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EXTREME POINTS AND UNICITY OF EXTREMUM
PROBLEMS IN m ON POLYDISCS

MORISUKE HASUMI

In his recent work, K. Yabuta tries to extend the classical
results of deLeeuw and Rudin on extreme points and extremum
problems in the Hardy class H1 on the unit disc to the n-
dimensional case. In this paper, it is shown that simple induc-
tion arguments provide some extension of the results as well
as simplification of the arguments in Yabuta's work.

Let U be the open unit disc and T the unit circumference in the
complex plane. Let Un and Tn be the n-dimensional open unit
polydisc and the ^-dimensional torus, respectively, i.e., the subsets
of the ^-dimensional complex Euclidean space Cn which are cartesian
products of n copies of U and Γ, respectively. We shall denote by
Hι{Un) the class of all holomorphic functions / in Un for which

\\f\l = supjj J/( ) : 0 ^ r < 1} <

where mn is the normalized Lebesgue measure on the torus Tn. It
is well known (cf. [5]) that each / in H\Un) has nontangential
boundary values on Tn, which determine a well-defined element /* of
the space Lι(mn) on Tn with respect to the measure mn and that the
mapping /—>/* is an isometry of £P(i7M) onto a subspace of L\m,).
For simplicity of notations, we use / instead of /* and denote by
the same symbol H\Un) the corresponding subspace of U{m^).

In the one-dimensional case, deLeeuw and Rudin [1] showed that
feH\U) is an extreme point of the unit ball of H\U) if and only
if ||/Hi = 1 and / is outer, i.e.,

log |/(0) | = [ log \f(w) I dm,(w) > - <

For higher dimensions, Rudin [5] called a function feHι(Un) outer
if

log |/(0) I = [ log \f(w) I dmn(w) > - <

A simple modification of deLeeuw-Rudin's arguments shows that every
outer function of norm one in H1( Un) is an extreme point of the unit
ball of H\U%). But the converse is false for n ^ 2, as was shown
recently by Yabuta [6]. He proved that π(zx + 22)/4 is not an outer
function but an extreme point of the unit ball of H\Un) for n ^ 2.
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A proof to this fact was given in our previous paper [2]. On the
other hand, extremum problems for Hardy classes on the unit disc
have a long history (cf. [4] and [1]). Yabuta [7; 8; 9; 10] studies,
among others, unicity of extremum problems in the ^-dimensional
Hardy classes and tries to extend results due to deLeeuw-Rudin [1]
and others. We should note that the unicity problem has not yet
attained to its final solution even in the one-dimensional case.

In this paper, we shall first give a sufficient condition for extreme
points of the unit ball of Hl{Un), which covers the case of outer func-
tions as well as Yabuta's example. Our method is to simply extend
the one-dimensional result due to deLeeuw and Rudin by use of the
mathematical induction. The key theorem in our approach is Theorem
2.1, which is an abstract formulation of our induction steps. In this
way we shall arrive at a class of functions which we call separately
outer functions. Separately outer functions defined in §2 may be one
of natural generalizations of outer functions in one dimension. In §3
we discuss the unicity problem by the same method, where the
induction procedure is furnished by Theorem 3.1. In our approach,
the main problem is to find better one-dimensional results, from
which the corresponding higher dimensional results follow almost
automatically. In this way we can reproduce most ^-dimensional results
obtained so far and even extend them, as we shall see below.

A question naturally arises as to whether there exist results
which cannot be obtained by mere combination of the one-dimensional
results and the induction arguments. For example, we may ask if
the separate outerness can characterize the extreme points of the
unit ball of Hι{Un), n^2. The answer is negative, as Professor
Rudin has suggested to us recently. In fact, he has given a one-
parameter family of extreme points of the unit ball of Hι{U2) which
are not separately outer. His example will be described in §4. We
thank Professor Rudin for allowing us to include this example in the
present paper.

