STARLIKE AND CONVEX MAPPINGS IN SEVERAL COMPLEX VARIABLES

Keizo Kikuchi

In this paper, using the Bergman kernel function $K_{D}(z$, \bar{z}), we give necessary and sufficient conditions that a pseudoconformal mapping $f(z)$ be starlike or convex in some bounded schlicht domain D for which the kernel function $K_{D}(z, \bar{z})$ becomes infinitely large when the point $z \in D$ approaches the boundary of D in any way. We also consider starlike and convex mappings from the polydisk or unit hypersphere into C^{n}.

Generalizing the results obtained by M. S. Robertson [10] using the principle of subordination, T. J. Suffridge has established necessary and sufficient conditions that a function be univalent and map the polydisk or

$$
D_{p}=\left\{z:\left[\sum_{j=1}^{n}\left|z_{j}\right|^{p}\right]^{1 / p}<1, p \geqq 1\right\}
$$

onto a starlike or convex domain [11].
Similar problems have been considered by T. Matsuno [8] ave une hypershere. In this paper we deal with the same problems in terms of the Bergman kernel function $K_{D}(z, \bar{z})$, and show the results are equivalent to theorems of Suffridge in case of polydisk or hypersphere.

The author wishes to thank Professor S. Ozaki for helpful discussions on the preparation of the paper.

1. Preliminaries. We consider bounded schlicht domains D in C^{n} for which the kernel function becomes infinite everywhere on the boundary ∂D, i.e., it is the union of an increasing sequence of strictly pseudo-convex domains

$$
\begin{equation*}
D_{t}=\left[z: \varphi_{t}(z) \equiv K_{D}(z, \bar{z})-t<0, z \in D\right] \tag{1.1}
\end{equation*}
$$

for some number $t>0$, where $z=\left(z_{1}, \cdots, z_{n}\right)^{\prime}$. (See [3]). First we have

Lemma 1.1. If D is a bounded domain, the Bergman kernel function $K_{D}(z, \bar{z})$ is strictly plurisubharmonic and

$$
\begin{equation*}
1 / \omega(D) \leqq K_{D}(z, \bar{z}) \leqq 1 / \pi^{n}(l(z))^{2 n}, \tag{1.2}
\end{equation*}
$$

where $l(z)=\min _{\varepsilon \epsilon ว D} \rho(\tau, z), \rho(\tau, z)=\max _{j}\left\{\left|\tau_{j}-z_{j}\right|, j=1, \cdots, n\right\}$ and $\omega(D)$ signifies the euclidean volume of D.

Proof. The minimum value of the integral $\|f\|_{D}^{2}=\int_{D}|f(\zeta)|^{2} d v_{\zeta}$ for functions $f(\zeta) \in \mathscr{L}^{2}(D)$ satisfying the condition $d f(z) / d \zeta \cdot u=1$, where $u=\left(u_{1}, \cdots, u_{n}\right)^{\prime}$ is an arbitrary nonzero column vector, is

$$
\begin{equation*}
1 / u^{*} \frac{\partial^{2} K_{D}(z, \bar{z})}{\partial \zeta^{*} \partial \zeta} u=\int_{D}\left|\frac{u^{*} \frac{\partial K_{D}(\zeta, \bar{z})}{\partial \zeta^{*}}}{u^{*} \frac{\partial^{2} K_{D}(z, \bar{z})}{\partial \zeta^{*} \partial \zeta} u}\right|^{2} d v_{\zeta} . \tag{1.3}
\end{equation*}
$$

(See [1], [2].)

Here we define partial derivatives of a function $g(\zeta, \bar{\tau})$ as

$$
\begin{align*}
\partial^{2} g(\zeta, \bar{\tau}) / \partial \tau^{*} \partial \zeta & =\left(\partial / \partial \bar{\tau}_{1}, \cdots, \partial / \partial \bar{\tau}_{n}\right)^{\prime} \times\left(\partial / \partial \zeta_{1}, \cdots, \partial / \partial \zeta_{n}\right) \times g(\zeta, \bar{\tau}) \tag{1.4}\\
& =\left(\begin{array}{c}
\partial^{2} / \partial \bar{\tau}_{1} \partial \zeta_{1}, \cdots, \partial^{2} / \partial \bar{\tau}_{1} \partial \zeta_{n} \\
\cdots \cdots \cdots \\
\partial^{2} / \partial \bar{\tau}_{n} \partial \zeta_{1}, \cdots, \partial^{2} / \partial \bar{\tau}_{n} \partial \zeta_{n}
\end{array}\right) \times g(\zeta, \bar{\tau}),
\end{align*}
$$

and if $g(\zeta)$ is a function of only ζ, we denote $d g(\zeta) / d \zeta=\left(\partial / \partial \zeta_{1}, \cdots\right.$, $\left.\partial / \partial \zeta_{n}\right) \times g(\zeta)$, where the sign \times designates the Kronecker product and the sign ${ }^{*}$ denotes the transposed conjugate matrix. (Cf. [7].)

