meeting k on its boundary in n points. When there is no danger of
confusion, we write Pg(k, p) = Pg. (Note: It is not known whether
Pg(k, P) is th e same as the penetration index of k relative to surfaces
of genus g, as defined by B. J. Ball in [1]—cf. question 1 of [5].)

Pi is called the toral penetration index; Po is called the 3-cell
penetration index and is the "nice penetration index" defined by
Henderson ([3], p. 470).

As in [6], we choose a 3-cell neighbourhood Eo of p, chosen so
that if Ed Int Eo is any other such neighbourhood, then Bd E meets
k in at least as many points as does Bd Eo.

3. For the notion of cofinality of two sequences, see [6], §2.
Two arcs kγ and kz have the same non-oriented local type at points

pλ and p2 if there exist neighbourhoods Ui of pi} and a homeomorphism

619



620 JAMES M. McPHERSON

h of UΊ to U2 which takes (E7Ί Γ) kl9 pO to (U2 Π &2, p2).
In these terms, then, the aim of this paper is to find an invariant

of the non-oriented local embedding type of k in Eo, if P^k, p) — 1 and
PQ(k, p) ^ 5. In some cases, we may associate an infinite sequence
of solid tori with k, and show that the cofinality class of the knot
types (q.v., no. 4) of these solid tori is an invariant of the non-oriented
local type of k at p. Analogous results have been obtained in [4]
for arcs or simple closed curves with Px = 2 and Po ^ 8: for conven-
ience, however, we shall restrict ourselves to arcs which are wild at
an endpoint.

4. Let V be a solid torus. A meridian of Bd V is a curve which
bounds a disc in V but not on Bd F; such a disc will be called a
meridian disc of F. A longitude of Bd F is any curve on Bd F which
is nullhomologous in Cl (R3 — V) but not on Bd F; a core of F is a
curve homologous in F to a longitude of Bd F. If λ is a longitude
of F, we denote by /c(F) the non-oriented knot type of λ, and say
that F is knotted with knot type tc(V).

Let U and F be solid tori with UaV. The order of U in F,
denoted O(U, F), is the minimum number of intersections of a meridian
disc of V with a longitude of U (this integer depends on neither the
longitude nor the meridian disc chosen). If T c U is another solid
torus, then

O(T, V) = O(Γ, U)-O(Uf V)

([7], p 172 ff).
We write U< V iff O(!7, F) = 0, that is, if and only if U lies

in a 3-cell in the interior of F.
The knot κγ is a companion of the knot /c2 if a solid torus F2,

such that fc(V2) = κ2, may be embedded with nonzero order in the
interior of a solid torus Vt with Λ (FI) = κγ. κ1 is a factor of /c2 if F2

may be embedded in V1 with order one.
Two solid tori Vl9 F2, with F2 c Int V19 are concentric if the closure

of Fi — F2 is homeomorphic to / x Bd V19 where / is the unit interval.
Theorem 3 of [2] asserts that F t and F2 are concentric iff ιc(VJ =
tc(V2) and F2 has order one in Vx.

5. A k-torus is a non-oriented tame closed solid torus FcIntEΌ,
which contains p in its interior, and meets k on its boundary in one
point only, at which it is pierced by k.

A containing sequence (in Eo) for a fc-torus F is a sequence of
Λ-tori

F = Vn < Fw_i •< -< Vo c Eo

with the property: if U is any &-torus, F*c UaVi-19 then either F*
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has nonzero order in U, or U has nonzero order in F ^ . If F o c U a
EQ, we require that Fo have nonzero order in U. A containing sequence
is of length n if V = Vn.

A constructing sequence for k (in Eo) is a sequence of A-tori Eo ID
Vo > VΊ > V2 > such that Π Vi = p, and for each ί,

V, < V

is a containing sequence for

• <

A k-sequence is a constructing sequence with the further property
that if F is a k-torus with 7 i C F c 7 M , and F has nonzero order
in Fί_!, then Fand F ^ are concentric. Fand F ^ are equally knotted,
therefore: thus a fe-sequence is a constructing sequence in which the
/c-tori occurring are as "tightly knotted" (starker verknotet, [7], p
211) as possible.

An example may help to highlight the difference between a cons-
tructing sequence and a ^-sequence. The arc k of Figure l(a) may

^==M^)3^"::

(a)

U,

(0
FIGURE 1

i+l
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be constructed from solid tori placed in relation to each other and
to k as shown in Figure l(b). But one can replace Ϊ74 and Ui+1 by
solid tori V< and Vi+1, as shown in Figure l(c), to construct the same
arc A sequence of solid tori of the type of Uiy Ui+ί will suffice to
construct the arc, but will not be a Λ-sequence.

6. Two λxtori U and V are k-similar,1 if there exists a pair of
k-toxi At and A2, such that A2aInt(UnV), Int A^UI) V, and A2

has nonzero order in Ax. We say that U is ^-similar to V via the
Λ-tori Aγ and A2.