1* Quasi-analytic subspaces* Let (X, μ) be a finite measure
space, where X is a set and μ is a completely additive positive
measure defined on a given Borel field in X, and let L\μ) be the
complex ZΛspace on X with respect to μ. We denote by || ||^ or
|| ||i the usual Banach space norm of L\μ). Let E be a linear sub-
space of &{μ). E is said to be quasi-analytic with respect to (X, μ),
if a function f in E vanishes ^-almost everywhere on X whenever it
vanishes on a set of positive //-measure. It is well known that the
space H\Un) is quasi-analytic with respect to (Tn,mn). Another
example of quasi-analytic spaces is given by the space Hι over the
Bohr compactification of the real line. For this space, quasi-analyt-
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icity was shown by Helson, Lowdenslager and Malliavin (cf. [3]).
First we prove the following

LEMMA 1.1. Let (X, μ) and (Y,v) be two finite measure spaces,
and let E, F and G be subspaces of L1(μ), Lι(v) and U{μ x v), respec-
tively. Suppose that
(1.1) E and F are quasi-analytic with respect to (X, μ) and (Y, v),

respectively; and
(1.2) For each heG, h(x, •) belongs to F for almost every xeX and

h(',y) belongs to E for almost every y e Y.
Then, G is quasi-analytic with respect to (X x Y, μ x v).

Proof. We may suppose without loss of generality that both μ
and v are probability measures, i.e., μ{X) ~ v{Y) = 1. Given heG,
let Xh (resp. Yh) be the set of points xe X (resp. y e Y) for which
h(x, •) (resp. h(-,y)) belongs to F (resp. E). Then, (1.2) implies that
μ(Xh) = v{Yh) — 1 for each heG. Now suppose that heG vanishes
on a set D of positive (μ x y)-measure. Then there exists a measur-
able subset A of Xh with μ(A) > 0 such that, for each x e A> the
set {y e Y: (x, y) e D) is a measurable subset of Y of positive v-measure.
Since F is quasi-analytic with respect to (Y, v), we see that h(x, •) = 0
a.e. on Yfor each x e Dx. We put Z(Dl9 h) — {(x, y) eDxx Y: h(x, y) = 0}.
Then, Z{DU h) is measurable and (μ x v){Z{Du h)) — μ(A) Thus there
exists a subset D2 of Yh with v{D2) = 1 such that, for each y e D2,
the intersection Z(Dl9 h) Π (X x {y}) is a measurable set of measure
equal to μ(A) > 0. The quasi-analyticity for E now implies that
h( , y) — 0 a.e. on X for each yeD2. It follows easily that h = 0
a.e. on X x Y, as was to be proved.

By use of the mathematical induction, we can prove the following

COROLLARY 1.2. Let Ei (1 ^ i ^ n) be a subspace of Z/(/^) which
is quasi-analytic with respect to (Xi9 μ^ and let Jn be a subspace of
L1(μ1 x x μn) which satisfies the following:
(1.3) For each hejn and for each i with 1 rg i ^ n, the function

Xi —> h(Xi, y{i)) belongs to Ei for almost every y{i) e X1 x x
Xi x x XnJ where the circumflex indicates factors which are
omitted.

Then, Jn is quasi-analytic with respect to (Xt x x Xn, μx x μn).

2. Extremal functions. We again consider a linear subspace E
of L\μ). A function / in E is called extremal in E if / = 0 or if
/ Φ 0 and // | |/ | |^ is an extreme point of the unit ball of E.

THEOREM 2.1. Let E, F and G be as in Lemma l . l Let f be



526 M. HASUMI

a function in G such that, for almost every ye Yf, /(•, y) is extremal
in E, and, for almost every x e Xf, f(x, •) is extremal in F. Then,
f is extremal in G.

Proof. We may assume as before that μ and v are probability
measures. Clearly we have only to consider the case 11/11̂ x̂  = 1.
Let Xf

f (resp. Y'f) be the set of x e Xf (resp. y e Yf) for which f(x, •)
(resp. /(•, y)) is extremal in F (resp. E). Then our assumption imply
that μ{Xf) = v(Yf) — 1. Now we take any heG such that

(1) H/ + λ l U = l l / - λ l U = l l / I U = i .

We claim h — 0, which will show the theorem.
We start from the following obvious inequality

\f + h\ + \f-h\- 2 | / | ^ 0 on X x Y.

Integrating this over X x Y, we get

( {\f+h\ + \f-h\-2\f\}dμdv
JxxY

= 11/ + Λ I U + 11/ - Λ I U - 2 I I / I U - o .