On the other hand, if we put $f(\zeta)=u^{*}(\zeta-z) /|u|^{2}$, then

$$
\frac{d f(z)}{d \zeta} u=u^{*} u /|u|^{2}=1
$$

therefore

$$
\begin{align*}
1 / u^{*} \frac{\partial^{2} K_{D}(z, \bar{z})}{\partial \zeta^{*} \partial \zeta} u & \leqq \int_{D}\left|\frac{u^{*}(\zeta-z)}{|u|^{2}}\right|^{2} d v_{\zeta} \\
& \leqq \frac{1}{|u|^{2}} \int_{D}|\zeta-z|^{2} d v_{\zeta} \leqq \frac{L^{2} \omega(D)}{|u|^{2}} \tag{1.5}
\end{align*}
$$

where $L=\max _{\tau \in \partial D}|\tau-z|$ and $|u|=\left(\sum_{j=1}^{n}\left|u_{j}\right|^{2}\right)^{1 / 2}$.
Thus

$$
u^{*} \frac{\partial^{2} K_{D}(z, \bar{z})}{\partial \zeta^{*} \partial \zeta} u>0
$$

for all $z \in D$, that is, $K_{D}(z, \bar{z})$ is strictly plurisubharmonic (see [3]). Next it is well known that the minimum value of the integral $\|f\|_{D}^{2}$ under the condition $f(z)=1, z \in D$, becomes $1 / K_{D}(z, \bar{z})$. Then, for the function $f(\zeta) \equiv 1$, we have

$$
\begin{equation*}
1 / K_{D}(z, \bar{z})=\int_{D}\left|K_{D}(\zeta, \bar{z}) / K_{D}(z, \bar{z})\right|^{2} d v_{\zeta} \leqq \int_{D} d v_{\zeta}=\omega(D) . \tag{1.6}
\end{equation*}
$$

Also, using the Cauchy integral formula, we obtain

$$
\begin{align*}
& \left|\left(\frac{K_{D}(\zeta, \bar{z})}{K_{D}(z, \bar{z})}\right)_{\zeta=z}\right| \tag{1.7}\\
\leqq & \frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \frac{\left|K_{D}(\zeta, \bar{z}) / K_{D}(z, \bar{z})\right|}{r_{1} \cdots r_{n}} r_{1} d \theta_{1} \cdots r_{n} d \theta_{n},
\end{align*}
$$

where $\zeta_{j}-z_{j}=r_{j} e^{i \theta_{j}}, 0<r_{j}<l(z),(j=1, \cdots, n)$. We get therefore by the Schwarz integral inequality

$$
\begin{align*}
l^{2 n} / 2^{n} & \leqq \frac{1}{(2 \pi)^{n}} \int_{\rho(\zeta, z)<l} \int\left|\frac{K_{D}(\zeta, \bar{z})}{K_{D}(z, \bar{z})}\right| d v_{\zeta} \\
& \leqq \frac{1}{(2 \pi)^{n}}\left[\left(\pi l^{2}\right)^{n} \int_{\rho(\zeta, z)<l} \ldots\left|\frac{K_{D}(\zeta, \bar{z})}{K_{D}(z, \bar{z})}\right|^{2} d v_{\zeta}\right]^{1 / 2} . \tag{1.8}
\end{align*}
$$

Then

$$
\begin{equation*}
\pi^{n / 2} l^{n} \leqq\left[\int_{D}\left|\frac{K_{D}(\zeta, \bar{z})}{K_{D}(z, \bar{z})}\right|^{2} d v_{\zeta}\right]^{1 / 2}=\left(1 / K_{D}(z, \bar{z})\right)^{1 / 2} \tag{1.9}
\end{equation*}
$$

hence we have (1.2) from (1.6) and (1.9).
2. Convex mappings. We consider the above mentioned domains D and D_{t}, and suppose that $\partial K_{D}(z, \bar{z}) / \partial z \nsim 0, z \neq 0$, in D, and $K_{D}(0,0)=$ $\min _{z \in D} K_{D}(z, \bar{z})$ at only $z=0$. For a holomorphic univalent function $w=f(z)$ of D, let

$$
\begin{equation*}
\varphi_{t}(z)=\varphi_{t}\left(f^{-1}(w)\right) \equiv \Phi_{t}(w), t>K_{D}(0,0) \tag{2.1}
\end{equation*}
$$

and let $\Delta=f(D), \Delta_{t}=f\left(D_{t}\right)$.
Then we have

$$
\begin{equation*}
\Delta_{t}=\left[w: \Phi_{t}(w)<0, w \in \Delta\right] \tag{2.2}
\end{equation*}
$$

corresponding to (1.1). On the boundary $\partial D_{t}: \varphi_{t}(z)=0$, the total differential of $\varphi_{t}(z)$ becomes

$$
\begin{equation*}
d \varphi_{t}=\frac{\partial \varphi_{t}}{\partial z} d z+d z^{*} \frac{\partial \varphi_{t}}{\partial z^{*}}=2 \mathscr{R}\left[\frac{\partial \varphi_{t}}{\partial z} d z\right]=0 \tag{2.3}
\end{equation*}
$$

where $d z=\left(d z_{1}, \cdots, d z_{n}\right)^{\prime}$. Consequently, since $\partial \varphi_{t} / \partial z^{*}=\partial K_{D}(z, \bar{z}) / \partial z^{*}$ is perpendicular to all tangential vectors $d z$ of the boundary ∂D_{t} at $z, \partial \varphi_{t} / \partial z^{*}$ is a normal vector of ∂D_{t} at z. And we can derive

$$
\begin{equation*}
\mathscr{R}\left[\frac{\partial \Phi_{t}}{\partial w} d w\right]=\mathscr{R}\left[\frac{\partial \Phi_{t}}{\partial z}\left(\frac{d z}{d w}\right)\left(\frac{d w}{d z}\right) d z\right]=\mathscr{R}\left[\frac{\partial \varphi_{t}}{\partial z} d z\right]=0 \tag{2.4}
\end{equation*}
$$

hence $\partial \Phi_{t} / \partial w^{*}$ is also a normal vector of the boundary $\partial \Delta_{t}: \Phi_{t}(w)=0$ at $w=f(z)$. (See [5], [6].)

