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EXPANDED RADICAL IDEALS AND SEMIREGULAR
IDEALS

M. HOCHSTER

Let R = K[xi, m, wn] be a polynomial ring, where K is
a field of characteristic zero, and embed R in the polynomial
ring S— K[yij: 1 ^ i ^ n — 1,1 ^ j ^ n] by mapping Xj to the
minor of the matrix [y^] obtained by deleting the j t h column.
Let I be a homogeneous radical ideal of R. It will be shown
that if IS is radical, then / is semiregular, that is, R/I is
Cohen-Macaulay. Several other related results will be estab-
lished, in which the fact that certain expanded radical ideals
remain radical either implies, or is implied by, the fact that
certain other ideals are semiregular. Each one of these results
has some connection with invariant theory.

We shall now give a more detailed summary of the main results
of the paper. If R is a finitely generated If-algebra, where K is a
field, we shall say that an ideal I of J? is absolutely radical (over K)
if for each extension field L of K, L ® x I is radical in L 0 ^ R. Of
course, it suffices that L (&κ I be radical when L is a maximal purely
inseparable extension of K, or any larger field, e.g. an algebraic closure
of K.

THEOREM 1. Let K be a field, and let S be a graded Noetherian
Cohen-Macaulay K-algebra which is fiat over the K-subalgebra R
generated by the forms fl9 , fm, where fu , fm have positive degree.
{We do not require that S be generated by its 1-forms.) Suppose that
that (fu "',fm) is an absolutely radical ideal of S. Then for every
absolutely radical ideal I of R, the expanded ideal IS is absolutely
radical in S.

In particular, if S is a polynomial ring over K {the indeter-
minates need not be assigned degree 1), and fl9 ,fmis an R-sequence
of forms in S which generates an absolutely radical ideal of S, then
S is flat over K[fu , fm\ and the result holds,

We note that this theorem generalizes, in a certain direction, an
invariant-theoretic result of Kostant, [6] Theorem 14, p. 388.

We point out that the hypothesis implies that {f, , fm) is a
semiregular ideal of S, which plays an important role in the proof.

It is also worth noting that from the point of view of testing an
ideal for being absolutely radical, an i2-sequence of polynomial forms
which generates an absolutely radical ideal is as good as a sequence
of indeterminates, in the sense of the following:
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COROLLARY. Let fu « ,/m. be an R-sequence of forms in the
polynomial ring K[xl9 , xn] which generates an absolutely radical
ideal. Let gx{yl9 •• ,ym,zι, , zp), , gt(yl9 •• ,ym,zly , zp) be poly-
nomials in K[yu , ym9 zί9 , zp] which generate an absolutely radi-
cal ideal. Then gx{fu . ,/m, zl9 , zp), , gt(fl9 ,/m, zl9 , zv)
generate an absolutely radical ideal of K[xl9 " ,xn, %ι, ••• , zp].

The corollary follows from t h e last s ta tement in Theorem 1 (applied
to t h e jβ-sequence flf ,/m, zl9 , zp of K[xl9 ---,xm,zί9 , zp\).

THEOREM 2. Let K be a field of characteristic zero, and let I
be a homogeneous radical ideal of the polynomial ring K[xl9 •••,#*].
Suppose I— (fl9 •••,/»). Let [y^] be an n — 1 by n matrix of new
indeterminatesy and let dt be the n — 1 by n — 1 minor of [y^] which
results from deleting the ith column, 1 ^ i ^ n. Then a sufficient
condition for I to be semiregular (= perfect in this case) is that
fx(Δu , Jn), ",fm(Jίf , Jn) generate a radical ideal in K[yi5: i, j \ .

In other words, it is sufficient that I expand to a radical ideal
under the injective K-homomorphism K[xu •••,#»]—* K[yiό: i, j] which
takes Xi to Δi91 ^ i ?g n.

The proof of Theorem 2 depends on some invariant-theoretic results
and on the following:

LEMMA. Let K be a field, and let I be a homogeneous radical
ideal in a reduced graded Noetherian Cohen-Macaulay K-algebra R.
Let xl9 * ,xn be any elements of R such that the radical of (xlf •••,»»)
is the irrelevant maximal ideal M of R. Let d = dim R/I, and let
tiS be n(d — 1) new indeterminates over R. Then I is semiregular if
and only if for each i91 <^ i ^ d — 1, the ideal

I + (tnX, + + tlnXn, , Ufa + + tinXn)

is radical in R[tiS:i,j].

The condition given in Theorem 2 is not necessary. However,
one might hope that some special classes of perfect radical homogeneous
ideals in K[xu •••, xn] would expand to radical ideals in K[yiS\. This
is true at least for the ideals in K[xl9 •••,»»] which are generated
by linear combinations of xl9 , xn.

