CLOSED RANGE THEOREMS FOR CONVEX SETS AND LINEAR LIFTINGS

T. ANDO

Let M be a closed subspace of a Banach space E such that its annihilator M^{\perp} is the range of a projection P. Given a closed convex subset S containing 0, the first problem of this paper is to find a condition for $\tau(S)$ to be closed where τ is the canonical map from E to E/M. Closure is guaranteed if S is splittable in the sense that the polar S^0 coincides with the norm-closed convex hull of $P(S^0) \cup Q(S^0)$, where Q = 1 - 1P. The second problem is to give a condition for existence of a linear map φ , called a linear lifting, from E/M to E such that $\tau \circ \varphi = 1$ and $\varphi \circ \tau(S) \subseteq S$. A linear lifting exists if and only if M is the kernel of a projection making S invariant. Of special interest is the case where S is a ball or a cone. When the unit ball is splittable, existence of a linear lifting of norm one is guaranteed under suitable conditions on E/M, which are satisfied by separable L_p and C(X) on compact metrizable X. If further E is an ordered Banach space, and if both P and Q are positive, M is shown to be the kernel of a positive projection of norm one.

Though the closed range theorem (Theorem 1) yields immediately an abstract version of the Rudin-Carleson-Bishop theorem on normpreserving extensions of functions defined on a peak set, in §2 further modification (Theorem 2) is shown to include Gamelin's extension [5] of the Rudin-Carleson-Bishop theorem in abstract form. Recently a different approach to generalization of the Gamelin theorem was made by Alfsen and Hirsberg [1]. In §3 it is indicated how the closed range theorem is applied to give unified proofs for results of Davies [4] and Perdrizet [9] on closedness of a cone in a quotient space and on order-preserving extensions. In §4 an idea of Pełczynski-Michael [8] is further developed for the closed range theorem to produce existence of linear liftings under suitable conditions. The Pełczynski-Michael theorems are generalized in abstract form (Theorems 5 and 6).

1. Preliminary. Let E be a real or complex Banach space with unit ball U. E^* and E^{**} are its dual and second dual respectively, and E is always imbedded canonically into E^{**} . x, y, z, \cdots are vectors in E or E^{**} while f, g, h, \cdots are functionals in E^* . For $x \in E^{**}$ and $f \in E^* f(x)$ is used instead of x(f). The weak topology $\sigma(E^*, E)$ on E^* is called the *weak*^{*} topology while $\sigma(E^{**}, E^*)$ on E^{**} is the *weak*^{**} topology. For a subset S of E its norm-closure and its weak^{**} closure (in E^{**}) are denoted by \overline{S} and S^{\sim} respectively.

The polar S⁰ is defined as the set of all f such that Re $f(x) \leq 1$ or $f(x) \leq 1$ on S according as the scalar field is complex or real. When S is a subspace its polar coincides with its annihilator S^{\perp} consisting of all f vanishing on it. The following basic facts are used frequently in this paper. Proofs are found, for instance, in [10]. Let S_1 and S_2 be closed convex subsets of E containing 0. $(S_1 \cap S_2)^o$ coincides with the weak^{*} closure of conv $(S_1^0 \cup S_2^0)$ where conv (\cdot) denotes the convex hull. The weak^{**} closure S_1^{\sim} coincides with the polar of S_1° in duality $\langle E^{**}, E^* \rangle$ and $S_1 = E \cap S_1^\sim$. Thus coincidence $(S_1 \cap S_2)^\sim =$ $S_1^{\sim} \cap S_2^{\sim}$ occurs if and only if the weak* and the norm closure of conv $(S_1^\circ\cup S_2^\circ)$ coincide. In some case conv $(S_1^\circ\cup S_2^\circ)$ becomes itself weak* closed. Here the Krein-Smulian theorem is quite useful: conv $(S_1^0 \cup S_2^0)$ is weak^{*} closed if (and only if) $\gamma U^{\circ} \cap \operatorname{conv} (S_1^{\circ} \cup S_2^{\circ})$ is weak^{*} closed for every $0 \leq \gamma < \infty$. If S_1 contains 0 in its interior then S_1^0 is weak* compact and the norm closure of conv $(S_1^0 \cup S_2^0)$ is weak* closed. If S_1 is a subspace or a cone, the weak* closure of conv $(S_1^0 \cup S_2^0)$ is just that of $S_1^{\scriptscriptstyle \perp}+S_2^{\scriptscriptstyle 0}.$ In case both S_1 and S_2 are subspaces, $S_1^{\scriptscriptstyle \perp}+S_2^{\scriptscriptstyle \perp}$ is weak^{*} closed if and only if $S_1 + S_2$ is norm-closed.