By Fubini's theorem, there exists a subset YΊ of F/ Π Yh with y(Yi) = 1
such that, for each y e Yi,

( 2 ) \z{\f(ξ, y) + M£, v) I + i/(f, y) - h(ξ, y) \ = 0 .

For the sake of simplicity, we use the notations Ay, By and Cy for
the quantities |l/( , y) + Λ( , ») ||,, |l/( , y) - Λ( , vίlU a n ^ ll/( , 10IU
respectively. So we have Ay + By — 2Cy = 0 for each y e Yγ. Fubini's
theorem also shows that the functions y —> Ay, y-+ By and y—>Cy are
measurable on Y.

We fix ye Y, for a moment. If Cy = 0, then λ( , y) = 0 - / ( . , 2/)
a.e. on X. If Cy Φ 0 and Ay = 0 (resp. By — 0), then A( , ?/) = —/(•, y)
a.e. on X (resp. h{ , y)=f(', y) a.e. on X). Suppose finally that
By Φ 0 and Cy Φ 0. In this case, we put

φ =

and

Then, both ^ and ̂  belong to the unit ball of E, and (AJ2Cy)φ +
(By/2Cy)ψ =f(-,y)/Cy. Since f(-,y)/Cy is an extreme point of the
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unit ball of E, we have φ = ψ = /(•, y)/Cy a.e. on X. It follows that
h{*,y) = {{Ay— Cy)ICy) xf( ,y) a.e. on X. Summing up, we have
shown that there exists a bounded measurable function K(y) on Y
such that, for each ye Yu &( , y) = K(y)f{ , y) a.e. on X and more-
over i£"(?/) = 0 if Cy — 0. Similarly, there exist a subset Xt of X/ Π X&
with μ(Xd = 1 and a bounded measurable function UL'(O?) on X having
the following properties: for each x e Xlf

(3) ί {\f(x, V) + h(x, η)\ + \f(x, V) - h(x, η)\ - 2\f(x, η)\)dv{η) = 0 ,

h(x, •) - K'(x)f(x, •) a.e. on Γ, and K'(x) = 0 if | |/(α, )IL = 0.
Now we define Zφj, y) by putting &(#, i/) = 0 if f(x, y) — 0 and

= λ(a?, 2/)//(α?, y) if /(a?, j/) ̂  0. Then it follows from (2) and (3) that
— 1 <̂  fc( , i/) ^ 1 a.e. on X for each yeYt and — 1 ^ &(#, •) ̂  1 a.e.
on Y for each a? e Xλ. Clearly k(x9 y) is measurable. Let y e Yt. Then,
the quasi-analy ticity of E implies that | |/( , y) \\μ = 0 if /(•, y) vanishes
on a set of positive μ-measure. So we have, for each fixed ye Ylf

k( , y) = K{y) a.e. on X and, for each fixed x e Xu k(x, •) = K'(x) a.e.
on Y*. We put kx{x, y) = K(y) for all x e X and all yeYt and k2{x, y) =
JK"'(^) for all ^ e ί and all yeY. Then, both fcL and k2 are bounded
and measurable on X x Y. We have

I \ Ik - k^dμdv = 1
JJXXY JY

- ί dv(y)( |fc(ajf y) - ϋΓ(2/)|ώ/φ) = 0 ,

so that k = kί a.e. on X x Y. Similarly, we have k — kz a.e. on
X x Y. Consequently, kλ — k2 a.e. on X x Y. From this follows
immediately that ku k2 and also k :are equal to a constant c with
— 1 ^ c ^ 1 almost everywhere on X x Y. Thus, we have h — cf
a.e. on X x y and, in view of (1), c = 0. Hence fe = 0, as was to be
proved.

Let us consider a finite number of finite measure spaces (Xif μ%),
1 ^ i <z n. Then we have the following

COROLLARY 2.2. Let Ei (1 ̂  i ^ n) be a subspace of Lι{μ^ which
is quasi-analytic with respect to (Xiy μ^9 and let Jn be a subspace of
Lι(μ1 x x μn) which satisfies the condition (1.3). Let f be a func-
tion in Jn which satisfies the following conditions for all i with 1 ^
i ^ n:
(2.1); For almost every y{i) e Xx x x ί { x x Xn, the function

Xi-+f{Xi,y{i)) belongs to Ei and is extremal in E{.
Then f is extremal in Jn.
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Proof. We use induction to prove the assertion. We may assume
as before that all /*< are probability measures. We know that the
assertion is true for n — 2. We now suppose that it is true for n =
k ( ^ 2).