We can expand $\Phi_{t}(w+d w)$ into a Taylor series:

$$
\begin{align*}
\Phi_{t}(w+d w)= & \Phi_{t}(w)+2 \mathscr{R}\left[\frac{\partial \Phi_{t}}{\partial w} d w\right] \\
& +2 \mathscr{R}\left[\frac{\partial^{2} \Phi_{t}}{\partial w^{2}} d w^{2}+d w^{*} \frac{\partial^{2} \Phi_{t}}{\partial w^{*} \partial w} d w\right]+0\left(|d w|^{2}\right), \tag{2.5}
\end{align*}
$$

where $d w^{2}=\left(d w_{1}, \cdots, d w_{n}\right)^{\prime} \times\left(d w_{1}, \cdots, d w_{n}\right)^{\prime}$. (See [3], Chap. IX.) Since

$$
\mathscr{R}\left[\frac{\partial \Phi_{t}}{\partial w} d w\right]=0
$$

at $w \in \partial \Delta_{t}$, it follows that

$$
\begin{equation*}
\Phi_{t}(w+d w)=2 \mathscr{R}\left[\frac{\partial^{2} \Phi_{t}}{\partial w^{2}} d w^{2}+d w^{*} \frac{\partial^{2} \Phi_{t}}{\partial w^{*} \partial w} d w\right]+0\left(|d w|^{2}\right) \tag{2.6}
\end{equation*}
$$

If the point $(w+d w)$ lie always the outside of Δ_{t} for all $w \in \partial \Delta_{t}$ and tangential vectors $d w$ at w, i.e., $\Phi_{t}(w+d w)>0$, then Δ_{t} is convex. From (2.6), we must have the following condition in order to consist always $\Phi_{t}(w+d w)>0$:

$$
\begin{equation*}
\mathscr{R}\left[\frac{\partial^{2} \Phi_{t}}{\partial w^{2}} d w^{2}+d w^{*} \frac{\partial^{2} \Phi_{t}}{\partial w^{*} \partial w} d w\right]>0 . \tag{2.7}
\end{equation*}
$$

Now we can calculate as follows by formulas of matrix derivatives described in [7]:

$$
\frac{\partial^{2} \Phi_{t}}{\partial w^{2}}=\frac{\partial}{\partial w}\left(\frac{\partial \varphi_{t}}{\partial z}\left(\frac{d w}{d z}\right)^{-1}\right)=\frac{\partial}{\partial z}\left(\frac{\partial \varphi_{t}}{\partial z}\left(\frac{d w}{d z}\right)^{-1}\right)\left(\left(\frac{d w}{d z}\right)^{-1} \times E\right)
$$

$$
\begin{equation*}
=\frac{\partial^{2} \varphi_{t}}{\partial z^{2}}\left(\left(\frac{d w}{d z}\right)^{-1} \times\left(\frac{d w}{d z}\right)\right)^{-1}-\frac{\partial \varphi_{t}}{\partial z}\left(\frac{d w}{d z}\right)^{-1} \frac{d^{2} w}{d z^{2}}\left(\left(\frac{d w}{d z}\right)^{-1} \times\left(\frac{d w}{d z}\right)^{-1}\right) \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial^{2} \Phi_{t}}{\partial w^{2}} d w^{2}=\left\{\frac{\partial^{2} \varphi_{t}}{\partial z^{2}}-\frac{\partial \varphi_{t}}{\partial z}\left(\frac{d w}{d z}\right)^{-1} \frac{d^{2} w}{d z^{2}}\right\} d z^{2} \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
d w^{*} \frac{\partial^{2} \Phi_{t}}{\partial w^{*} \partial w} d w=d w^{*}\left\{\binom{d w}{d z}^{-1} * \frac{\partial^{2} \varphi_{t}}{\partial z^{*} \partial z}\left(\frac{d w}{d z}\right)^{-1}\right\} d w=d z^{*} \frac{\partial^{2} \varphi_{t}}{\partial z^{*} \partial z} d z \tag{2.10}
\end{equation*}
$$

Then, substituting (2.9) and (2.10) into (2.7), we obtain

$$
\begin{equation*}
\mathscr{R}\left[\left\{\frac{\partial^{2} \varphi_{t}}{\partial z^{2}}-\frac{\partial \varphi_{t}}{\partial z}\left(\frac{d w}{d z}\right)^{-1} \frac{d^{2} w}{d z^{2}}\right\} d z^{2}+d z^{*} \frac{\partial^{2} \varphi_{t}}{\partial z^{*} \partial z} d z\right]>0 . \tag{2.11}
\end{equation*}
$$

Thus we have the following Lemma.
Lemma 2.1. For a fixed value t, a holomorphic univalent function $w=f(z)$ of D have convex image Δ_{t} of D_{t} defined by (1.1) if and only if at every point z on the boundary ∂D_{t}

$$
\begin{equation*}
\mathscr{R}\left[\alpha^{*} \frac{\partial^{2} K_{D}(z, \bar{z})}{\partial z^{*} \partial z} \alpha+\left\{\frac{\partial^{2} K_{D}(z, \bar{z})}{\partial z^{2}}-\frac{\partial K_{D}^{\prime}(z, \bar{z})}{\partial z}\left(\frac{d f}{d z}\right)^{-1} \frac{d^{2} f}{d z^{2}}\right\} \alpha^{2}\right]>0 \tag{2.12}
\end{equation*}
$$

for all unit vectors α satisfying

$$
\mathscr{R}\left[\frac{\partial K_{D}(z, \bar{z})}{\partial z} \alpha\right]=0
$$