Let us say that a K-vector subspace V of a iΓ-algebra R is linearly
radical (over K) if for any field Lz) K and for each finite set of
elements fl9 , / m e L®κ V, (fl9 •••,/«) is radical ideal in L ® * R.
A trivial example is obtained by letting V be the space of 1-forms
in K[xl9 •••,»»]. Less trivially, we have:



EXPANDED RADICAL IDEALS AND SEMIREGULAR IDEALS 555

THEOREM 3. (a) Let [yiά] be an r by s matrix of indeterminates
over the field K, where r <; s, and let V be the subspace of K[yiά: i9 j]
spanned by the r by r minors of [y^]. If s = r + 1 then V is linearly
radical. If r — 2, it is at least true that any subject of the 2 by 2
minors generates a radical ideal.

(b) Let A be a partially ordered set and suppose that for each
λ G A the set {u e A: μ ĝ λ} is finite and totally ordered. Let {Ux:\e A)
be a family of matrices of indeterminates, all entries distinct,
indexed by A, and suppose that (1) if λ is minimal in A then Uλ is a
one-rowed matrix, and (2) for each λ e A, if Xt < λ2 < < λw = λ
are the elements of {μ e A: μ <^ λ}, then the product matrix Uλl Uλn

is ̂ defined. Let R be the polynomial ring over K generated by the
entries of all the Uλ, and let V be the K-vector subspace of R spanned
by all the entries of all the product matrices Uλl Uχn of the form
just described. Then V is linearly radical.

The author does not know whether (a) holds for arbitrary r <; s.
If it did, it would give a new proof in characteristic zero of the fact
that certain ideals §I(J5) described in [3] are radical, while (b) gives
another proof in characteristic zero that the ideals IH>n described
in [4] and [5] are radical. In each case, the fact that the ideals in
the class are radical is the key point in the proof that certain rings
of invariants are Cohen-Macaulay. This is discussed further in §4.

2* Proof of Theorem 1. We need some preliminary observations
and results. Let S be a Noetherian graded iΓ-algebra and M the
irrelevant maximal ideal. Then we can always choose a system of
parameters for S consisting of forms, i.e. if dim S = d, we can choose
forms f, ' ",fd in M such that the ideal they generate is primary to
M, in which case S is a finitely generated graded module over the
polynomial subring K[fu , / d ] . Moreover, if graded M=g (the
grade of a proper ideal is the length of the longest iϋ-sequence con-
tained in it), then there is an 12-sequence of forms in M of length g.
These assertions follow by standard arguments from the easy observa-
tion:

(2.1) If S is a Noetherian graded ϋΓ-algebra, / is a homogeneous
ideal of S, and Pl9 , Pn are primes of S such that for each %,,!(£
Pif then there is a form f in I such that / ί U* Pf

We note that by the analogue in the graded case of Theorem (25.16)
of [7] that S is Cohen-Macaulay if and only if for every system of para-
meters consisting of forms fu , fd, S is a finitely generated free
graded module over the polynomial ring K[flf ,fd]. It follows that
if S is Cohen-Macaulay and fu •••,/* is an J?-sequence of forms in
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M, then S is free over K[fu •••,/&], for fu •••,/*. can be extended
to an jβ-sequence of length d consisting of forms, and K[flf •••,/<*]
is free over K[fu •••,/*].

We next observe:

(2.2) If S is free ϋί-algebra (or merely a free 12-module), then
for any family of ideals {Iλ: XeΛ} in R, (Γh Iλ)S = fix

(2.3) If S is a graded Noetherian if-algebra, where K is a field,
and R is a subring of S generated over K by a finite number of forms
fu •••>/« °f positive degree such that S is i?-flat, then S is free 2?-
module. In fact, if {sy: i} is a family of forms in S such that {sj} is
a if-vector space basis for S/PS, where P = (/i, •••,/») and ' denotes
reduction modulo P, then {s^i} is a free basis for S over JS. (We
can always choose one of the Sj to be 1, if we wish.)

Proof. We use Noetherian induction on the homogeneous ideals
of R. If P = (0) then R = K and there is nothing to prove. Other-
wise there is a nonzero form f in P such that either (1) / is not a
zerodivisor in R or (2) fP = (0), according as grade P > 0 or grade
P = 0. In either case, if * denotes reduction modulo (/), we have that
{sf: j} is a free basis for S/fS ever R/fR, by the induction hypothesis.
(Sy/S is flat over R/fR by (18.10) of [7].) The fa: j) span S as an
i?-module, for if g were a form of least degree in S - Σ i ^si> w e

would have # = Σ i ?Ά 4- Σi/Af where each r, e i2, for each i, deg r, -f
άeg Sj = degg, and for each i, deg/^ + degί« = deg^. Since the /<
have positive degree, each ί< e Σy -Rs,-, and since each ft eR, g e Σy -^si

Now suppose that there is a nonzero relation Σ TJSJ — 0, where
the Tj e R. We can choose such a relation in which the rά are forms
and maXj deg τά is a small as possible. Since Σ i f *** = 0, each rs e
(/), and we have rό = ftjy where tόeR, for each j . In case (1),
since / is not a zerodivisor in R and S is iZ-flat, / is not a zero-
divisor in S, and Σ i tjS3 = 0, contradicting the minimality of maXj degr,-.
In case (2) Σ i Mi e Anns/ = (AnnRf)S (since S is #-flat) = PS, so that
Σy tjSj — 0. Hence, each ίy e P, and each r, = /ί y = 0.