Let g be a generic element in Jk+1 and put

DiM = {Vw eXiX x Xi x x Xk+im- g(-f Vw) e JSi}

for 1 <£ i <£ 4. The hypothesis (1.3) for w = & + 1 then says that

( f t x x βi x x μk+1)(Di[g]) =1 for 1 ^ ί <; & .

We denote by χ4#] the characteristic function of the set Di[g], and
by Di,k+1[g] the set of points xk+1 e Xk+ι such that

^ x -•• x μk) ,

measurable, and

, xk+0d(μι X X & X • X μk){w) = 1 .

Putting £>[<?] - n{A,*+iM: l^i^ty, we have /ίt+ι(Z?[flr]) = 1.
Let Jf be the (not necessarily closed) subspace of L1(μι x x μfc)

which is generated by all g( ,xk+1) with geJk+1 and α?fc+1 6 D[g]. We
claim that Jf satisfies the condition (1.3) for n = k. To see this, take
any function h from / ' . Then, there exist a finite number of ele-
ments gl9 - ,g8 in Jk+1 such that h = Σy = 1 ^ ( , 4+0 where a;^! e D[flry].
We take any i with 1 -^i <^ k. Since α?^ is in the set Ditk+ι[gj] for
each j , we have

x x βi x x j"*)(w) = 1 .

So, putting WM) = {weXi x x X{ x x Xk: Xi[gA(w, xk+1) = 1},
we see that (ft x ••• x βi x ••• x μk){W{iti)) — 1 and g, ( , w,xι

k

jld
belongs to Et for each w e W(ij). We set W{i) = Π {TΓ^: 1 ^ j ^ s}.
Then Ô i x ••• x βi x ••• x μk)(Ww) = 1 and

for each w e TF(ί). As i is arbitrary, this proves that / ' satisfies (1.3)
for n — k.

Now let / be any function in Jk+1 satisfying the conditions (2.1)<
with 1 <; i ^ k + 1. Let Dί[/J (1 ̂  i ^ ifc) be the set of points y{i) e
X1 x ••• x ί { x ••• x Xk+ι for which /(•, y{i)) belongs to Ei and is
extremal in Et. Then, !>•[/] S A[/] and {μγ x x β{ x x μfc+1) x
(-Di[/]) = l We denote by χl[f] the characteristic function of A[/]»
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and by D'ifk+1[f] the set of points xk+1 e Di>k+ί[f] such that %*[/](-, xk+ι)
is measurable and

X X βi X X μk){w) = 1 .

Set £>'[/] - n [D'ifk+1[f]: l^i^k}. Then μk+1(D'[f]) = 1.
Let xk+1 e D'[f] and take any i with 1 ^ i ^ fc. Then, %+1 e

-DJffc+i[/] Thus, putting V<(αί4+1) = {weX1x ••• x l . x ••• x Xk:
Z*[/](w, Λfc+i) = 1}, we see that (^ x x & x x i"*)( ̂ (^+0) = 1
and, for each we Vi(xk+1),f(>, w, xk+1) is extremal in Ei As α?fc+1G
•D[/]> w e s e e that /(•, xk+i) € Jr and /( ,#fc+1) satisfies the conditions
(2.1), for 1 <L i <: k with n = k. By the induction hypothesis, the
assertion is true for Jf and therefore /(• , xk+ί) is extremal in J \ This
is true for almost every xk+ι e Xk+ί, because μk+1(D'[f]) = 1. On the
other hand, Corollary 1.2 shows that the space / ' is quasi-analytic with
respect to (Xι x x Xk, ftx x f t ) . Thus, we can apply Theorem
2.1 to the case E = Jr, F = ^+1, G = Λ+i and conclude that / is
extremal in Jk+1. This completes the proof.