Suppose now that E is a real Banach space provided with a closed proper cone E_+ . E_+ gives rise to natural ordering in E under which it becomes the set of all *positive* vectors: $x \leq y$ means $y - x \in E_+$. In this respect E_{\pm} is called the *positive cone*. The dual positive cone E_{+}^{*} is defined as the set of f nonnegative on E_{+} , or equivalently E_{+}^{*} $-E_{+}^{\circ}$. E is called an ordered Banach space if $E=E_{+}-E_{+}$ and if there is $\gamma < \infty$ with $(U - E_+) \cap (U + E_+) \subseteq \gamma U$. The latter condition is equivalent to that every subset of the form $\{x; y_1 \leq x \leq y_2\}$ is normbounded. For notational convenience the relation $x \leq y + \epsilon$ in an ordered Banach space means that there is $z \ge 0$ such that ||z|| < ||z|| ε and $x \leq y + z$. An ordered Banach space or its norm is called regular if $||x|| = \inf \{ ||y||; -y \le x \le y \}$ for every x. A regular norm is monotone on the positive cone in the sense that $0 \leq x \leq y$ implies $||x|| \leq ||y||$. An ordered Banach space admits an equivalent regular norm. In fact, the functional $||x||_0 = \inf \{||y||; -y \le x \le y\}$ gives a regular norm.

It is known (cf. [2] and [4]) that E is regular if and only if E^* is regular. An ordered Banach space is said to have the *Riesz interpolation property* if for $y_i \ge x_j$ $(i, j = 1, 2, \dots, n)$ there is z such that $x_i \le z \le y_i (i = 1, 2, \dots, n)$. A regular ordered Banach space is called a *Banach lattice* if it is lattice under the ordering. A Banach lattice has the Riesz interpolation property. It is known (cf. [2] and [4]) that E has the Riesz interpolation property if and only if E^* is a lattice. A continuous linear operator between ordered Banach spaces is called *positive* if it transforms a positive cone into another. 2. Closed range theorems. E is a real or complex Banach space with unit ball U and M is a closed subspace. The canonical map from E to the quotient space E/M is denoted by τ .

Throughout this section it is assumed:

There is a continuous projection P from E^* to M^{\perp} , and Q stands for 1 - P.

Remark that the adjoint Q^* projects E^{**} onto M^\sim but M is not necessarily range of any projection. S, S_1 and S_2 will denote closed convex subsets of E containing 0. S is said to be *splittable*, or more precisely, *P*-splittable if its polar S^0 coincides with the norm-closure of conv $(P(S^0) \cup Q(S^0))$.

LEMMA 1. The following conditions are equivalent.

- (a) S is splittable.
- (b) $S^{\sim} = \{x \in E^{**}; P^*x \in S^{\sim} and Q^*x \in S^{\sim}\}.$

(c) $\theta(f) = \theta(Pf) + \theta(Qf) \ (f \in E^*)$

where $\theta(f)$ is defined by $\theta(f) = \sup \{ \operatorname{Re} f(x); x \in S \}.$

Proof. Since the polar of $P(S^0)$ (resp. of $Q(S^0)$) in E^{**} coincides with the set $\{x \in E^{**}; P^*x (\text{resp. } Q^*x) \in S^{\sim}\}$ equivalence of (a) and (b) is clear (cf. §1).

(b) \Rightarrow (c). Obviously $\theta(f)$ can be defined by

$$\theta(f) = \sup \{\operatorname{Re} f(x); x \in S^{\sim}\}$$
.

Take x and y in S. Then by (b) $P^*x + Q^*y$ belongs to S^{\sim} so that

$$\operatorname{Re} Pf(x) + \operatorname{Re} Qf(y) = \operatorname{Re} f(P^*x + Q^*y) \leq \theta(f) ,$$

leading to $\theta(Pf) + \theta(Qf) \leq \theta(f)$. The reverse inequality is obvious.

(c) \Rightarrow (b). Since the functional θ is nonnegative because of $S \ni 0$, (c) implies $P(S^0) \cup Q(S^0) \subseteq S^0$. Therefore S^{\sim} is contained in the set $\{x \in E^{**}; P^*x \in S^{\sim} \text{ and } Q^*x \in S^{\sim}\}$. Take x with $P^*x, Q^*x \in S^{\sim}$. Then by (c)

Re $f(x) = \operatorname{Re} Pf(P^*x) + \operatorname{Re} Qf(Q^*x) \leq \theta(Pf) + \theta(Qf) = \theta(f)$.

Thus x belongs to the polar of S^0 in E^{**} .

COROLLARY 1. The unit ball U is splittable if and only if
$$||f|| = ||Pf|| + ||Qf|| \ (f \in E^*)$$
.

COROLLARY 2. If both S_1 and S_2 are splittable and $(S_1 \cap S_2)^{\sim} = S_1^{\sim} \cap S_2^{\sim}$, then $S_1 \cap S_2$ is splittable.