Definition. We define the class \mathscr{D} of bounded schlicht domains D for which the kernel function $K_{D}(z, \bar{z})$ becomes infinite everywhere on the boundary $\partial D, K_{D}(0,0)=\min _{z \in D} K_{D}(z, \bar{z})$ only at $z=0, \partial K_{D}(z, \bar{z}) / \partial z \not 0, z \neq 0$, in D, and there is the holomorphic mapping $g(z)$ of D into D satisfying $g(0)=0$, for some one $z^{(1)}$ of two arbitrary points $z^{(1)}, z^{(2)}(\neq 0)$ in $D g\left(z^{(1)}\right)=z^{(2)}$, and $K_{D}(z, \bar{z}) \geqq K_{D}(g(z), \overline{g(z)})$.

For example, let D be a minimal domain or representative domain with center at the origin which is the image domain of $E=\{\zeta:|\zeta|=$ $\left.\left(\sum_{j=1}^{n}\left|\zeta_{j}\right|^{2}\right)^{1 / 2}<1\right\}$ under the biholomorphic mapping $z=\varphi(\zeta)$ satisfying $0=\varphi(0)$. Then $\operatorname{det}(d \varphi(\zeta) / d \zeta) \equiv$ const. when D is a minimal, domain and $d \varphi(\zeta) / d \zeta \equiv$ const. when D is a representative domain (see [4], Theorem 3.1). Hence, for any holomorphic mapping $g(z)$ of D into D satisfying $g(0)=0$, we have $K_{D}(z, \bar{z}) \geqq K_{D}\left(g(z), \overline{g(z))}\right.$ because $K_{E}(\zeta, \bar{\zeta}) \geqq$ $K_{E}(\Phi(\zeta), \bar{\Phi}(\zeta))$ under the holomorphic mapping $\Phi(\zeta) \equiv \varphi^{-1}[g(\varphi(\zeta))], \Phi(0)=0$, of E into E. Also we have $K_{D}(0,0)=\min _{z \in D} K_{D}(z, \bar{z})$ at only the origin. Moreover, for arbitrary points $z^{(1)}, z^{(2)} \in D$, if $\left|\mathscr{P}^{-1}\left(z^{(2)}\right)\right| \leqq\left|\varphi^{-1}\left(z^{(1)}\right)\right|$, then

$$
g(z) \equiv \varphi\left(\frac{\left|\varphi^{-1}\left(z^{(2)}\right)\right|}{\left|\varphi^{-1}\left(z^{(1)}\right)\right|} U_{2} U_{1}^{*} \varphi^{-1}(z)\right)
$$

is a holomorphic mapping of D into D satisfying $g(0)=0$ and $g\left(z^{(1)}\right)=$ $\boldsymbol{z}^{(2)}$ where

$$
\mathscr{\varphi}^{-1}\left(z^{(1)}\right)=U_{1}\left(\begin{array}{c}
\left|\varphi^{-1}\left(z^{(1)}\right)\right| \\
0 \\
\vdots \\
0
\end{array}\right), \varphi^{-1}\left(z^{(2)}\right)=U_{2}\left(\begin{array}{c}
\left|\varphi^{-1}\left(z^{(2)}\right)\right| \\
0 \\
\vdots \\
0
\end{array}\right)
$$

and U_{1}, U_{2} are unitary matrices. And we observe

$$
\partial K_{D}(z, \bar{z}) / \partial z=\partial K_{E}(\zeta, \bar{\zeta}) / \partial \zeta \cdot(d \varphi(\zeta) / d \zeta)^{-1} \neq 0, z \neq 0
$$

because

$$
\partial K_{E}(\zeta, \bar{\zeta}) / \partial \zeta=(n+1) \zeta^{*} K_{E}(\zeta, \bar{\zeta}) /\left(1-|\zeta|^{2}\right) \neq 0, \zeta \neq 0
$$

Theorem 2.1. Let D be a bounded schlicht domain of the class \mathscr{D}. Suppose $f: D \rightarrow C^{n}$ is holomorphic, $f(0)=0$, and $\operatorname{det}(d f / d z) \neq 0$ for all $z \in D$. Then f is a univalent map of D onto a convex domain if
and only if

$$
\begin{equation*}
\mathscr{R}\left[\alpha^{*} \frac{\partial^{2} K_{D}(z, \bar{z})}{\partial z^{*} \partial z} \alpha+\left\{\frac{\partial^{2} K_{D}(z, \bar{z})}{\partial z^{2}}-\frac{\partial K_{D}(z, \bar{z})}{\partial z}\left(\frac{d f}{d z}\right)^{-1} \frac{d^{2} f}{d z^{2}}\right\} \alpha^{2}\right]>0 \tag{2.13}
\end{equation*}
$$

for all unit vectors α satisfying

$$
\mathscr{R}\left[\frac{\partial K_{D}(z, \bar{z})}{\partial z} \alpha\right]=0 .
$$

Proof. The Bergman kernel function $K_{D}(z, \bar{z})$ of this domain D becomes infinite on ∂D. Then we define D_{t} and Δ_{t} by (1.1) and (2.2) respectively. If $\Delta=f(D)$ is schlicht and convex, then all Δ_{t} also become convex, i.e., for any $w^{(1)}, w^{(2)} \in \partial \Delta_{t}$,

$$
\begin{equation*}
w^{(0)}=\tau w^{(2)}+(1-\tau) w^{(1)} \in \Delta_{t}, \quad 0<\tau<1 \tag{2.14}
\end{equation*}
$$

