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FUNDAMENTAL GROUPS OF COMPACT COMPLETE
LOCALLY AFFINE COMPLEX SURFACES

JAY P. FILLMORE AND JOHN SCHEUNEMAN

The fundamental group of a compact complete locally
affine complex manifold of two complex dimensions is a solva-
ble group which is a finite cyclic extension of a nilpotent or
abelian group. Such a manifold has vanishing Euler charac-
teristic and is finitely covered by a nilmanifold. A description
of these manifolds and their fundamental groups is obtained
in the course of the proofs of these facts.

!• Introduction* A locally affine manifold is a manifold with

an affine connection having zero curvature and torsion. A complete
locally affine real manifold is of the form RnjΓ ([3]) and a complete
locally affine complex manifold is of the form Cn/Γ([7]); Γ denotes a
freely-acting properly discontinuous group of real or complex affine
transformations, and the connection is induced from the usual one on
Rn or Cn. This representation allows a group-theoretic study of
complete locally affine spaces, the most difficult aspect of which is
determining which abstract groups can be embedded in the group of
affine transformations of Rn or Cn to give a Γ as described above.
Such groups are of course the fundamental groups of complete locally
affine spaces.

Kuiper ([5]) has studied compact locally affine real surfaces,
benefiting from the knowledge of fundamental groups of compact real
surfaces in general. Auslander ([1]) has studied compact locally
Hermitian complex surfaces, benefiting from the fact that these are
finitely covered by tori, a fact which is a consequence of Bieberbach's
theorems on crystallographic groups. Vitter ([8]) has studied arbitrary
compact locally affine complex surfaces using the results of Kodaira
on general complex surfaces.

In this paper, we prove several results about the fundamental
group Γ of a compact complete locally affine complex surface C2/Γ
which are necessary for a detailed study of such structures. We
show: Γ is a finite cyclic extension of a subgroup ΓQ; ΓQ is either
abelian or nilpotent and its structure can be described precisely.
Furthermore: C2/Γ0 is a nilmanifold, and the Euler characteristic of
C2/Γ vanishes. The methods used here are in the spirit of Auslander
and Kuiper and are quite different from those of Kodaira and Vitter.

2* Algebraic preliminaries* In this section, we derive several
facts about subgroups Γ of the group A(2, C) of complex affine trans-
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formations of C\ using only the assumption that Γ acts freely on C2.
A transformation A e A(2, C) may be identified with a nonsingular

(a b r\
complex matrix (c d s I. The action of A, on the left of C2, sends

\0 0 1/
(x, y) to (x\ y'), where

xf = ax + by + r

y' = ex + dy + s .

(a b r\ / 7 v

If A= c d s e A(2, C), we denote by h(A) the matrix ( a υΛ e GL(2, C),
\0 0 1/ V c α /

the "holonomy part" of A,

LEMMA 2.1. If Γ a A{2, C) acts freely on C2, ίΛ,eπ βαcfe element
of h(Γ) has 1 as an eigenvalue.

la br\
Proof. The point (x, y) is a fixed point of I c d s I e -4(2, C) exactly

Vooi/
if

(a — l)a; + by = — r

ex + (d — ΐ)y — — s .

These equations have a solution unless 1 is an eigenvalue of \ Λ.

Let Gι denote the group of all complex matrices of the form
a b r\
0 1 s with α ^ O ; let G2 denote the group of all complex matrices
0 0 1/

(1 b r\
of the form O ί s with d Φ 0.