(2.4) With the same hypothesis and notation as (2.3), if S/P is
Cohen-Macaulay and gl9 * ,gt are forms of S such that g[, •• ,flr{
is a system of parameters for S/P, then <71? , gt are algebraically
independent over R, and for each q, O^q^t, S is free over R[gu , gq].

Proof. Since S/P is Cohen-Macaulay, it is a finitely generated
graded free module over K[g[, •••, g[]. Let ^, •••, hk be forms of S
such that ΛJ, « ,λi is a free basis for S/P over if[#ί, •• ,^ί]
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can assume that hγ = 1. Then it is clear that the products ΛJΛf',
where M is monomial in gl9 •••,#*, form a iΓ-vector space basis for
S/P over K. By (2.3), the products hM are a free basis for S over
R, and the result is then clear.

(2.5) If T is a Cohen-Macaulay graded Noetherian Z-algebra and
J is a homogeneous ideal of T such that T/I is Cohen-Macaulay, then
for every ideal J of T containing I, grade J = gade J/I + grade I.

Proof. Since T and T/I are graded and Cohen-Macaulay, all
minimal primes of / have the same grade g = grade I. It suffices to
consider the case where J is a prime which contains I, and localizing
at J will not change the grades of /, I or J/I. Hence, we may assume
instead that T is a Cohen-Macaulay local ring with maximal ideal J,
and that T/I is Cohen-Macaulay. Let P be any minimal prime of I.
Then grade I = rank P, grade J/I = rank J/I = rank J/P, grade J =
rank J, and the result follows.

We are now ready to give the proof of Theorem 1. By replacing
R, S by L ®^ R, L ®# S9 where L is an algebraic closure of K, we
may assume without loss of generality that K is algebraically closed.
By (2.3) S is faithfully flat (even free) over R, and since S is Cohen-
Macaulay we can conclude that R is Cohen-Macaulay and that for
each maximal ideal Q of R that S/QS is Cohen-Macaulay.

We know that every radical ideal of R is an intersection of maxi-
mal ideals of R, and it follows from (2.2) and (2.3) that it is enough
to show that for each maximal ideal Q of R, QS is radical in S. To
show that QS is radical it is necessary and sufficient to prove that
there is an element / in a defining ideal for the singular locus of
the variety defined by QS such that / is not a zerodivisor on QS.

Let us represent S as a quotient of a polynomial ring T —
K[xu •••,#*] by a homogeneous ideal J. (The xi need not have degree
one.) Let Fu « ,.Fm be forms in T whose residues modulo I are
fu * , fmy and let us denote a set of forms which generate / by
FM+1, , Fr. Thus, T/(Flf , Fr) ~ S/P, where P = (fu , / J .

Any maximal ideal Q of R has the form (/i — cu , /„ — cm) for
suitable choices of cu , cm in K. When Q = P, ct = = cm = 0.

We claim that for any associated prime Q± of QS in S, rank Q1 =
d, where d = dim ϋ?. In fact, since S/QS is Cohen-Macaulay, every
associated prime Qλ of QS is minimal, and since S is flat over Ry

Qλf] R = Q. Then i?ρ —> SGl is a faithfully flat local extension, and
the fiber SQJPSQl has dimension zero, since Qλ is minimal for PS.
Hence, rank Q1 = dim SQl = dim RQ + dim SQJPSQι (see [2], Corollaire
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6.1.2, p. 135) = dim RQ — rank Q = dim R, for R is homogeneous and
Cohen-Macaulay and all maximal ideals therefore have the same rank.

The associated primes of (Ft — clf , Fm — cm, Fm+1, , Fr) = Q*
in T are in one-to-one correspondence with those of QS in S, in an
obvious way, so that if g denotes the grade of /, then by (2.5) each
associated prime H of ζ>* has grade (— rank) g + d. It follows that
a defining ideal for the singular locus of the variety defined by Q* is
ζ>* + Ig+d{dFildx3), where Ig+d(dFi/dxs) is the ideal generated by the
g + d by g + d minors of the r by ί Jacobian matrix obtained from
Ft — cl9 , Fm - cm9 Fm+U *- ,Fr (the constants drop out after dif-
ferentiation). See [7], (46.3) and (39.11).