In fact, if we put $z^{(1)}=f^{-1}\left(w^{(1)}\right), z^{(2)}=f^{-1}\left(w^{(2)}\right)$, then $K_{D}\left(z^{(1)}, \overline{z^{(1)}}\right)=$ $K_{D}\left(z^{(2)}, \overline{z^{(2)}}\right)=t$. Setting

$$
\begin{equation*}
F(z) \equiv \tau f(g(z))+(1-\tau) f(z) \tag{2.15}
\end{equation*}
$$

where $g(z)$ is a holomorphic mapping of D into D satisfying $g(0)=0$ and $g\left(z^{(1)}\right)=z^{(2)}$, we observe that $F(0)=0$ and $F(z) \prec f(z)$ because the mapping $f: D \rightarrow C^{n}$ is convex. Hence

$$
\begin{equation*}
\psi(z) \equiv f^{-1}(F(z)) \tag{2.16}
\end{equation*}
$$

is a holomorphic mapping of D into D, so we have

$$
K_{D}\left(z^{(1)}, \overline{z^{(1)}}\right) \geqq K_{D}\left(\psi\left(z^{(1)}\right), \overline{\psi\left(z^{(1)}\right)}\right)=K_{D}\left(f^{-1}\left(w^{(0)}\right), \overline{f^{-1}\left(w^{(0)}\right)}\right) .
$$

Consequently $f^{-1}\left(w^{(0)}\right) \in D_{t}$, so $w^{(0)} \in \Delta_{t}$. Thus, by Lemma 2.1, (2.13) holds for all $z \in D$. Contrary, if (2.13) is realized for all $z \in \mathrm{D}$, every Δ_{t} is convex. Therefore we can conclude that the mapped domain Δ is convex.

Particularly if D is a unit hypersphere, then

$$
K_{D}(z, \bar{z})=\frac{n!}{\pi^{n}\left(1-|z|^{2}\right)^{n+1}}
$$

Thus we have the following result by Theorem 2.1.
Theorem 2.2. Let D be the unit hypersphere and let $f: D \rightarrow$ C^{n} be holomorphic, $f(0)=0$ and $\operatorname{det}(d f / d z) \neq 0$ for all $z \in D$. Then $f(D)$ is convex if and only if

$$
\begin{equation*}
\mathscr{R}\left[|A z|^{2}+z^{*}\left(\frac{d f}{d z}\right)^{-1} \frac{d^{2} f}{d z^{2}}(A z \times A z)\right] \geqq 0, \tag{2.17}
\end{equation*}
$$

where

$$
A=\left(\begin{array}{ccc}
A_{1} & & 0 \\
& \ddots & \\
0 & & A_{n}
\end{array}\right), A_{j} \geqq 0, j=1, \cdots, n
$$

and the equality holds only if $A z=0$.
Proof. We can compute as follows setting $K=K_{D}(z, \bar{z})$:

$$
\begin{equation*}
\partial K / \partial z=(n+1) \frac{z^{*}}{1-|z|^{2}} K \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
\partial^{2} K / \partial z^{2}=(n+1)(n+2) \frac{(z \times z)^{*}}{\left(1-|z|^{2}\right)^{2}} K \tag{2.19}
\end{equation*}
$$

$$
\begin{equation*}
\partial^{2} K / \partial z^{*} \partial z=(n+1) \frac{\left(1-|z|^{2}\right) E+(n+2) z z^{*}}{\left(1-|z|^{2}\right)^{2}} K \tag{2.20}
\end{equation*}
$$

Then, from (2.13), we have

$$
\begin{align*}
\mathscr{R}\left[(n + 2) \left\{\left|z^{*} \alpha\right|^{2}\right.\right. & \left.+\left(z^{*} \alpha\right)^{2}\right\} \\
& \left.+\left(1-|z|^{2}\right)\left\{1-z^{*}\left(\frac{d f}{d z}\right)^{-1} \frac{d^{2} f}{d z^{2}} \alpha^{2}\right\}\right]>0 . \tag{2.21}
\end{align*}
$$

Since

$$
\left|z^{*} \alpha\right|^{2}+\mathscr{R}\left(z^{*} \alpha\right)^{2}=0
$$

from

$$
\mathscr{R}\left[\frac{\partial K}{\partial z} \alpha\right]=0 \text {, i.e., } \mathscr{R}\left[z^{*} \alpha\right]=0
$$

we conclude

$$
\begin{equation*}
\mathscr{R}\left[1-z^{*}\left(\frac{d f}{d z}\right)^{-1} \frac{d^{2} f}{d z^{2}} \alpha^{2}\right]>0 \tag{2.22}
\end{equation*}
$$

Moreover, under the condition $\mathscr{R}\left[z^{*} \alpha\right]=0$ it becomes that $z^{*} \alpha=$ $i p(p \geqq 0, i=\sqrt{-1})$, because both α and $-\alpha$ are satisfy (2.22). Therefore we can put $\alpha=i(A z /|A z|)$ when $A z \not 0$, where

$$
A=\left(\begin{array}{lll}
A_{1} & & 0 \\
& \ddots & \\
0 & & A_{n}
\end{array}\right), A_{j} \geqq 0,(j=1, \cdots, n)
$$

are chosen arbitrarily. Thus we obtain (2.17) from (2.22).