We note that if U lies in the interior of V with nonzero order,
then U and V are ά-similar. Similarly, if U and V are ^-similar via
the fc-tori Ax and A2, then any two of U, V, Au A2 are fc-similar.

/^-similarity is a reflexive and symmetric relation, but unfortunately
is not transitive. In Figure 2, T and U are Λ-similar, U and V are
A -similar, but T and F cannot be A -similar.

BdF

>.j

BdU

BdΓ
FIGURE 2

QUESTION (FOX) IS it possible to replace ^-similarity by a transi-
tive relation?

7. We come to two simple but important lemmas.

LEMMA 1. If V is a k-torus, every meridian disc of V meets k
in at least two points (we assume that our meridian discs do not
contain p). If V is unknotted, every disc bounded by a longitude of
Bd V meets k in at least two points.

Proof. Let D be a meridian disc of V. Then F-fan open regular
neighbourhood of D} is a 3-cell neighbourhood of p which meets k on

1 The use of the notation >- and the terms "containing sequence" and "ά-similar" both
here and in [6] should not lead to any confusion. If the two uses of any of these terms
should occur together in one paper, context will decide which use is intended. This paper
will not use the terms as they are used in [6].
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its boundary in Px + 2N{k Π fl) points. Hence

P, + 2N(k Π D) = 1 + 2N(k Π D) ̂  Po ̂  5 ,

and the first result follows. The proof of the second result is similar.

LEMMA 2. Let U, Bl9 B2 be k-tori with B2czUc:Bl9 and let U* be
a k-torus which is k-similar to U via k-tori Ax and A2, with B2a Ai c Bt.
Then B2 has nonzero order in ί7* iff it has nonzero order in Z7, and
Z7* has nonzero order in Bλ iff U has nonzero order in Bt.

Proof. The numbers 0(17*, A,), 0(U, A,), 0(A2, U*), and 0(A2, U)
are all nonzero. The result follows from the relations (cf. no. 4):

0(B2, U*)-0(U*, ΛO = 0(B2, Λ) = 0(B2, U)-0(U, Λ)

and

0(A2y U*).0(U*9 Bd =

2. Some surgical lemmas* The following lemmas will be useful
in our cutting and pasting arguments. In each, U and V are fc-tori
whose boundaries are in general position. We are also assuming that
none of the curves of Bd U Π Bd V contains any points of k—this may
be achieved by a small ambient isotopy of Eo, if necessary.

LEMMA 3. Let D and Df be discs on the boundaries of U and V
respectively, such that BάD = Bd D\ and suppose further that the
interior of D does not meet the boundary of V. flu fl' is the boundary
of a 3-cell S; S does not contain p, and the solid torus V is a k-torus,
where

V = VUS if DaC\(E0- V)

y = c i ( F - S) if DdV.

Moreover, V and V are equally knotted.

Proof. To show that S cannot contain p, we show that N(k Π
Bd S) < Po. Now

N(k Π Bd S) = N(k n fl) + N(k Π D')

^ N(k n Bd U) + N(k f] Bd V) = 1 + 1 < 5 ̂  Po .

So pi S, and p must therefore lie in F'. If V is to be a A-torus,
we must show that N(k Π Bd V) = Pi = 1, and for this it is sufficient
to show that N(k n fl) = N(k f] D'), because Bd V = D U (Bd V - D').

V is a small torus containing p in its interior, so N(k Π Bd V) ^
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N{k Π Bd V) = Pi(fc, p); that is, N(k 0 D) ^ N(k Π #')• We have two
cases to consider:

N(k Π D) = 1. Since p g S, u(Λ Π Bd S) = 0. Now

v(fc Π Bd S) = v{k V[D) + v(k f] Df) = v{k n D') ± 1 - 0 ,

so y(fc Π D') = + 1. D' therefore meets k in an odd number of points;
since D' is on the boundary of a torus which meets k in one point
only, JD' can contain at most one point of k. Hence N(k Π Dr) = 1 =
N(kf]D).

N(k f] D) = 0. Then we have

n Bd F') = i\p n (Bd F - D')) + N(k n #)
n (Bd V - D')) ^ iSΓ(fc n Bd V) = 1

thus 2VΓ(fc Π (Bd V - i)')) = 1 = JV(ft Π Bd F), so Z>' contains no points
of k. That is, N(k f) D') = 0 = JV(Jfc Π i?).

In both cases above, then, F' is a A-torus. In fact, V and F are
equivalently knotted, for there is an ambient isotopy ht of Eo which
fixes everything outside an open regular neighbourhood of S, and
takes F to V.