In the case where Q — P, we know that P* is radical, and it
follows from (2.1) that there is a form F in P* + Ig+^dFJdXj) which
is not a zerodivisor on P*. Clearly, we can choose such an F in
Ig+afiFJdXj), and we then have that the image / of F in S is not a
zerodivisor on PS. By (2.4), S is a free module over R[f]9 and / is
an indeterminate over R.

Now let Q be any maximal ideal of R. Then Fe Ig+d(dFJdXj) c
Q* + Ig+d(dFi/dXj), and to complete the proof it suffices to show that
/ is not a zerodivisor on QS. Since S is free over R[f], it is enough
to show that / is not a zerodivisor on QR[f\. Since Q is an ideal
of R and / is an indeterminate over R, this is clear.

3* Proof of Theorem 2. We first restate Propositions 21 and 22
of [5].

(3.1) Let R be a Noetherian ring and let xl9 •••,#» be elements
of R which generate an ideal of grade g. Let tij91 ^ i ^ g, 1 ^ j ^ n,
be gn new indeterminates. Then the elements Σ i Uft< form an R-
sequence in R[ti3: ί, j] and if R is a domain (respectively, reduced)
and i ^ g — 1 then the ideal generated by the first i terms is prime
(respectively, radical).

We can now establish the lemma. It is clear that if / is semi-
regular, then the ideals in question are radical, for the ideal M/I
will have rank and hence grade d in the reduced Cohen-Macaulay
ring R/I, and hence the power associated ideal generated by the
images of xl9 •••,#* will also have grade d.

To prove the converse, suppose that the ideals described are radical.
To show that R/I is Cohen-Macaulay, it suffices to show that (R/I)M/I

is Cohen-Macaulay (see, for example, Proposition 19 of [5]). It is
then sufficient to prove the following local result:
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(3.2) Let (JR, M) be a reduced local ring of dimension d, and let
xl9 •••,«« be elements of M which generate an ideal whose radical is
M. Let Uj be (d—T)n new indeterminates over R, as before. Then R is
Cohen-Macaulay if and only if each of the ideals (Σi tuxh , Σ i Ufis)*
1 <L i <* d — 1, is radical in 22 [ί#: i, i ] .

Proof. The necessity of the condition is clear from (3.1). Now
suppose that the ideals are radical. If d — 0 there is nothing to prove.
If d > 0, then since (0) is radical M cannot be a minimal prime of
(0) and hence cannot be an associated prime of (0), and the grade of
M is ^ 1.

We use induction on d. If d = 1, we are done. If d > 1, then
we know that Σ i tnχj *s n°t a zerodivisor in R[tιό: j], and hence also
not a zerodivisor in R{tι5:j) = i2[£ii:i]^, where ikΓ is the extension
of M to 22[ίlί : j ] . R(tH: j) is a faithfully flat local extension of iϋ,
and R(tl3 : j)/M = K{tιό\j). It suffices to show that R(tu: j) is Cohen-
Macaulay. But we may now apply the induction hypothesis to

We are now ready to prove Theorem 2. Let d — dim K[x]/I. If
cZ = n, I = (0) and we are done. Assume that d <L n — 1, so that
d — 1 <̂  w — 2. Then it suffices to show that if 1 ̂  p <; w — 2, and
Γ = (ίtf) is a p by w matrix of new indeterminates, then I +
( Σ J *iiffj> # >Σi*wa?i) is a radical ideal in JSΓ{a?, ί]. Hence, it suffices
to show that the image of / i n Rx = ϋΓ[#, ί]/(Σi ̂ i ^ , •••, Σyίpi^y) ίs

radical. Let F = (̂ y) be the matrix of indeterminates described in
Theorem 2, and let Z = {z^) be a p by n — 1 matrix of new indeter-
minates.

We have a jK"-homomorphism ^ from ir[#, t] to iΓ[τ/, 2] which
takes each #* to ẑ , and which takes each entry of T to the corre-
sponding entry of the product matrix ZY. Let P — ker φ. We shall
show that P=P', where P' = (Σi ^ A , , Σ i tpjXj). It is clear
that P' c P, and Pf is prime by (3.1). It is then easy to see that
P' — P: the point is that given n — 2 or fewer vectors in Ln, where
L is any field, and a nonzero (respectively, a zero) vector v orthogonal
to all of them, then we can choose n — 1 independent (respectively,
dependent) vectors in the orthogonal complement of v such that (1)
the original n — 2 or fewer vectors are in their span, and (2) if they
form the rows of a matrix, the n — 1 by n — 1 minors of that matrix
are the components of v.

Hence, we may regard K[x, t]/P as a subring of K[y, z\. Let J*
be the image of / in K[x, t]/P. Our hypothesis gives us that I*K[y, z]
is radical: the presence of the 2's is irrelevant, since they do not
occur in the generators for /*.
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Let R2 be the subring of K[y, z] generated by the At and the
entries of the product matrix ZY, so that R2 = Im φ and Rt = R2.
It suffices to show that I*K[y, z] Π R2 = /*iϊ2 It is actually the case
that if J is any ideal of R2 then JK[y, z] Π R2 = J.