For the space H\Un) we get the following

COROLLARY 2.3. Let f be a function in H\Un) and let k, k! be
natural numbers with k + kf = n. Suppose that, for almost every
^ e Tk

yf(wl9 •) is extremal in Hι(Uk>) and, for almost every w2e Tk\
/(•, w2) is extremal in H^U1*). Then, f is extremal in H^U71).

This is just a restatement of Theorem 2.1 for the space H\Un),
because the hypotheses (1.1) and (1.2) are clearly satisfied with X =

Tk9 γ=τk',μ = mk,v = mk,,E=H1(Uk),F=H1(Uk') and G=H1(Un).
In order to state the next corollary, we use the following nota-

tions: Ui (resp. Ti) (1 <; i <̂  n) denote n copies of U (resp. T), so
that Un = t/i x ••• x Un (resp. Tn = Tt x ••• x Γ J .

COROLLARY 2.4. Suppose that a function f in Hι{Un) satisfies
the following conditions for all i with 1 ^ i ^ n:
(2.2)< For almost every w{i) e Tγ x x ί\ x x Tn, the function

Zi—*f{Zi, w{i)) belongs to Hι(U^) and is an outer function.
Then, f is extremal in H^U71).

This follows readily from Corollary 2.2, since deLeeuw and Rudin
[1] showed that the outer functions of norm one are just the extreme
points of the unit ball of Hι(U). Using this corollary, we can con-
struct some extremal functions in H\Un) (n Ξ> 2) which are not outer
functions:

(i) Yabuta's function zy + z2. For each fixed real Θ, eiθ + z is



530 M. HASUMI

easily seen to be an outer function. So the above corollary implies
that zx + z2 is extremal in H^U") for n ^ 2.

(ii) More generally, we see that a function of the form
f(zlf , zk) + g(zk+ί, , s») is extremal in Hι{Un) if / and g are inner
functions in Hι(Uk) and H1(Un~k), respectively. We may have more
complicated examples, e.g., (zι + z&y, etc.

Here we add a simple remark concerning functions that are des-
cribed in Corollary 2.4. We say that a function / in H\Un) is
separately outer if it satisfies the conditions (2.2)4 for all i with 1 ^
i ^ n. Thus we have shown that every separately outer function is
extremal in Hι(Un). It may be natural to have the following

PROPOSITION 2.5. Every outer function in H^U*) is separately
outer.

Proof. Suppose that / e H\ Un) is not separately outer. Then
it does not satisfy (2.2) * for some i, say i — 1. So there exists a
measurable subset A of T2 x x Tn of positive measure such that

log |/(0, ξ) | < \ log \f(wl9 ξ) I dmφod

for every ξeA. In tegra t ing both sides over Γ 2 x ••• x Γ,, we have

log 1/(0)I < ( log \f(w)\ dmn(w) .

Hence, / is not outer, as was to be proved.

3. Unicity of extremum problems* Let (X, μ) be a finite
measure space and E a linear subspace of Lι{μ). Given a bounded
linear functional Φ on E, we denote by Sφ the set of functions / e E
such that 11 /1 d = 1 and Φ(f) = \\Φ\\. By Hahn-Banach's theorem, there
exists a function φeL°°(μ) such that | |Φ| | = H ÎU and

φ(f) = f fφdμ for all feE.

Then feSφ implies

(4) f(x)Φ(x) ^ 0 a.e. on X ,

and

(5) I*(*)I = IWL for every ® e S(/) ,

where S(f) denotes the support of / and is determined up to a set
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of measure zero. Conversely, if feE with \\f\\x = 1 satisfies both
(4) and (5), then / belongs to S\

If the space E is quasi-analytic with respect to (X, μ), then S(f) =
X for every nonzero element / in E, so that the set Sφ is determined
by any of its elements. In fact, let / e S φ . Then, geE belongs to
Sφ if and only if arg g(x) — arg/(#) a.e. on X and \\g\\ι = 1. In this
case, we may write Sf instead of Sφ whenever / is in Sφ. We say
that an element / e E is said to have the unicity property in E if
/ ^ O a n d S ^ {g} with g = fl\\f\\x.