Although Bd F is in general position with respect to Bd U, Bd F'
is not, for the disc D is one component of Bd U Π Bd V We may put
the surfaces into general position by a small "push" in the appro-
priate direction: if D c F, take F " = F — {an open regular neighbour-
hood of S), and take F " = F U { a closed regular neighbourhood
of S} if Z ^ c C l ^ o - F). Then Bd F " is in general position with
respect to Bd U, and by requiring our regular neighbourhoods to be
sufficiently small, we may ensure that F" has the properties claimed
for F\ It is in this sense that we will be applying Lemma 3

LEMMA 4. Let A and A be annuli on the boundaries of U and
V respectively, such that Bd A = Bd A', and suppose further that the
interior of A does not meet the boundary of F If AU Ar is the
boundary of a solid torus which contains p in its interior, then this
torus V is a k-torus.

Proof. We need only show that k meets V on its boundary in
one point. Since N(k Π Bd F) is minimal, N(k Π Bd F') ^ N(kf] Bd F),
that is N(k Π A) ^ N(k n (Bd F - A')) (for, to obtain F', we replaced
the annulus Bd F — A! on BdF by the annulus A). Thus we need
only show that N(k f] A) = N(k Π (Bd F - A'))—but this follows as in
Lemma 3.

We may put Bd V into general position with respect to Bd U, by
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taking F " = V — {an open regular neighbourhood of A) if A c F,
or by taking F" — V U {a closed regular neighbourhood of A} if A c
Cl (Eo — F). By requiring our regular neighbourhoods to be sufficiently
small, we may ensure that F " is a &-torus. It is in this sense that
we will be applying Lemma 4.

LEMMA 5. There exists a k-torus F* with the properties:
( i ) F* and V are k-similar,
(ii) Bd F* D Bd U = 0 , and
(iii) /c(F) is a companion of Λ:(F*) (cf. §1, no. 4).
Moreover, if Bx and B2 are k-tori with B2 c Int (£7n F), Int B1 3

C7 U F, £/̂ % we raα?/ choose V* so that B2 c Int F* c F* c Int i?lβ

NOTE, The essence of this lemma is that given two &-tori U and
F, we can leave U fixed and cut around the boundary of F to obtain
another &-torus F* whose boundary does not meet Bd U; and all this
may be done without moving Bd F too far.

Proof. Let Ύ* be the class of all λ>tori T which are fe-similar to
F, 5 2 c l n t T c Γ c l n t B19 such that tc(V) is a companion of κ(T) and
such that Bd T is in general position with respect to Bd U. V e 5̂ i
so 3^ is not empty; therefore there exists a Λxtorus F* in T whose
boundary intersects Bd U in fewer curves than does the boundary of
any other Te y. We intend to show that BdF* Π BdJ7= 0 .

(a) Suppose some intersection curve is null-homologous on Bd ί7.
We may choose one such curve, σ say, which bounds a disc D not
containing any other intersection curves: Int D Π Bd F* = 0 . Either
(i) D c V*, or (ii) D c Cl (Eo - V*).

( i ) D c F * . Z) cannot be a meridian disc of V*, since such
discs meet k in at least two points, by Lemma 1, and N(k Π D) ^
iSΓ(/b n Bd 17) = 1. So σ must be null-homologous on Bd F*

(ii) Dad (Eo - V*). If F* is non-trivially knotted, σ must be
null-homologous on BdF*, for a curve which is not nullhomologous
on BdF* cannot bound a disc in Cl (JE70 — F*). If F* is unknotted,
D cannot be a longitude disc, because such discs meet k in at least
two points and D meets k in at most one point.

It follows in both cases that a must also be null-homologous on
BdF*, bounding a disc Ό\ say. D U Df is the boundary of a 3-cell
S, and we may apply Lemma 3 to obtain a fc-torus V with tc(V') —
ιc(V*)9 and whose boundary is in general position with respect to
Bd U; in fact, Bd V meets Bd U in fewer intersection curves than
does Bd F*, since the curve σ = Bd D in particular has been eliminated.
Also, we may choose our regular neighbourhoods of S (see the remark
after Lemma 3) so that V lies in the interior of Bί9 and contains B2
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in its interior. V will be an element of Ψ* if we can prove that F'
and V are fc-similar—the existence of this ft-torus F' € 3^ will then
contradict the minimality assumption involved in our choice of F* e
5̂ ~. With this contradiction, we must conclude that no intersection

curve is null-homologous on Bd U.
Suppose that F* and V are ^-similar via the &-tori A? and A2*.

Then after general positioning, Bd V ΓΊ Bd Af consists of a finite
number of simple closed curves aly •••,«„ and we note that each of
these curves lies in the interior of D. Thus each of the curves as

is null-homologous on Bd Af, by Lemma 1.
Note that Bd V does not meet Bd A* if F ' D F * U S D F * , and that

Bd F' does not meet Bd A* if F' c Cl (F* - S) c F*. Thus we need
only "adjust" the appropriate Λ-torus Af to obtain a yk-torus A* such
that V and V are fc-similar via Aγ and Af or via Af and A2, which-
ever is appropriate.