To see this, let SL(n — 1, if) act on the 1-forms of if [3/, 2;] thus:
if C e SL(n — 1, K), let C act by taking the entries of Y (respectively,
Z) into the corresponding ones oί CY (respectively, ZC"1). This
extends to a rational action of SL(n — 1, K) on K[y, z\. The ring
of invariants is known classically to be precisely R2. (See [8], Theorem
(2.6.A), p. 45.) Note that if we had p ^ n — 1, the reasoning would
fail, for the n — 1 by n — 1 minors of Z would also be invariant.)
Since SL(n — 1, K) is reductive, we have a Reynolds retraction
K[y, z] —> R2 (which is a map of iϋ2-modules), and it follows that every
ideal of R2 when expanded to K[y, z] and then contracted back to
R2 contracts to itself. (See [1], §V-2, [5], Propositions 9 and 10.)

4* Linearly radical spaces* Throughout this section, K is a
field, R is a if-algebra, and V is a ίΓ-vector subspace of R* We first
note two trivial facts:

(4.1) If V is linearly radical in R, and I— (/i, •••,/»), where
/1, •• •,/«€ F, then F/F Π / is linearly radical in

(4.2) If F is linearly radical in R and xl9 •••,&„ are indeter-
minates oveΐ i2, then F + ^ΣaKXi is linearly radical in R[xίf •••, a?Λ]

Note that if F c i Z is linearly radical, then R is reduced, for
0 e F, and (0) must be radical.

The next result is the crucial point in the proof of Theorem 3b).

(4.3) If F is linearly radical in R, x is an indeterminate over
R, and / e F, then the subspace of R[x] spanned by F and xf is
linearly radical.

Proof. Each finite-dimensional subspace of F + Kxf has a basis
consisting of at most one element of the form g + cxf, g e F, c eK,
and several elements vl9 " ,vk of F. We may assume that we have
already divided out by (vl9 •• ,vk). We may also assume that K is
algebraically closed. It then suffices to show that if /, g e F, then
(fx + g) is radical in R[x\.

Let F e R[x] be an element of the radical of (fx + g) not in
(fx + g) If we localize at K[x] — {0}, the resulting ring is K(x) ®κ R,
and then fx + g e K(x)(&κ V, and so generates a radical ideal. It
follows that there is a nonconstant polynomial p in if [x] — {0} such
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that pFe(fx •+ g). We can write p — (x — cx) * (x — cm), where
Ci, , cmeK. Let pt = (α? — c^ (x — ct), 0 ^ ί ^ m (p0 = 1). Then
for some £, O ^ ί ^ m — 1. ptFg (fx + #) while (x — ct+1)ptFe (fx + #).
Replacing F by ptF, we can assume that JF<2 (/& + #) but (x — c)Fe
(/# + g) for a certain ceK. After a change of variable x — cv-*x,
we can assume that xFe (fx + #), but F& (fx + #) (of course, F is
altered by the change of variable, and we also have a new g: fx + g —
f(x — c) + (g + cf)). After replacing F by a suitable power, we can
also assume that Ft (fx + g) but F2 e (fx + g).

Let us write F — xF1 4- r0, where r0 e R is the constant term of
F. Since a?.P, F2e(fx + g), we have that r0Fe (fx + g). We can
also write:

( * ) xF = (Gx2 + s,x + so)(fx + g) ,

where s0, 8t e R. Equating like coefficients, we have that sog — 0, and
that r0 = sγg Λ- sof. We can also write rQF = (Hx + ίo)(/^ + g), where
to e i2, and equating constant terms gives that r\ = ίô  Then:

(So/)3 =

=

(r, - β,

(tQg)(sQj

.9) (8of.

O - o (since r o

2 = ί

(sog)f(2rc

Qg and - 0 )

= 0 .

Hence, β0/ = 0, since R is reduced. But then (*) yields xF —
(Gx2 + ŝ X/a? + ^), or F = (Go? + «i)(/» + 0) € (/a? + g)9 as required.

From (4.3) we can deduce at once:

(4.4) If V is a linearly radical subspace of R, fu •••,/»€ F, and
C7 = (u^) is an m by n matrix of inderminates over R, then the sub-
space W of R[ui3: ί, j] spanned by V and the entries of the product
matrix (/,. fm) U is linearly radical. (Note that (4.3) is the case
m = n = 1.)

Proof. By repeated applications of (4.3), the space V spanned
by V and the elements fiUi3 is linearly radical, and W is a subspace
of V.

The following result contains Theorem 3b).

(4.5) Let A be a partially ordered set as in Theorem 3b) and
suppose that for each minimal element XeΛ, Uλ is a one-rowed
matrix with entries in a linearly radical subspace V or R, while for
the set of nonminimal λ the Uλ are matrices of indeterminates with
all entries distinct. Then the space spanned by V and the entries
of the product matrices Uλι UXn of the same type described in
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Theorem 3b) (let us call these the admissible products) is linearly-
radical.