\0 0 1/

PROPOSITION 2.2. (Cf. [5].) // Γ a A(2, C) acts freely on C\
then Γ is conjugate in A(2, C) to a subgroup of Gλ or a subgroup of
G2

Proof. Suppose first that Γ contains an element A such that

h(A) has an eigenvalue λ ^ l . Put h(A) in diagonal form (~ Vj by

conjugating by PeGL(2,C). Suppose ΰ e ί [ J W [ J j '. Write

h(B) = (£ b

dy Then h(A)h(B) = Qa ^b\ Since both h(A) and h(AB)

have 1 as an eigenvalue, we get (a—l)(d—l) — bc = Q and (λα— l)(d— 1) —
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= 0. Multiply the first equation by λ and subtract it from the second
to obtain (λ — l)(d — 1) = 0. Hence d = 1, and then be = O That is,

h(B) = (Q J) or h(B) = (a

c J). We cannot have both kinds of h(B)

occurring; for if both (g *) and (£,' J) were in Ph(Γ)P~\ with 6^0

and c' * 0, we would have (J J)(J J) = ( j α ' + δ c ' J) e P ^ P " 1 , but
this matrix does not have 1 as an eigenvalue. Hence we have, in

ίP 0\ fP 0\—1

this case, that (Q I)-^(Q I ) is contained in Gι or in the group of

la 0 r\
all complex matrices of the form [ e l s ; the latter is conjugate to

\0 0 1/
/0 1 0\

G2 via 1 0 0 , and we are done.
\0 0 1/

Now suppose every element of h{Γ) has both eigenvalues 1. If
h(Γ) consists only of the identity, we are done. Otherwise, some con-

II 1 u\ la b r
jugate of Γ contains an element of the form (0 1 v\. Let (c d s

\0 0 1/ \0 0 1
be an arbitrary element of this conjugate of Γ. Then both yt β

and Q J j ^ I) = (^ + C b

d

+ d) have both their eigenvalues 1. Thus

(a - l)(d - 1) - be = 0 and (a + c - l)(d - 1) - (b + d)c = 0. Subtracting
these equations gives c = 0. Hence a = d = 1, and we are done.

COROLLARY 2.3. If Γ c A(2, C) αcίs /reeZi/ cm C\ then Γ is
solvable.

Proof. The third derived group of Γ is trivial since this is
true of Gi and G2.

LEMMA 2.4. If Γ c A(2, C) αcίs freely on C2 and h(Γ) is abelian,
then Γ is conjugate in A(2, C) to a subgroup of the group of all matrices

(1 0 r\
of the form 0 d s \{d Φ 0) or to a subgroup of the group of all matrices

\0 0 1/
/I 6 r\

of the form I 0 1 s ).
\0 0 1/

Proof. If (̂Z7) consists only of the identity, we are done. Sup-
pose h{Γ) contains a non-identity element A which is diagonalizable.
Conjugate A in GL(2, C) to (J °\ λ ^ 1. If 5 = (^ ^ is in the

corresponding conjugate of h{Γ), the fact that AB = I?A implies
6 = c = 0, and the fact that Γ acts freely implies a — 1 or d = 1.
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If a were Φ 1 we would have AB — (n Λ)> i n contradiction to 2.1.

Hence every element of h(Γ) is simultaneously conjugate to a matrix

of the form (n ,A and we are done in this case.

Suppose now that no element of h(Γ) is diagonalizable. Let A be

a non-identity element of h(Γ). Conjugate A in GL(2, C) to ίΛ - Y

λ ^ O . Let B = fa 7 j be in the corresponding conjugate of h(Γ).

The fact that AB — BA implies c = 0 and α = d, so necessarily α =
d — 1. As before, we are done.

(α δ r\
0 1 0 J has no fixed points in C2, then b = 0.
0 0 1/

Proof. If bΦ 0, (0, -r/6) is a fixed point.

LEMMA 2.6. If Γ (zG1 acts freely on C2, then h{Γ) is abelian.

(a b r\ (a' V r'\
Proof. Let A = 0 1 s) and £ = 0 1 s' be elements of Γ.

\0 0 1/ \0 0 1/
/ / \

Then ABA- 1 ^- 1 = [ 0 1 0 . By 2.5, / = 0.
\0 0 1/

COROLLARY 2.7. If Γ a A(2, C) acts freely on C2, then Γ is con-
jugate in A(2, C) to a subgroup of G2.