We may choose a curve, ax say, which bounds a disc D{a^ on
Bd F', which contains no other "α-curves". Let D'{a^ be the corres-
ponding disc on the boundary of Af) then D(aJ U D'(aj) is the boundary
of a 3-cell S(aJ not containing p. Using Lemma 3, we obtain a k-
torus A{, which we put into general position with respect to BdF',
so that

Bd A\ n Bd V c Bd A? n Bd V - {a,} .

We may eliminate all our α:-curves in this way, and obtain a Λ-torus
Ai. Clearly A€ will meet our requirements: for i — 1,

O(A}, A,) = O(A}, A?) Φ 0, and

A* c l n t (V Π V) c F U F e i n t Ax,

while for i = 2, O(A2, A*) = O(-4«*, A*), and

A2 G Int (F'Π V) c F' U F c Int A* .

F and F' are therefore ^-similar, and V eT*: we conclude that
no curve of Bd U Γ) Bd F* can be null-homologous on Bd U.

(b) Suppose some curve of Bd U f] Bd F* bounds a disc on Bd F*.
Then interchanging U and F* in the arguments a(i) and a(ii), it
follows that this intersection curve also bounds a disc on Bd Ϊ7, which
we have shown in (a) to be impossible. Therefore no intersection
curve bounds a disc on either surface.

Hence there is an even number of curves of Bd Uf] Bd F*, bounding
parallel annuli on Bd U lying alternately inside and outside F*, with
similar annuli on BdF*. We may therefore choose two curves σ1

and σ2 which bound an annulus A c Bd U which contains no other
intersection curves and which lies entirely inside F*. We will use
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the theorems of H. Schubert ([7], §§16,17)
( i ) Suppose σx is not a meridian of BdF*. By Satz 1, p 207,

A separates F* into two solid tori Tx and T2; 2\ has nonzero order
in F* because it has σx as a core, and T2 has order 1 in 7*. κ(V*)
(and therefore tc{V)) is a companion of both Λ (JΓI) and tc(T2). We put
Bd Tλ and Bd T2 into general position with respect to Bd U, by taking
T* — Tι — {an open regular neighbourhood of A). Then

(Bd 2? n Bd to U (Bd T2* n Bd tθ - Bd F* n Bd U - {σl9 σ2] .

Now one of the tori, Tr* say, contains p, and we may use Lemma
4 to show that T* is a λ-torus; moreover, we may choose a very
small regular neighbourhood of A and so ensure that T7* contains B2 in
its interior. (Certainly Tr* c Int Bt.) Also, we may modify the argu-
ments of part (a) to show that V and T* are ft-similar, i e. that Tΐ e 3^.

But since

Bd T* n Bd U<z Bd F* n Bd U - {σl9 σ2} ,

the existence of this Γ? € 3^ contradicts the minimality assumption
involved in our choice of F*. The curves of BdCTTlBdF* must be
meridians of Bd F*, therefore,

(ii) σι is a meridian of BdF*. According to Satz 2, p. 211, A
separates F* into a solid torus T(A) which shares a meridian disc
with V*f and which has order one in F* (so Λ:(Γ(A)) has κ(V*) as a
factor, and hence has κ(V) as a companion); and another space which
is a solid torus iff T(A) and F* are equally knotted. If p lies in
T(A)y we may proceed as in part (i) above to eliminate the curves
of Bd A by putting Bd T(A) into general position with respect to Bd U—
but then we would obtain a λxtorus T* e *JΓ which would contradict
our choice of F*.

We suppose therefore that p lies in F* — T(A). Let A be the
annulus on Bd F*, bounded by σι and cr2, such that A and A! together
bound Cl (F* - T{A)). Since A[J A' separates p from Bd Eo, and
both annuli meet k in at most one point each, k Π (A U A') cannot be
empty and in fact

Π (A U A')) ^ 2 .

There are then three cases to consider:

N(k n A) = 0, JSΓ(fc Π A') = 1. In this case, the torus T(A) does
not meet k on its boundary at all, because k Π Bd F* = & Π -A', and
Bd T(A) - A U (Bd F* - A'). But Γ(A) and F* share a meridian disc.
By Lemma 1, there is therefore a subarc of k inside T(A) which
does not meet Bd T(A) at all—since p is a point of k lying outside
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T(A), k must be disconnected. This is impossible, so this combination
of intersection numbers cannot occur if p is to lie in F* — T(A).

N(k Π A) = N(k n 4') = 1. ί; is an arc which is wild at one
endpoint, so v{k Π ( i U A')) = ± 1; so k meets A (J A' in an odd number
of points. This is impossible in this case, for N(k Π(AU A')) = 2.