THEOREM 3.1. Let E, F and G be as in Lemma 1.1, and let
f eG be a nonzero function. Suppose that for almost every x e X/f

f(x, •) has the unicity property in F and, for almost every ye Yf1

f(',y) has the unicity property in E. Then, f has the unicity pro-
perty in G.

Proof. We may suppose without loss of generality that f(x, •)
(resp. /(•, y)) has the unicity property for every xeXf (resp. ye Yf).
Let g eG be any element in Sf. Since G is quasi-analytic by Lemma
1.1, we see that arg g = arg / a.e. on X x Y. So, for almost every
xeXff] Xg, we have g(x, •) Φ 0 a.e. on Y and

(6) arg#(#, •) = a,τgf(x, •) a.e. on Y.

We may assume that (6) is true for all xeXff] Xg. Since f(x, •) has
the unicity property in G, we have for x e Xf Π Xg

0 _ Φ, ') a e o n γ

Putting K(x) = \\g(x, )\\l\\f(x, )ll» w e ^ e t a measurable function K(x)
which is finite almost everywhere on X and g(x, •) = K(x)f(x, •) a.e.
on Y for every xeXff)Xg. Similarly, we have a measurable func-
tion K'{y) on Y which is finite almost everywhere and g( fy) =
K'(v)f( , V) a.e. on X for every yeYff] Yg.

Since / Φ 0 a.e. on X x Y, we can define k(x, y) — g(x, y)/f(x, y),
which is measurable and finite a.e. on X x Y. It follows that, for
every xeXfΠ X9, k{x, •) = K{x) a.e. on Y and for every yeYff] Yg,
k( ,y) — K(y) a.e. on X. Thus, k is equal to a constant c almost
everywhere on X x Y; so g = cf a.e. on X x Y. Since both / and
g are of norm one, we have c = 1. Hence, S7 — {/}, as was to be
proved.

COROLLARY 3.2. Let E{ (1 <; i ^ w) αwd J% 6e as m Corollary
2.2. Le£ f be a function in Jn which satisfies the following conditions
(3.1); for all i with 1 ^i <^ n:
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(3.1); For almost every y{i) e ^ x ••• x l i X ••• x Xn, the function
Xi -+f(Xi, Vd)) on Xi belongs to E{ and has the unicity property
in Ei.

Then f has the unicity property in Jn.

The proof is similar to that of Corollary 2.2 and so omitted.
Applying these facts to the spaces H1(U'Λ) (n ^ 2), we can formulate
results similar to Corollaries 2.3 and 2.4. Here we state only the
latter one.

COROLLARY 3.3. Suppose that a nonzero function f in H\Un)
satisfies the following conditions for all i with 1 ^ i ^ n:
(3.2)̂  For almost every w{i) e 2\ x x ft x x Tn, the function

Zi—+f(Zi,w(i)) (ZiβUi) belongs to H^Ui) and has the unicity
property in H^Ui).

Then f has the unicity property in Hι(Un).

We thus obtain results for ίP(£7Λ) by combining Corollary 3.3
with one-dimensional results. For example, we look at the following.

THEOREM 3.4 (Yabuta [7]). Let feHW). Suppose that f is
outer and 1/f e L1(mn). Then f has the unicity property in Hι(Un).

We can extend this by combining its one-dimensional form with
Corollary 3.3. Namely we have

COROLLARY 3.5. Let f e Hι(Un). Suppose that f is separately
outer and satisfies the following conditions for all i with 1 ^ i ^ n:
(3.3); For almost every w{i) e 7\ x x ϊ\ x x Tn, the function

Wi —• l/f(Wi, w{i)) (Wi e Ti) is integrable on 2V
Then f has the unicity property in Hι(Un).

Yabuta [9] also showed the following

THEOREM 3.6 {Yabuta). Let f e Hι(Un) and suppose that f is
not identically zero and Re / ^ 0 a.e. on Tn. Then f has the unicity
property in H\Un).