Remark 1. Suffridge's Theorem 5 [11] shows that

$$
F=\frac{d f}{d z}\left[A^{2} z+\left(\frac{d f}{d z}\right)^{-1} \frac{d^{2} f}{d z^{2}}(A z \times A z)\right] / 2, w=\left(\frac{d f}{d z}\right)^{-1} F \in \mathscr{P}_{2},
$$

i.e.,

$$
\begin{aligned}
\mathscr{R} \sum_{j=1}^{n} w_{j}\left|z_{j}\right|^{2} / z_{j} & =\mathscr{R} z^{*}\left[A^{2} z+\left(\frac{d f}{d z}\right)^{-1} \frac{d^{2} f}{d z^{2}}(A z \times A z)\right] / 2 \\
& =\mathscr{R}\left[|A z|^{2}+z^{*}\left(\frac{d f}{d z}\right)^{-1} \frac{d^{2} f}{d z^{2}}(A z \times A z)\right] / 2 \geqq 0,
\end{aligned}
$$

is the necessary and sufficient condition for convexity.
Next, if D is the polydisk $\left\{z \in C^{n}:\left|z_{j}\right|<1, j=1, \cdots, n\right\}$, the kernel function $K_{D}(z, \bar{z})$ becomes $1 / \pi^{n}\left(1-\left|z_{1}\right|^{2}\right)^{2} \cdots\left(1-\left|z_{n}\right|^{2}\right)^{2}$. Hence

$$
\begin{equation*}
\partial K / \partial z=2 K \cdot z^{*} Z, \tag{2.23}
\end{equation*}
$$

$$
\partial^{2} K / \partial z^{2}=4 K \cdot(z \times z)^{*}(Z \times Z)
$$

$$
\begin{equation*}
\partial^{2} K / \partial z^{*} \partial z=4 K \cdot Z z z^{*} Z+2 K \cdot Z^{2}, \tag{2.25}
\end{equation*}
$$

where

$$
Z=\left(\begin{array}{ccc}
1 /\left(1-\left|z_{1}\right|^{2}\right) & & 0 \\
& \ddots & \\
0 & & 1 /\left(1-\left|z_{n}\right|^{2}\right)
\end{array}\right) .
$$

Substituting formally (2.23), (2.24), and (2.25) into (2.13) and setting

$$
\mathscr{R}\left(z^{*} Z \alpha\right)^{2}+\left|z^{*} Z \alpha\right|^{2}=0 \text { and } \alpha=i \frac{Z^{-1 / 2} A z}{\left|Z^{-1 / 2} A z\right|}
$$

where

$$
Z^{-1 / 2}=\left(\begin{array}{ccc}
\sqrt{1-\left|z_{1}\right|^{2}} & 0 & 0 \\
0 & \ddots & \\
0 & & \sqrt{1-\left|z_{n}\right|^{2}}
\end{array}\right),
$$

in place of the condition

$$
\mathscr{R}\left[\frac{\partial K_{D}(z, \bar{z})}{\partial z} \alpha\right]=2 K \cdot \mathscr{R}\left[z^{*} Z \alpha\right]=0,
$$

we arrive at

$$
\begin{equation*}
\mathscr{R}\left[|A z|^{2}+z^{*} Z\left(\frac{d f}{d z}\right)^{-1} \frac{d^{2} f}{d z^{2}}(Z \times Z)^{-1 / 2}(A z \times A z)\right] \geqq 0, \tag{2.26}
\end{equation*}
$$

where the equality holds only if $A z=0$.

Theorem 2.3. Let D be the polydisk and let $f: D \rightarrow C^{n}$ be holomorphic, $f(0)=0$ and $\operatorname{det}(d f / d z) \neq 0$ for all $z \in D$. Then f is a univalent map of D onto a convex domain if and only if the condition (2.26) is fulfilled.

Proof. If f is a convex mapping, then by Suffridge's Theorem 3 [11] $f=T\left(\varphi_{1}\left(z_{1}\right), \cdots, \varphi_{n}\left(z_{n}\right)\right)^{\prime}$ where T is a nonsingular linear transformation and each $\varphi_{j}\left(z_{j}\right)$ is a univalent mapping from the unit disk in the plane onto convex domain in the plane. Then we have

$$
\left.\begin{array}{rl}
& \left(\frac{d f}{d z}\right)^{-1} \frac{d^{2} f}{d z^{2}} \\
= & \left(\begin{array}{cccc}
\varphi_{1}^{\prime \prime}\left(z_{1}\right) / \varphi_{1}^{\prime}\left(z_{1}\right) 0 & \cdots & 0 & 0
\end{array}\right. \tag{2.27}\\
& 0 \varphi_{2}^{\prime \prime}\left(z_{2}\right) / \varphi_{2}^{\prime}\left(z_{2}\right) 0 \\
& \cdots \\
0 & \ddots
\end{array}\right]
$$

Substituting this into the left side of (2.26), we get

$$
\begin{equation*}
\mathscr{R}\left[\sum_{j=1}^{n} A_{j}^{2}\left|z_{j}\right|^{2}\left\{1+z_{j} \varphi_{j}^{\prime \prime}\left(z_{j}\right) / \varphi_{j}^{\prime}\left(z_{j}\right)\right\}\right] . \tag{2.28}
\end{equation*}
$$

Hence from the hypothesis $\mathscr{R}\left[1+z_{j} \varphi_{j}^{\prime \prime}\left(z_{j}\right) / \varphi_{j}^{\prime}\left(z_{j}\right)\right]>0, j=1, \cdots, n$, we get the inequality (2.26).