N(k Π A) = 1, N(k Π A') = 0. Let R be any other annulus on
Bd U, bounded by intersection curves and whose interior lies in Int F*,
and let the annulus R' be chosen on Bd F* so that R (J R' = Bd (F* -
T(R)), where T(R) is the solid torus given by Satz 2, p. 211. k does
not meet R at all, since R lies in the interior of Bd U — A and k f)
Bd U = k Π A. k can meet Rr in at most one point: if k Π Rr = 0,
then p cannot lie in F* — T(R) and we may eliminate the curves of
Bd R by cutting F* along iϋ. If k meets Rf in one point, then we
have N(k Π R) = 0 and JV(Z& Π i?') = 1, which, we have shown above,
implies that p must lie in T(R). So again we may eliminate the
curves of Bd R.

Bd U Π Bd F* must therefore consist of only the two curves σί

and σ2. We set A* - Cl (Bd F* - A'), and A2 = Cl (Bd U - A). Since

A2 n Bd F* = Bd A2 - Bd A - {σx, σ2} ,

A* (J A2 is the boundary of a solid torus F' (Satz 3, p. 215) which
is easily shown to be a A-torus and Λ-similar to F. V lies in the
interior of Blf and contains B2 in its interior; F * has order one in
F\ Therefore if F " is a sufficiently small closed regular neighbour-
hood of V, V'eT* if we can prove that κ(V) is a companion of
κ(V")—we then note that Bd F " does not meet Bd U at all, so the
existence of F " e 3^ will contradict our choice of F*.

Now σλ is not a meridian of Bd U, since it bounds a disc in F*
(the common meridian disc of F* and Γ(A), for example) which lies
in Cl (Eo — Z7). ^ is not null-homologous on Bd U, by (a). Then by
Satz 1, pβ 207, A! separates U into two solid tori, one of which is
Cl (F' - F*). By Satz 2, p. 211, therefore V and F* are equally
knotted, so ιc(V") = /c(F*). Thus Λ ( F ) is a companion of Λ;(F") and
F " 6 5^:

Therefore no intersection curve σ c Bd Uf\ Bd F* can be a meridian
of BdF*;σ cannot be null-homologous on BdF*, by (a), and cannot
fail to be a meridian of Bd V*, by (b)(i). The existence of any inter-
section curves at all leads to a contradiction, and we conclude that
Bd F* Π Bd U = 0 for this choice of F* e 5^. This proves the lemma.

3* Containing sequences* Theorem 1 below will be of use later
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in finding invariants of oriented local type for arcs with Px = 1 and
Po ;> 5, as well as in this paper.

THEOREM 1. Let V be a k-torus for an arc k in R3 which is
locally tame modulo one endpoint p at which Pι(k, p) — 1 and P0(k,
p) >̂ 5, and let

V= Vn<Vn_1< .-. <VoaEo

and

V= Um<Um-ι< ••• <U0<zEQ

be two containing sequences for V in Eo. Then m ~ n, and there
exists a containing sequence

with the properties
( i ) BdUf ΓiBdVs = 0 for all i, j = 0, 1, , n - 1 and
(ii) for all i, fc(Ui) is a companion of fc(U*), and U* and Ui are

Proof. The proof involves more complicated cutting and pasting
arguments than the proof of Lemma 5, for instead of juggling two
&-tori, we are juggling two sequences of fe-tori simultaneously.

It is sufficient to prove that the assumption n < m leads to
a contradiction, for then a symmetric argument will show that it
is impossible for m to be less than n.

Let .^f be the class of all containing sequences

V= Tm< Tm^< < TodEo

of length m in Eo, such that the surfaces Bd Ti are in general position
with respect to the surfaces Bd Vj, and for each ΐ, C/i and Ti are
fc-similar and fc(Ti) has ιc(Ui) as a companion. If d is the minimum
of the distances from Bd Ui to Bd Ui+1, we may ensure that the
sequence

V= Um<Um_ι< •-. <UodEo

is an element of ̂ sf, by an ambient isotopy of Eo which leaves every-
thing fixed outside an open regular neighbourhood of Bd Uo U Bd Ux U
• U Bd Z7m_i, and moves no point further than <5/4.

^£ is not empty, therefore, and we may choose a sequence

V= UZ<Ut^<-.* <U*aE0

in ^€ such that the set C = {Bd Uf Π Bd Vά\ i = 0,1, , m - 1 and
j — 0, 1, , n — 1} consists of a minimal number of intersection
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curves. Our aim is to show that C is empty.
(a) Suppose some σeC bounds a disc on Bd E7?, for some i; then

we may choose an innermost intersection curve τ which bounds a disc
jDcBdZJ* containing no other intersection curves. Using Lemma 1
as in part (a) of the proof of Lemma 5, we see that τ also bounds
a disc D{τ) on Bd Vd if τ c Bd Uf Π Bd Vs. There exists an index h
and a curve p c Bd Ut Π Bd V3- such that p bounds a subdisc D(p) c
D(τ) c Bd Fj, and such that D(ρ) contains no other intersection curves
in its interior, p also bounds a disc on the boundary of Ut