Yabuta proved this by using certain properties of %-harmonic
functions and others. But, in view of Corollary 3.3, it is enough for
us to prove the case n — 1. Thus, let f e H\U) be not identically
zero and satisfy R e / ^ 0 a.e. on T. Take any ge H\U) such that
arg g = arg / a.e. on Γ. If Re / vanishes at some point in U, then
the minimum principle for harmonic functions shows that it vanishes
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identically in U. It follows at once that / is a pure imaginary con-
stant 6 ^ 0 . Therefore arg# = arg 6 (=±π/2) a.e. on ϊ7, so that g/b
is an H1 function with real boundary values a. e. on T. Hence gib
is a constant, which is turned out to be positive. Next, suppose
that Re / > 0 in U. That arg g — arg / a.e. on T implies Re g > 0
in U. Thus, by restricting the arguments of / and g to [—π/2, +ττ/2],
we see that | arg (g/f) | < π in U and therefore that arg (g/f) is a
well-defined harmonic function in U. Since arg (g/f) is bounded and
equals zero a.e. on T, it vanishes identically on U. Thus log (g/f)
is a real-valued holomorphic function on U, so that it is a constant.
Hece g/f is a positive constant, as was to be proved.

As before, we can improve Theorem 3.6 in the following way.

COROLLARY 3.7. Let f e ίf1(ί7ίl) and suppose that it is not identi-
cally zero and satisfies the following conditions for all i with 1 ^ i ^ n:
(3.4); For almost every w(i) e Tx x x ftx x Tn, there exists

a real number Θ, depending on w(i) and f, such that

θ - -§ ^ arg/(u;«, w(i)) ^θ + ?- (mod. 2π)

for almost all Wi e T{.
Then f has the unicity property in Hι(Un).

One of very special consequences of this is a theorem of Yabuta [8]
which states that the function z1 + z2 has the unicity property. More
generally, we have the following:

COROLLARY 3.8. Every function of the form

f ( z u •• , 2 f c ) + g(Zk+u •••,«»)

has the unicity property iff and g are inner functions in Hι(Uh) and
H^χjn~k), respectively.

We may have more complicated sufficient conditions. Anyway, as
we already said in the introduction, the main problem in our approach
is to find better one-dimensional results. As far as we are aware,
the characterization of functions in the space H1 having the unicity
property is an open problem even in the one-dimensional case. Here
we add a few more remarks.

PROPOSITION 3.9. Let g e H\U) have the unicity property and let
f be an outer fuction in Hλ(U) such that g/f e Loo(m1). Then f has
the unicity property.
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The proof is simple. Yabuta [8] proved this in the case g(z) =
Πf=i(% — z) where {as} denote any N distinct points on the unit cir-
cumference T. By using Corollary 3 3, the proposition can be extended
to Hι(Un), which we do not state explicitly. In connection with this,
we ask the following

Problem. Let / and g be outer functions in H\U) such that
fg is also in H\U). Under what conditions on / and g, does fg
have the unicity property?

4% Rudin's example* Let a be a complex number with \a\ >
1 and put

f(zl9 z2) = az, - z2 .

We claim that the function / is not separately outer but extremal
in H\U2).

If \w2\ = 1, then \w2/a\ < 1 and f(w2/a, w2) = 0. Thus /(•, w2) is
not outer and so / is not separately outer. To prove that / is
extremal in H^U2), it is enough to show that the constants are the
only real functions h on T2 such that fheH'iU2).

The Fourier coefficients of g — fh are

(7) g(m, n) = ah(m — 1, n) — h(m, n — 1) .

Since tg e H^U2), this implies that

h(m + 1, n — 1) = ah(m, n) if n < 0 .

By induction, we have

h(m + k, n — k) = akh(m, n) for k — 1, 2, n < 0 .

Letting & —> oo, we know Λ(m + &, n — &) —• 0. Hence h(m, n) — 0 if
% < 0. Since h is real, it follows that

( 8 ) h(m, n) = 0 if n ^ 0 .

Now (7) and (8) imply that

h(m, 0) = α^(m - 1,1) = 0 if m < 0 .

Since h is real, we have h(m, 0) = 0 if m ^ 0. Thus Λ(0, 0) is the
only Fourier coefficient of fe that can be different from 0, so that h
is constant almost everywhere. This completes the proof.

The above example, together with the proof, has been suggested
to us by Rudin. We should note that the same method was used once
by us in order to prove the extremity of the function z1 + z2 (cf. [2]).
Probably, Rudin's example will give a new insight into our problem
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and we will discuss it on another occasion.
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