We will prove the converse. Fix $k, 1 \leqq k \leqq n$ and choose $A_{k}=$ $1, A_{h}=0, h \neq k, 1 \leqq h \leqq n$. From (2.26)

$$
\begin{equation*}
\mathscr{R}\left[\left|z_{k}\right|^{2}+\frac{z_{k}^{2}\left(1-\left|z_{k}\right|^{2}\right)}{\operatorname{det} J} \sum_{j=1}^{n} \frac{\bar{z}_{j}}{1-\left|z_{j}\right|^{2}} C_{j}^{k^{2}}\right] \geqq 0, \tag{2.29}
\end{equation*}
$$

where $J=d f / d z$ and $G_{j}^{k^{2}}$ is obtained from $\operatorname{det} J$ by replacing the j th column by the column $\partial^{2} f / \partial z_{k}^{2}=\left(\partial^{2} f_{1} / \partial z_{k}^{1}, \cdots, \partial^{2} f_{n} / \partial z_{k}^{2}\right)^{\prime}$. For $l, 1 \leqq$ $l \leqq n, l \neq k$, setting $\left|z_{j}\right|<1 / 2, j \neq l, 1 \leqq j \leqq n,\left(1-\left|z_{k}\right|^{2}\right) /\left(1-\left|z_{l}\right|^{2}\right)$ tends to infinity when $\left|z_{l}\right| \rightarrow 1$. Then we must have always

$$
\begin{equation*}
\mathscr{R}\left[\frac{1}{\operatorname{det} J} \frac{z_{k}^{2}}{z_{l}} G_{l}^{k_{l}^{2}}\right] \geqq 0 \tag{2.30}
\end{equation*}
$$

from the condition (2.29). Here, since it becomes 0 at $z_{k}=0$, we see that $G_{l}^{k^{2}} \equiv 0$ for each $l, l \neq k, 1 \leqq l \leqq n$. Next, if we set $A_{k}=A_{l}=$ $1, A_{m}=0, m \neq k, l$, then (2.26) becomes as follows from the above results:

$$
\begin{align*}
& \mathscr{R}\left[\left|z_{k}\right|^{2}+\left|z_{l}\right|^{2}+\frac{\left|z_{k}\right|^{2} z_{k} G_{k}^{k^{2}}}{\operatorname{det} J}+\frac{\left|z_{l}\right|^{2} z_{l} G_{l}^{2}}{\operatorname{det} J}\right. \tag{2.31}\\
+ & \left.2 \frac{z_{k} z_{l} \sqrt{\left.\left(1-\mid z_{k}\right)^{2}\right)\left(1-\left|z_{l}\right|^{2}\right)}}{\operatorname{det} J} \sum_{j=1}^{n} \frac{\bar{z}_{j} G_{j}^{k l}}{\left(1-\left|z_{j}\right|^{2}\right)}\right] \geqq 0 .
\end{align*}
$$

For $s, 1 \leqq s \leqq n$, setting

$$
\left|z_{h}\right|<1 / 2, h \neq s, 1 \leqq h \leqq n, \frac{\sqrt{\left(1-\left|z_{k}\right|^{2}\right)\left(1-\left|z_{l}\right|^{2}\right)}}{1-\left|z_{s}\right|^{2}}
$$

tends to infinity when $\left|z_{s}\right| \rightarrow 1$. Then we must have always

$$
\begin{equation*}
\mathscr{R}\left[\frac{1}{\operatorname{det} J} \frac{z_{k} z_{l}}{z_{s}} G_{s}^{k l}\right] \geqq 0 . \tag{2.32}
\end{equation*}
$$

Since it attains to the minimum value 0 at $z_{k} z_{2}=0$, we must have $G_{s}^{k l} \equiv 0$ for each s. Thus we arrive at the conditions of the Theorem 3 of Suffridge following his methods. So we can conclude that f is a convex mapping.
3. Starlike mappings. We now consider univalent functions of D which map D onto a starlike domain with respect to 0 . First we set up the definition of starlikeness following Suffridge:

Definition. A holomorphic mapping $f: D \rightarrow C^{n}$ is starlike if f is univalent, $f(0)=0$ and $(1-\tau) f \prec f$ for all $\tau \in I=[0,1]$.

Theorem 3.1. Let D be a bounded schlicht domain for which the kernel function $K_{D}(z, \bar{z})$ becomes infinite everywhere on the boundary, $K_{D}(0,0)=\min _{z \in D} K_{D}(z, \bar{z})$ at only the origin, and $K_{D}(z, \bar{z}) \geqq K_{D}(g(z)$, $\overline{g(z))}$ for any holomorphic mapping $g(z)$ of D into D satisfying $g(0)=$ 0 . Suppose $f: D \rightarrow C^{n}$ is holomorphic, $f(0)=0$ and $\operatorname{det}(d f / d z) \neq 0$ for all $z \in D$. Then f is starlike if and only if

$$
\begin{equation*}
\mathscr{R}\left[\frac{\partial K_{D}(z, \bar{z})}{\partial z}\left(\frac{d f}{d z}\right)^{-1} f\right]>0 \tag{3.1}
\end{equation*}
$$

for all $z \in D, z \neq 0$.

Remark 2. Domains which belong to the above mentioned class \mathscr{D} satisfy the conditions of this Theorem.