Thus, if there is any curve which bounds a disc on a surface
Bd Ui or Bd Vj9 there exists an index h and a curve |O c Bd Uζ Π Bd F,
which bounds a disc D(<0) on Bd V3 , not containing any other intersec-
tion curves, and bounding a disc D* on Bd Ut

D(p) U JD* is a 2-sphere bounding a 3-cell S. Applying Lemma 3
(and general positioning), we obtain a Axtorus U'h with ΛΓ(E7£) = ιc(Ul).
fc(Uh) is therefore a companion of A:(E7£), and we may also show, as
in Lemma 5, that U'k and Uh are ίk-similar. Moreover, for each s,
Bd ?/; meets Bd Vs in fewer curves than does Bd Ut, for Bd U'h Π Bd V8

consists of those curves of Bd U* ΓΊ Bd Vs which do not lie in D*—in
particular, p has been eliminated. Thus the sequence

(*) v- u*<u*^<- - <m+ί<uf

h<uh%< ... - < m c E 0

meets {Bd Vό) on its boundary surfaces in fewer curves than our
original sequence {Bd Z7*}. This will contradict our choice of the
sequence {Ut} if we can show that the sequence (*) lies in the class
^-£\ it is only necessary to show that (*) is a containing sequence
for V.

Suppose h = 0, and let U be any λxtorus with UΌa UczE0. If
Uό Z) Uo*, then Ui has nonzero order in U because {U*} is a containing
sequence in Eo and 0(1/?, I7J) = 1. If UiaU*, there exists a Λ-torus
UP which contains Γ7J, is A:-similar to !7, and whose boundary does not
meet Bd Uξ, by Lemma 5. By Lemma 2, 0{U',, Ur) and O(C/J, Z7) are
zero or nonzero together: if C7' c U*9 then

so Ui has nonzero order in U') while if Z7' 3 Z7*, C/J has nonzero order
in Z7' because

O(Dj, EΓ) - O(W, σ?) O(ϋ?, EP) = O(?70*, E70

and ί/? is the first term in a containing sequence in Eo. In either
case, Ui has nonzero order in U, and the sequence (*) lies in ^ C

Suppose h > 0. We need only consider the case E7£ = ?7̂ -{an open
regular neighbourhood of S}, the other case is analogous.



WILD ARCS IN THREE-SPACE 631

Let U be a ά-torus with Ur

hcUci £7A*~i By Lemma 5, there exists
a fc-torus £/', fc-similar to U with U'h c U' c [/?_„ and whose boundary
does not meet Bd Ut. Then, by Lemma 2, 0(171, 17) and 0{U'h, Ur) are
either zero or nonzero together, and O(U, ί/*_i) and O(U', Ut-) are
both zero or both nonzero.

If IT c Ut, ZΓh has order 1 in U9 because 0(l7ί, Ut) = 1. If U9 ZD
Ut, then either Ut has zero order in U9 and 17' has nonzero order in
Ut-ι (because {Ut) is a containing sequence), or O(Ut, U') Φ 0. Thus
U either contains Uf

h with nonzero order, or is contained in Ut-ι with
nonzero order, by Lemma 2. A similar argument shows that if U
is any Axtorus with Ut+,aUcU'h then either 0(l7?+ι> Z7)^0 or O(C7,
TO * 0.

It follows that (*) is a containing sequence for V in EOf and its
existence in Λ€ contradicts the choice of our original sequence {W},
so we conclude that no p e C can bound a disc on any of the surfaces
Bd Ut or Bd Vj.

(b) For each pair i and j , therefore, there is an even number
of intersection curves bounding parallel annuli on Bd Vj and bounding
parallel annuli on Bd IT?. We may therefore choose a pair of curves
0Ί and σ2 which bound an annulus A c Bd ^ which contains no other
intersection curves, and such that Int-4 c Int ί/f for some h. Once
again we shall use Schubert's theorems,

( i ) σt is not a meridian of BdZ7*. We apply Satz 1, p. 207:
A separates Ut into two solid tori T± and T2. ϊ\ has nonzero order
in Ut because it has σx as a core, and T2 has order 1 in Uζ; κ(ϋΐ)
(and therefore fc(Uh)) is a companion of both κ(T^ and rc(T2). We put
Bd 2\ and Bd T2 into general position with respect to the surfaces
{BdVs} by setting Γ* = 7V{an open regular neighbourhood of A}.
Then

(Bd TΪ n Bd v.) u (Bd Tt n Bd v8) = mut n Bd v8,

except when s = j , when

(Bd Γ* Π Bd Vy) U (Bd T; Π Bd Vs) = Bd ?7*n BdF,- - {σu σ2} .