Proof. Clearly, we may reduce to the case where A is finite.
Let Λλ be the set of minimal elements of A, let Ar = A — Λ19 and let
A2 be the set of minimal elements of A\ Let V be the space spanned
by V and the entries of the admissible products UhUχ2, where,
necessarily, λ* e Λi9 i = 1, 2, and \ < λ2. By repeated applications of
(4.4), V is linearly radical.

If we replace V, A, {Ux: XeA} by V, A\ {U'λ: XeA'}, where U[ =
Uλ iί XeA' — A2, while Uλ = Uλl Uλ2 if X = λ2 e A2 (and λx is the unique
predecessor of λ2), then V',Λf, and {U[:XeAf} again satisfy our
hypotheses, and the result follows by induction on the length of the
longest chain in A.

Consider now the situation of Theorem 3b) with A finite. The
entries of the admissible products Uλι Uλn such that Xn is maximal
can be shown to generate the ring of invariants of an action of a
product of general linear groups on R, at least if K has characteristic
zero. It was facts of this kind which led the author to prove Theo-
rem 3b).

Suppose that K has characteristic zero and consider the class of
ideals IHtn discussed in [4] and [5]. Working from Propositions 25,
26, 27, and 28 of [5], we have an embedding K[X]/IH -+ K[u, v], such
that the image K[U*V] is the ring of invariants of a reductive linear
algebraic group acting on K[u, v]. Just as in the last paragraph of
the proof of Theorem 2, there is a Reynolds operator from K[u, v] to
K[U*V], and to show that IH,n is radical it suffices to show that
IH,JIH expands to a radical ideal in K[u,v]. But IH*JIHI expanded
to K[u, v]y is generated by a subset of the first row of the matrix
U*V, and this first row spans a linearly radical space, by Theorem
3b).

As was mentioned before, proving that the ideals IH>n are radical
is critical in proving that they are also semiregular.

The situation with respect to the result of Theorem 3a) is quite
similar. Suppose we knew that the space spanned by the minors is
linearly radical for all r <̂  s, or even the weaker result that any
subset of the minors generates a radical ideal (which we prove below
for r = 2). A Reynolds operator argument then shows that within
the homogeneous coordinate ring of the Grassmannian of r-dimensional
subspaces of Kr, the ideal generated by a subset of the r by r minors
is radical (this homogeneous coordinate ring is generated as a K-
algebra by the r by r minors of an r by s matrix of indeterminates
over K) when K has characteristic zero. The point is that the r by r
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minors generate the ring of invariants of an action of SL(r, K) on
the polynomial ring generated over K by the entries of the r by s
matrix of indeterminates. In particular, the ideals §ί(i?), ΰ e ^ , and
in particular, the ideals %{Bσ), discussed in [3], are radical, and this is a
critical point in showing that homogeneous coordinate rings of Grass-
mann varieties and their Schubert subvarieties are Cohen-Macaulay.

We now prove Theorem 3a) for the case s = r + 1. It is easy to
see that the linear changes of coordinates of the yiS which are uniform
on the colums of Y — (yi3) are in one-to-one correspondence with the
linear changes of coordinates in the vectors space spanned by the Δim

From this it follows that we need only prove:

(4.6) Let Y = (yi5) be an r by r + 1 matrix of indeterminates
over a field K. Let Jt be the ideal (4: l<£ί<Ξr + l — i), where Δ{ is
the r by r minor obtained by deleting the ith column. Then Jt is
radical for each ί.

Proof. If t = 0, Jt is known to be prime (see, for example, Pro-
position 26 of [5]) while the result is clear is t ^ r. Hence, we
assume that r > t > 0, and we use induction on ί, i.e. we assume
the result for t' < t. It is easy to see that VJ7= Jo Π I*, where It

is the ideal generated by the ί by ί minors of the matrix formed
from the last t columns of Y, and is therefore prime. In fact, since
we are working with radical ideals, we need only see a corresponding
fact about unions of varieties, and the result reduces to the observa-
tion that given an r by r + 1 matrix with entries in a field, then
the r by r minors which contain the last t columns all vanish if and
only if either all the r by r minors vanish (i.e. the matrix has rank
^ r — 1) or else the t by t minors of the last t columns vanish (the
last t columns are dependent). For if the last t columns are inde-
pendent and the matrix has rank r, we can find r independent columns
containing the last t, and they give rise to a nonvanishing minor.
Now Jt_! — Jt + (A) is radical, where Δ = Δr_t+2, by the induction
hypothesis, so that VΎt c Jt + (Δ), |and it follows that VΎtc:Jt +
Δ{VTt: Δ). But VTt\ Δ = (JQ: Δ){\(It: Δ), JQ: Δ is the unit ideal, and
It is a prime not containing Δ, so that It: Δ — It. Thus, VTt — Jt + ΔIt.
It suffices to show that if A is any t by t minor of the last t columns
of Y, then AΔ e Jt. We might as well consider the case where A is
formed from the first t rows. Now Y can be decomposed into sub-
matrices thus:

( Y V Y
* l *2 * 3
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where the Yi have t rows, the Zt have r — t rows, and Y* and 2Γ4

both have either r + 1 — ί, 1, or ί — 1 columns, according as i = 1,
2, or 3. Thus

I:
and A = det (Y2 F8). Form an auxiliary r + t by r + t matrix

\0 Γ2 Γ3

Then det F* = ±AΔ. To see this, subtract each of the last ί — 1
columns from the corresponding one of the next to last t — 1 columns.
After permuting the columns, we have that det Y* is the same, up
to sign, as the determinant of

\0 0

This matrix has block form, and the determinant is clearly AΔ. On
the other hand, if we subtract each of the first t rows of Y* from
the corresponding one of the last t, we find that F* has the same
determinant as

Any nonzero r by r minor of the first r rows comes from F, and if
that minor does not contain the last t columns of F, then its cofactor
has a column which is 0. Hence, the determinant of this last
matrix is in Jt, and AΔ e Jt as required.

We need the following result before we can prove the rest of
Theorem 3a).

(4.7) Let s be an integer such that if xu , xa and yί9 , y3

are indeterminates over a field K, then any subset of the 2 by 2
minors of

,2/i V.I
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generates a radical ideal in R = K[xu yu , xβ9 y8]. Then for every
field Ky for every ceK, and for every nonnegative integer n, if
®u ι ®si Vu * •> VSJ and ulf , un are independent indetermmates
over K, then any subset of the 2 by 2 minors of

un x1

[cu, cύn yι

generates a radical ideal in R[u] — R[uu •••, un].

Proof. We use induction on s. Notice that if s has the required
property so does each s' < a, and we may assume that if a matrix
has the required form with s' < s and any w, then any subset of its
2 by 2 minors generates a radical ideal. We then use induction on
n. First note that by subtracting c times the first row from the
second we may assume that c=0 (there is a linear change of coordinates
on the x's and y's). Let J be any ideal generated by a subset of
the 2 by 2 minors. Let / be the subideal of / generated by those
of the minors which do not involve the column which contains un.
By the induction hypothesis, / is radical, and / is generated over /
by certain of the products unyt. After renumbering, we can assume
that J = I + un(y1} , yk), 1 <; k <̂  s (if J = I we are done). We
claim that J=(I+ (un)) ίΊ (I + (yu , yk)). Call the intersection J',
and suppose that j = i+unt e J"', where iel. Then unt e I+(ylf , yk).
un is not a zerodivisor on I + (yl9 * ,yk), since the generators of
that ideal do not involve un. Hence, t e I + (yl9 , yk), and our claim
is established.

It -suffices then to show that 1 + (un) and 1 + (yu •••,#*) are
radical. The first is clear, since I is radical and its generators do
not involve un. On the other hand, R[u]/(I + (yu •• ,i/&)) is isomor-
phic to a quotient of K[xk+1, yk+1, , x9, ys][ul9 , un9 xly , xk] by
an ideal generated by a subset of the 2 by 2 minors of

nγ un x, xk xk+ι x8

0 .. 0 0 0 yk+ί ••• ya

and hence is reduced by a special case of the result for s' — s — k < s.

We can now prove the last statement of Theorem (3a). We use
induction on s. We must show that an ideal J generated by a sub-
set of the minors of

Ix xt xs

}

\ y Vι ---

is radical, given the result for smaller such matrices of indeterminates.
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Let I be the subideal of J generated by those minors which do not
involve the first column, I is radical by the induction hypothesis.
After a renumbering we can assume that J = / + Jly where JΊ is the
ideal generated by those 2 by 2 minors which have first column equal

to x and second column equal to f* for some i, 1 ^ i ^ k, where k is

a fixed integer such that 1 ^ k ^ s (if J = / we are done). Let H
be the ideal generated by the 2 by 2 minors of

xk

yk

We first show that J = (I + (x, y)) Π (J + JET). Let J ' denote the
intersection. Suppose that f = j + he J', where j e J and he H. Then
heJ' and it suffices to show that heJ. But h e {H+I) n ((x, y) + I) =
H(x, y) + /, because the generators of H and I do not involve the
indeterminates x and y. It suffices then to show that for 1 ^ i, j <̂  &,
(̂̂ i?/i — %jVi) G J, where « denotes a? or /̂. But

/̂  - xάy) - xfaVi - xty) e / ,

and

- xsy) - (̂a?2/4 - xty) e J ,

as required.

I + (a?, i/) is clearly radical, since I is. It suffices, then, to show
that J + H is radical. Thus, we have reduced to the case where
Hal.