Proof. If f is starlike, then all image Δ_{t} are starlike, that is, for all $w^{(1)} \in \partial \Delta_{t}$ we have $w^{(0)}=(1-\tau) w^{(1)} \in \Delta_{t}, \tau \in I$. In fact, if we set $z^{(1)}=f^{-1}\left(w^{(1)}\right), K_{D}\left(z^{(1)}, \overline{z^{(1)}}\right)=t$ and $\psi(z) \equiv f^{-1}((1-\tau) f(z))$, then we obtain

$$
\begin{equation*}
K_{D}\left(z^{(1)}, \overline{z^{(1)}}\right) \geqq K_{D}\left(\psi\left(z^{(1)}\right), \overline{\psi\left(z^{(1)}\right)}\right)=K_{D}\left(f^{-1}\left(w^{(0)}\right), \overline{f^{-1}\left(w^{(0)}\right)}\right), \tag{3.2}
\end{equation*}
$$

because $\psi(z)$ is a mapping of D into D and $\psi(0)=0$. Then it holds that $f^{-1}\left(w^{(0)}\right) \in D_{t}$ which yields $w^{(0)} \in \Delta_{t}$. Now, since

$$
\Phi_{t}\left(w+\varepsilon \frac{\partial \Phi_{t}}{\partial w^{*}}\right)=2 \varepsilon\left|\frac{\partial \Phi_{t}}{\partial w^{*}}\right|^{2}+0\left(\varepsilon^{2}\right)>0
$$

when $\varepsilon>0$ is sufficiently small and $w \in \partial \Delta_{t}, N_{v \sigma} \equiv \partial \Phi_{t} / \partial w^{*}$ is the outward normal vector at the boundary point $w \in \partial A_{t}$. Hence $(1-\tau) w \in$ $\Delta_{t}\left(w \in \partial \Delta_{t}, 0<\tau \leqq 1\right)$ implies

$$
\begin{equation*}
\cos \left(-N_{w},-w\right)=\mathscr{R}\left[\frac{\partial \Phi_{t}}{\partial w} w\right] /\left|\frac{\partial \Phi_{t}}{\partial w^{*}}\right||w|>0 \tag{3.3}
\end{equation*}
$$

which yields (3.1) by virtue of

$$
\frac{\partial \Phi_{t}}{\partial w} w=\frac{\partial K}{\partial z}\left(\frac{d f}{d z}\right)^{-1} f(z)
$$

Conversely, if (3.1) holds, then we conclude ($1-\tau$) $w \in \Delta_{t}, w \in \partial \Delta_{t}, 0<\tau<$ $\varepsilon(<1)$ for some $\varepsilon>0$ by (3.3). Moreover, we can conclude ($1-\tau$) $w \in$ $\Delta_{t}, w \in \partial \Delta_{t}, 0<\tau \leqq 1$, because, if $\left(1-\tau_{1}\right) w \equiv w^{(1)} \in \partial \Delta_{t}$ and $(1-\tau) w \in$ $\Delta_{t}, 0<\tau<\tau_{1}$ for some $\tau_{1}<1$, then $(1-\tau) w^{(1)} \in \Delta_{t}, w^{(1)} \in \partial \Delta_{t}$ which is a contradiction. Then the image domain Δ of D becomes starlike.

Corollary 3.1. Let D be the unit hypersphere, and let $f: D \rightarrow$ C^{n} be holomorphic, $f(0)=0$ and $\operatorname{det}(d f / d z) \geqslant 0$ for all $z \in D$. Then $f(z)$ is starlike if and only if

$$
\begin{equation*}
\mathscr{R}\left[z^{*}\left(\frac{d f}{d z}\right)^{-1} f\right]>0 \tag{3.4}
\end{equation*}
$$

for all $z \in D, z \neq 0$.
Proof. Substituting (2.18) into (3.1), we obtain the required result.

Remark 3. The conditions of Suffridge's Theorem 4 [11]: $f=$ $J w, w \in \mathscr{P}_{2}$ are the same as (3.4).

References

1. S. Bergman, The Kernel Function and Conformal Mapping, Mathematical Surveys, Vol. V., Amer. Math. Soc., New York, (1950).
2. B. A. Fuks, Special chapters of the theory of analytic functions of several complex variables, Moscow (1963), English Translation AMS (1966).
3. R. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, PrenticeHall, Englewood Cliffs, N. J, (1965).
4. Kyong T. Hahn, Some properties of relative invariants on bounded domains, Duke Math. J., 34 (1967).
5. S. Higuchi, On the distribution theorem of holomorphic mappings in several complex variables, Sci. Rep. Tokyo Kyoiku D., A, Vol. 8 (1963).
6. K. Kikuchi, On starlike and convex-like domains of pseudo-conformal mappings in several complex variables, Math. Rep. Tokyo Kyoiku D., 1 (1964), 15-17.
7. - Various m-representative domains in several complex variables, Pacific J. Math., 33, No. 3 (1970).
8. T. Matsuno, Star-like theorems and convex-like theorems in the complex vector space, Sci. Rep. Tokyo Kyoiku D., Sect. A, 5 (1955).
9. S. Ozaki, I. Ono and T. Umezawa, General minimum problems and representative domains, Sci. Rep. Tokyo Kyoiku D., Sect. A, 5 (1955).
10. M. S. Robertson, Applications of the subordination principle to univalent functions, Pacific J. Math., 11 (1961), 315-324.
11. T. J. Suffridge, The principle of subordination applied to functions of several variables, Pacific J. Math., 33 (1970).

Received October 21, 1972.
Kanagawa University, Yokohama, Japan