Now one of these tori, say Tt, contains !7*+1 in its interior. By
Lemma 4, Tt is a.ft-torus and, as in Lemma 5, Tξ is A:-similar to Uh.
Further, because Tt has nonzero order in Ut, U*+ι< Tt < Ut-ι and
we prove, as in (a) above, that the sequence

v= ut< -.. <ui+ι<τt'<ui-ι<-..-<ϋ*cE0

in an element of ^€. The A-tori in this sequence meet the surfaces
{Bd Vj} on their boundaries in fewer curves than do the fc-tori in our
original sequence {Ut} (the curves {σu σ2) — Bd A have been eliminated),
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and this contradicts the minimality assumption involved in our choice
of {tT?}.

(ii) Therefore, if the family C of intersection curves is not
empty, the curves of Bd Ut Π Bd V3 must be meridians of Bd Uξ. We
will show that this is impossible.

We show first that Bd V3 cannot meet Bd Ut+1 if it meets Bd U*.
For, if Bd V3 Π Bd Ut+ί is not empty, its curves cannot bound discs
on Bd Uh+i, by (a), and cannot fail to be meridians of Bd U{+ί9 by part
(i) above. Since the curves of Bd V3 Π (Bd U* U Bd Ut+ί) bound parallel
annuli on Bd Vj, we may choose two curves ah and ah+1 of Bd V3 Π Bd Z7&*
and Bd Vj Π Bd Ut+ι respectively, so that at is a meridian of Bd Z7*, and
so that ah and ah+1 together bound an annulus on Bd V3 whose interior
lies in Int (Ut — Uί+1). But Lemma 1 of [2] then shows that U£+1 must
have order one in Ut, contradicting the assumption that Ut+1 has zero
order in Ui This contradiction shows that Bd V3- cannot meet Bd C7jf+1

if it meets Bd E/J.

Nor can BdVy meet Bd Ut-X if it meets Bd Ut We may choose
two intersection curves ah, which is a meridian of Bd Ut, and ah^x

on Bd £/?_!, which together bound an annulus on Bd V3 whose interior
lies in Int {Ut-i — U*) OLK and αA_x are therefore homologous in Ut-ύ
but ah bounds a disc in Ut-i> so ah^ is null-homologous in U{^.
α λ_! is therefore either null-homologous on Bd Ut-ι or a meridian of
Bd Uh-ι ([7], p. 164). By (a), αΛ_x cannot bound a disc on Bd J7*_i>
so ah^ is a meridian of Bd U*^; this implies, by Lemma 1 of [2],
that Uh has order one in Z72Li, which is impossible. Therefore no such
curve ah^ exists, and BdF 3 cannot meet Bd Z7t-i if it meets Bd Ut

If Bd Vj Π Bd Ut is not empty, it follows that Bd V3 c Int (U^t -
Uh+1). We may therefore use the same cutting and pasting techniques
as were used in the last part of the proof of Lemma 5, to obtain a
/c-torus Uh which is Zc-similar to Uh, such that κ(U*) is a factor of
κ(U'h), and such that Bd U'h Π Bd V8 = Bd Ut Π Bd Vs except when
s = j , when

Bd Ui n Bd V3r = 0 .

We can also show (as in part (a)), that the sequence

(*) v= U*< ••• <U:+ι<Uί<Ui-i< ••• <UϊaE0

is a containing sequence in ^ since the Λ-tori in this sequence meet
the surfaces {Bd VH} in fewer curves on their boundaries than do the
surfaces {Bd t/?}, the existence of this sequence in ^/ί contradicts
the minimality assumption involved in our choice of the sequence
{17?}. This contradiction ensures that Bd V3 does not meet Bd Ut at all.

(c) It follows from the above that the family C of intersection



WILD ARCS IN THREE-SPACE 633

curves must be empty, that is, that Bd U* Π Bd Vj = 0 for all i =
0,1, , m — 1 and j = 0,1, , n — 1* We then have two contain-
ing sequences for V in EQ, viz

and

V= Uί<Ul.ι< ϊU aE*

such that for each i and j , either V5 lies in the interior of U?9 or
contains U* in its interior.

Ut and Vn both equal V, so suppose F ^ lies in the interior of

so Fn_i has nonzero order in UZ-i because the {Uf} form a containing
sequence. On the other hand, if Ut-i lies in the interior of F%_L, it
has non-zero order in FΛ_i, because the {Vj} form a containing sequence.
Proceeding in this way, we can show that for each r = 0,1, , n,
either Vn_r has nonzero order in E7ϊ_r, or Z7*_r has nonzero order in
FΛ_ r (whichever is applicable).

But m — n ^ 1 by hypothesis, so O(V0, Ui-n) ^ 0 implies

which contradicts our choice of Vo as the first &-torus in a containing
sequence for V in EQ. If UZ-n has nonzero order in Fo, on the other
hand, then Vo must lie in the interior of l7JL»_i, and in fact have zero
order in UZ-n-i—again contradicting our choice of Vo.

The assumption n < m therefore leads to a contradiction, and
n — m.