Proof. By 2.2, Γ is conjugate to a subgroup of G1 or G2. If Γ
is conjugate to a subgroup of G19 then h(Γ) is abelian by 2.6. Then,
by 2.4, Γ is conjugate to a subgroup of G2.

LEMMA 2.8. If Γ c A(2, C) is abelian and acts freely on C2, then
Γ is conjugate in A(2, C) to a subgroup of the group of all matrices

(1 br\
of the form 0 1 s 1 or to a subgroup of the group of all matrices of

loo 1/
(1 0 r\

the form 0 d 0 (ώ =£ 0).
\0 0 1/

Proof. h(Γ) is abelian, so by 2.4 we can conjugate /" into the
/I δ r\

group of all I 0 1 s I, in which case we are done, or into the group
\0 0 1/
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/I 0 r\
of all (0 d s . In the latter case: If all entries d which occur are

\0 0 1/
1, we are done. If some element has d Φ 1, further conjugation by
/I 0 0 \ /I 0 r\
(0 1 slid — 1) I takes this element to I 0 d 0) and other elements to
\0 0 1 / \0 0 1/
(1 0 r'\
I 0 dr s' I. Since Γ is abelian, we must have all s' = 0.
\0 0 1/

3* Topological preliminaries* The hypotheses that Γ acts pro-
perly discontinuously on C2 and that C2/Γ is compact are brought into
play in this section.

We note the following important fact ([4]), p. 357): The dimen-
sion of a real Euclidean space on which a group Γ acts freely, pro-
perly discontinuously, and with compact orbit space is determmed by
Γ itself, namely as the projective dimension of the integer group ring
of Γ.

As a first application of this remark, we prove the following from
Auslander ([2]).

LEMMA 3.1. Suppose that Γ c A(2, C) acts freely and properly
discontinuously, and that C2IΓ is compact. Then the set of transla-

(a b r\
tional parts (r, s) of elements [c d s) of Γ contains a basis for C2

/
as a real vector space.

(a b r\
[c d s)
\0 0 1/

Proof. Let V be the real subspaces of C2 spanned by the transla-
tional parts of elements of Γ. Then the action of Γ on C2 sends V
to itself. Further, Γ acts freely and properly discontinuously on V>
and V/Γ is compact. By the remark above, V and C2 have the same
dimension, so V = C2.

COROLLARY 3.2. If Γ a A(2, C) is abelian, acts freely and pro-
perly discontinuously, and C2/Γ is compact, then Γ is conjugate in
A(2, C) to a subgroup of the group of all matrices of the form
(1 b r\

0 1 s .
\0 0 1/

Proof. By 2.8, the only alternative is that Γ can be conjugated
/I 0 r\

to a subgroup of the group of all matrices of the form 0 d 0 . By
\0 0 1/

3.1, this cannot happen.
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LEMMA 3.3. Suppose Γ c A(2, C) acts properly discontinuously
/I b r\ (If u\

on C2 and contains elements A = I 0 d s) and B = [ 0 h v 1 such that
\0 0 1/ \0 0 1/

d Φ 1 and AB Φ BA. Then d is a root of unity.

Proof. By direct computation we verify that

dn - 1 bs

d-1

0 dn

0 0

d - 1 d - 1

dn — 1

+ nίr —
bs

d - l

d-1

1

/I fn/ fn n

f o r a l l i n t e g e r s n , a n d t h a t t h e m a t r i x Cn = A ~ n B A n B ~ ι = 0 1 v n

\ 0 0 1
has entries given by

+
cί — 1 (d — l)h

bv +
bs

(d-l)h d-1 (d-iγ d

s/ bsh \
-1 (d- 1)V

We claim that if d is not a root of unity, then the matrices Cn

are distinct. For suppose that Cm = Cn with m ^ n. This would
give //λ - b/(d - 1) + 6/((d - 1)Λ) = 0 and v + β/(d - 1) - sh/(d - 1) = 0;
that is, (d - 1)/ + 6(1 - h) = 0 and (d - l)v + s(l - Λ) = 0. Multiply
the first of the latter two equations by s and the second by b;
subtract to obtain (d - ΐ)(sf - bv) = 0. The equations (d — 1)/ =
b(h — 1), (d - l)v = s(h — 1), and sf = bv imply AB = BA; a contradic-
tion.