If we localize at K[x, y] — {0}, then the image of J is radical.
In fact, in the quotient we have that y3- is identified with cxj for
1 ^ j ^ k, where c = y/xeK(x, y), so that the residue class ring is
isomorphic to a quotient of K(x, y)[xu •••,»•, 2/*+i, , 2/J by a n ideal
generated by a subset of the 2 by 2 minors of the matrix

a?* a?Λ+1 x.

cx1 cxk yk+ί ys

and the claim follows from the induction hypothesis and (4.7).

It is also clear that we need only consider the case where K is
algebraically closed. Hence, if we let R denote the reduced if-algebra
K[xuyu , x8, ys]/I, it is evident that we need only establish the
following lemma:

(4.8) Let R be a reduced Z-algebra over an algebraically closed
field K. Suppose that the 2 by 2 minors of the matrix
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fa, aλ

U δJ
vanish, where the α̂  and 6{ are in R. Let x and y be indeterminates
over R, and let / be the ideal generated by the 2 by 2 minors of
the matrix

Ix ax aλ

\y δi hi

in i2[#, y\. If the image of / in the localization R[x, y] at K[x, t] — {0}
is radical, then J is radical in R[x, y].

Proof. R[x, y] is a graded i?-algebra (x and # have degree 1),
and J is generated by 1-forms Hence, VΎ is a homogeneous ideal.
Suppose that VΎ Φ J and let F be a form of R[x, y] in VΎ — J.
Let P = J: (F). Then P is a homogeneous ideal, so that Pf] K[x, y]
is homogeneous. After localization at K[x, y] — {0}, J expands to a
radical ideal, so that we can assume that P contains a nonzero form
of positive degree in K[x,y]. Since K is algebraically closed, we can
write this form as a product Lγ Lm, where the Li are 1-forms in
K[x, y]. By replacing F by Lι Ltί7 for a suitable ί, O ^ ί ^ m — 1,
we can assume that F&J but LFeJ for a suitable 1- form L. By
a linear change of coordinates on x, y, we can suppose that L — x.
By replacing F by a suitable power, we can also assume that Fί J
but F2 e J. Let deg F = d.

We can write F = î cc + ro2/d. Since xF, F2 e J, we also have that
roy

dFeJ. Since xFeJ, we have that

( * ) xF = Σ (G^2 + W - 1 + *#)(M - α#)

where the Ĝ  are forms of degree d — 2 and the s{ and ίi are in i?.
It follows that

and that

Σ Udi = o
i

ft fc
ro — Σ ^^i — Σ

Let b = Σ i ^ δ i Then δ 6 (r0) + (αx, •••,%), so t h a t

δ ^ ^ + ία,, . . . , α f ) .

Since roy
dFeJ, we have t h a t

n ^ = Σ (fii» + utf^ihx - aiV) ,
i
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where the Hi are forms of degree 2d — 2 and the Ui e R. If we equate
coefficients of y2d, we find that rj> e (αlf , α*), and hence δ2 e (αx, , αfc).
Since 22 is reduced, if 6 ^ 0 we can find a prime Q not containing b.
Let ' denote reduction modulo Q. Since ί/2 =£ 0, we have that the
the row

is not 0. Since the 2 by 2 minors of

CL[ a,'k

b[ δfc

vanish, there is a constant c in the fraction field of the domain R/Q
such that (61 •• &i) = c(a[ ••• αi). Then since Σ * * ^ * — 0> w e have
that 6' = Σ<*<δJ = cΣ**<αJ = 0, a contradiction.

Hence, we must have 6 = 0 , i.e. Σ * Uk — 0. But then (*) yields:

F - Σ (G*a + β ^ ί M - «d/) e J ,

and we are done.

REFERENCES

1. J. Fogarty, Invariant Theory, W. A. Benjamin, N. Y., 1969.
2. A. Grothendieck (with J. Dieudonne), Elements de geometrie algebrique. IV. Etude
locale des schemas et des morphismes de schemas, (Seconde partie.) Publ. I. H. E. S.
No. 24 (1965).
3. M. Hochster, Grassmannians and their Schubert subvarieties are arithmetically
Cohen-Macaulay, to appear, J. Algebra.
4. M. Hochster and J. A. Eagon, A class of perfect determinantal ideals, Bull. Amer.
Math. Soc, 76 (1970), 1026-1029.
5. , Cohen-Macaulay rings, invariant theory, and the generic perfection of
determinantal loci, Amer. J. Math., 9 3 (1971), 1020-1059.
6. B. Kostant, Lie group representations on polynomial rings, Amer. J. Math., 8 5
(1963), 327-404.
7. M. Nagata, Local Rings, Interscience, N. Y.., 1962.
8. H. Weyl, The Classical Groups, Princeton University Press, Princeton, 1946.

Received October 13, 1971. Research supported in part by NSF grant GP-29224X.

UNIVERSITY OF MINNESOTA