4. Invariance of ^-sequences* Theorem 2, p. 24 of [4], asserts
that every arc with Pλ = 1 and Po ^ 5 has a ^-sequence in some 3-cell
E. Unfortunately, there are two errors in the proof of that theorem
one the bald assertion that every such are has a constructing sequence
in some 3-cell, and the other a misuse of corollary 3 of [2]2. The
validity of Theorem 2 is therefore in doubt, and we are led to the
following problems, for arcs with Px — 1 and PQ ^ 5.

PROBLEM 1. Find sufficient conditions for an arc to have a
constructing sequence in some 3-cell E. If possible, exhibit an arc
which has no constructing sequences at all.

2 The author wishes to thank Professor Smythe for bringing the first of these to
his attention.
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A set of sufficient conditions will be given in a later paper in
this series, dealing with "special" arcs (cf. [4], Chapters III and IV).

PROBLEM 2. Does the existence of a constructing sequence imply
the existence of a fe-sequence?

The author suspects that Theorem 2 on p 24 of [4] is still true,
that is that every arc has a constructing sequence and therefore a
^-sequence, but has been unable to turn his hand to a suitable proof.

It is worth noting, however, that if an arc kx has a ^-sequence
EQZDVQ > VΊ >ιV2 > •••, and k2 has the same nonoriented local type
at p2 as &! has at pί9 then k2 has a &2-sequence. For let hy Ulf U2 be
as in the definition of non-oriented local type (§1, no. 3). Since f] Vt =
{pj, there exists an index N such that VN c Int UΊ; let EN be any
3-cell in the interior of VN, which contains VN+1 in its interior. Then

h(EN)z>h(VN+ι)>h(VN+2)>--

is a &2-sequence.
We come now to the invariance of Λ-sequences.

• be k-
sequences in Eo. Tnen Ui and F< are equivalently knotted, for all i.

Proof. Given E7Ό, there exists an index s(0) = s and a &-torus F 8

lying in the interior of Uo. By Theorem 1, there exist s — 1 Λ-tori
Tlf •••, Γ8_! such that

and

V8 < Ts^ < < 2\ < J70 c

are containing sequences for F 8 in EΌ, and s fc-tori Γf, •••, Γ*^, Ϊ7O*
such that

( i ) F s -< Tί-! -< -< Tf < U* c EQ is a containing sequence for
V8 in JSΌ,

(ii) Bd ί7* does not meet Bd Fy for any j = 0,1, , s, and
(iii) C/? and Z70 are ifc-similar, and /c(U*) has /c(i7o) as a companion.
From (ii), it follows that either Z70* lies in the interior of Fo, or

that Vo c Int ?70*. In the latter case, F o cannot have zero order in U*, so
yc(i7*) is a companion of /c(F0), hence ιc(U0) is a companion of fc(VΌ).
If Z70* c Int Vo, (i) shows that U* has nonzero order in Fo, so ?7* and
F o must be concentric because {FJ is a ^-sequence. So ̂ (1/?) = fc(V0),
by Theorem 3 of [2], and again fc(U0) is a companion of Λ:(F 0).

On the other hand, we may use similar arguments to prove that
Λ (FO) is a companion of /c(U0).
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It follows that κ(U0) = κ(V0). We next observe that for some
s(l), Vsa) lies in the interior of UΊ: by exactly the same method, we
show that Λ:(E7Ί) = κ(V^ and, proceeding inductively, that ιc(Ui) = £(V<)
for all i.

The proof of the following theorem is similar to the proof of the
main theorem of [6].

THEOREM 2. Let kt and k2 be arcs in i?3, locally tame modulo

endpoints p± and p2 respectively, at which P^h, p{) = 1 and Po(ki9 pt) ^

5. If kt has a ^-sequence Uo > UΊ > U2 > ••• in some 3-cell E0(l),

and k2 a k2-sequence Vo > VΊ > V2 > in some Z-cell E0(2)f and k2

has the same non-oriented local type at p2 as kx has at pί9 then the

sequences {ιc(U0), IC(UΊ), •••} and {/c(V0)9 ιc(V1)9 •••} are cofinal.

Unfortunately, the fc-sequence is too unwieldy an invariant to be
of much use in distinguishing nearly polyhedral arcs. A later paper
will develop an invariant of oriented local type which is much simpler
to apply than the fc-sequence invariant, and we will show how these
invariants may be used to distinguish wild arcs. Meantime, we merely
assert that Λ-sequences will distinguish the arc of Figure 3 from the
arc of Figure 1 (a).

FIGURE 3

Added in proof. In connection with the note of § 1, no. 2:
Neville Smythe, Geoffrey Hemion and myself have shown that the

FIGURE 4
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arc constructed in the Pox-Artin manner from cylindrical sections of
the type shown in Figure 4, has P1 — 3 but has penetration index 1
with respect to surfaces of genus 1.
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