Assume that d is not a root of unity and consider the points
(#», 2/») of C2 obtained by applying the distinct transformations Cn of
Γ to the point (0, v — sh/(d — 1)). We have

^ v ~

d — (d — I)2 d - 1 (d — I)

d —

If I'd I = 1, we may find a sequence nf tending to infinity such that
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lim dni = 1. Then the sequence of points (xn., yn.) has a limit in C2,
contradicting the assumption that Γ acts properly discontinuously.
If \d\Φl, we may assume \d\ > 1. Again this sequence of points
has a limit point and we obtain a contradiction.

PROPOSITION 3.4. If Γ a A{2, C) acts freely and properly discon-
tinuously on C\ and C2/Γ is compact, then Γ contains a unipotent
normal subgroup Γo of finite index with Γ/Γo cyclic.

Proof. By 2.7, we may assume Γ c G2. Assume that Γ contains
(1 b r\

a central element O d s with d Φ 1. Conjugate Γ by
\0 0 1/

d - 1

0 1 s
d - 1

0 0 1 )

eG2

(1 0 r'\
to obtains a subgroup of G2 containing the central element I 0 d 0 I.

\0 0 1/
Since this element is central, all the elements of this new subgroup

/I 0 u\
have the form (0 h 0 I. But, according to 3.1, this cannot happen.

\0 0 1/
Now in general, Γ is the fundamental group of the compact

/I δ* rΛ
manifold C2//1, so it is finitely generated. Let A* = \0 di st (1 ^i^k)

\0 0 0/
be a set of generators of Γ1. If A* is central, d< = 1 by the preceding
paragraph. If A{ is not central, di is a root of unity by 3.3. Hence

/I b r\
the image of the homomorphism \0ds\—>dofΓ into the unit circle

\0 0 1/
group in C is a finite group. This finite group, being a subgroup of
the multiplicative group of a field is cyclic. The kernel of this
homomorphism is the desired subgroup Γo.

4. The main theorem* In this section, we sharpen the state-
ment of Proposition 3.4 and interpret our results terms of compact
complete locally aίfine complex surfaces.

Let Dk (k ^ 1) denote the torsion free nilpotent group with genera-
tors: A, B, C, and D; and relations: ABA~ιB~ι = Ck, C and D central.

THEOREM 4.1. Let Γ c A(2, C) act freely and properly discon-
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tinuously on C2, and let C2/Γ be compact. Then Γ contains a uni-
potent normal subgroup Γo of finite index such that Γo is isomorphic
to Z4 or Dk (for some k^ΐ) and Γ/Γo is cyclic of order 1, 2, 3, 4, 5,
6, 8, 10, or 12.

Proof. Let ΓQ be the subgroup of Γ obtained in 3.4. By results
of Malcev ([6]) on nilmanifolds, Γo may be considered as a discrete
subgroup of a unique connected simply-connected nilpotent Lie group
N such that N/Γo is compact. Then Γo acts freely and properly dis-
continuously on the space N and the orbit space is compact. JV is
topologically Euclidean, so by the remark preceding 3.1, the real
dimension of N is four. Now, there are only two four-dimensional

(all real
connected simply-connected Lie groups, namely R4 and j matrices

(of the form
/I a c\)
0 1 b \\ x R. For these two groups, the discrete subgroups with

\0 0 1/J
compact quotients are known to be isomorphic to Z4 in the first case
and the Dk in the second case.

Let G c C b e the additive group of complex numbers b such that
/I b r\
0 1 s G ΓQ. Let SeΓ be an element whose image in Γ/Γo generates

\0 0 1/
/I / "\

this cyclic group. Then S = 0 λ v J with Xn = 1, where n is the
\0 0 1/

/I 6 r\ /I λ& r' \
index of Γo in Γ. S"1! 0 1 s )S = 0 0 λ"1^ shows that XbeG for

\0 0 1/ \0 0 1 /
beG. If G is the trivial subgroup (0) of C, then the "holonomy
group" h(Γ) is finite cyclic of order n and we are in the case studied
by Auslander in [1]. In this case, n = 1, 2, 3, 4, or 6. Assume now
that G is not trivial. Then G is a free abelian group of rank r, with
1 ^ r ^ 4, since ΓQ can be generated by four elements. Let δi , br

be a basis of G. Expressing λδ̂  in terms of this basis and taking a
determinant, we obtain a polynomial of degree r with integer coeffi-
cients which is satisfied by λ. Hence the field generated by λ over
the rationale is of degree at most r. This field is the field generated
by a primitive nth root of unity, so it has degree φ(ri), where φ is
Euler's totient. Thus φ{n) ^ r. The only solutions of φ(n) ^ 4 are
those listed in the statement of the theorem.

The groups Z4 and Dk of 4.1 do occur as subgroups of A(2, C)
which act freely and properly discontinuously on C2 with compact
orpbit space. Which cyclic extensions of these groups can occur is a
more delicate question.
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EXAMPLE 4.2. Let A, B, C, and D be the matrices

I1 S °\ I1 - 1 J\ I1 o iv /l o V~i\
f0 1 1 , 0 l l Z - l ) , 0 1 0 ) , 0 1 0
\θ 0 1/ \θ 1 1/ \0 0 1/ \0 0 1/

respectively. These matrices generate a subgroup Γo of A(2, C) which
is isomorphic to A Γo acts freely and properly discontinuously on
C2 and C2/Γo is a compact complete locally affine complex surface

(1 0 1/2T/-1N
which is even a nilmanifold. Let S be the matrix (θ — 1 V — 1

\o o
Then S2 — D and conjugation by S sends A, j?, C, D to A"1, JB"1, C,
D respectively. S and the group Γo generate a subgroup Γ of A(2, C)
containing Γo as a normal subgroup of index two. Γ acts freely and
properly dicontinuously on C2 and Cz/Γ is a compact complete locally
affine complex surface. The fundamental group Γ of this surface is
solvable but not nilpotent. The commutator subgroup of Γ is generated
by A2, B2, and C, from which we obtain the first Betti number of
C*/Γ as &! = 1. Using Poincare duality and the vanishing of the
Euler characteristic, proved below, we find all Betti numbers of C2/Γ
are given by 1, 1, 0, 1, 1. C2/Γ is an example of a compact complete
locally affine complex surface with non-abelian "holonomy group" h{Γ).

A complete locally affine surface may be represented in two ways
as C2/Γ and C2/Γ'. This corresponds to Γ and Γf being conjugate in
4̂.(2, C); the element of A(2, C) effecting the conjugation amounts to

a change of coordinates on the surface. This allows us to interpret
4.1 as follows.

Consequences 4.3. 1. A compact complete locally affine complex
surface has a fundamental group which is solvable and is an exten-
sion of Z4 or some Dk by a finite cyclic group of order 1, 2, 3, 4, 5, 6,
8, 10, or 12.

2. Such a surface is finitely covered by another such surface
which is a nilmanifold with fundamental group Z4 or some Dk; the
cover is normal with deck transformation group cyclic of one of the
above orders.

We conclude with a proof of the following theorem. This result
was also obtained by Vitter ([8]) using the fact that the presence of
a locally affine structure on a compact complex manifold implies that

[all its Chern classes, excepting the zeroth, are zero.

THEOREM 4.4. A compact complete locally affine complex surface
has Euler characteristic zero.

Proof. It suffices to prove this for a finite cover of the surface
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and this cover may be represented as C2/Γo with

all complex /I b r\

matrices of

the form

With coordinates (x, y) on C2, the vector field d/dx has non-vanishing
real part on C2 which is invariant under the action of Γo. This
gives a non-vanishing vector field on C2/Γ0, and hence the Euler
characteristic of this surface is zero.
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