COROLLARY 3. A closed subspace (resp. cone) is splittable if and only if its polar is invariant under P (resp. under P and Q).

Proof. Let N be a closed cone. $P(N^{\circ}) \subseteq N^{\circ}$ and $Q(N^{\circ}) \subseteq N^{\circ}$ implies $N^{\circ} = P(N^{\circ}) + Q(N^{\circ}) = \operatorname{conv} (P(N^{\circ}) \cup Q(N^{\circ}))$. If N is further a subspace, $Q(N^{\circ}) \subseteq N^{\circ}$ follows already from $P(N^{\circ}) \subseteq N^{\circ}$.

LEMMA 2. If S_1 and S_2 are splittable, for any $\varepsilon > 0$ and $\rho > 0$ the following inclusion relation holds:

$$\{S_1 \cap (S_2 + arepsilon U) +
ho U\} \cap (\overline{S_1 + M}) \cap (\overline{S_2 + M}) \ \cong \overline{S_1 \cap (S_2 + lpha arepsilon U) + lpha
ho U \cap M}$$

where $\alpha = ||Q||$.

Proof. Take any x in the set on the left hand side. Then it follows by splittability that

 $Q^*x \in S_1^{\sim} \cap (S_2^{\sim} + \alpha \varepsilon U^{\sim} \cap M^{\sim}) + \alpha \rho U^{\sim} \cap M^{\sim}$.

There is $y \in \alpha \rho U^{\sim} \cap M^{\sim}$ such that

$$Q^*(x-y) = Q^*x - y \in S_1^\sim \cap (S_2^\sim + lpha arepsilon U^\sim \cap M^\sim)$$

and

$$P^*(x - y) = P^*x \in P^*(\overline{S_1 + M}) \cap P^*(\overline{S_2 + M}) \subseteq S_1^{\sim} \cap S_2^{\sim}$$
.

Then by Lemma 1 $x - y \in S_{\tilde{i}}$ and there is $z \in \alpha \in U^{\sim} \cap M^{\sim}$ such that $x - y - z \in S_{\tilde{i}}$. Finally in view of arguments of §1 x belongs to

$$E \cap \{S_1^{\sim} \cap (S_2^{\sim} + lpha arepsilon U^{\sim}) + lpha
ho U^{\sim} \cap M^{\sim} \} \ \cong E \cap \{S_1 \cap (S_2 + lpha arepsilon U) + lpha
ho U \cap M \}^{\sim} \ = \overline{S_1 \cap (S_2 + lpha arepsilon U) + lpha
ho U \cap M} \; .$$

By definition of the quotient topology $\tau(x)$ belongs to the closure $\overline{\tau(S)}$ if and only if x is contained in $\overline{S+M}$. In particular, $\tau(S)$ is closed if and only if S + M is closed.

LEMMA 3. Suppose that S_1 and S_2 are splittable. If $\tau(x)$ belongs to $\overline{\tau(S_1)} \cap \overline{\tau(S_2)}$ and $||x - S_1 \cap S_2|| < \gamma$ there is $y \in S_1$ such that $\tau(x) = \tau(y)$ and $||x - y|| < \gamma ||Q||$. In case ||Q|| = 1 for any $\varepsilon > 0$ y can be chosen in $S_1 \cap (S_2 + \varepsilon U)$.

Proof. Let $\alpha = ||Q||$ and take ε' with $0 < \varepsilon' < \varepsilon$. By hypothesis x is contained in

$$\{S_1\cap (S_2+arepsilon'U)+\gamma'U\}\cap (\overline{S_1+M})\cap (\overline{S_2+M})$$

for some $\gamma > \gamma' > 0$. Choose $\varepsilon_n > 0$ such that $\sum_{n=1}^{\infty} \varepsilon_n < \gamma - \gamma'$. By Lemma 2 there is $x_0 \in M$ such that $||x_0|| \leq \alpha \gamma'$ and $||x + x_0 - S_1 \cap (S_2 + \alpha \varepsilon' U)|| < \varepsilon_1$. Then

$$x+x_{\scriptscriptstyle 0}\!\in \overline{S_i+M}+M=\overline{S_i+M}$$

and

$$x + x_0 \in S_1 \cap (S_2 + \alpha \varepsilon' U) + \varepsilon_1 U$$
.

Now inductive procedure based on Lemma 2 makes it possible to find a sequence $\{x_n\}$ in M such that $||x_n|| \leq \alpha \varepsilon_n$ and $||x + \sum_{i=0}^{n-1} x_i - S_i \cap (S_2 + \alpha^n \varepsilon' U)|| < \varepsilon_n$. Since $\sum_{n=0}^{\infty} ||x_n|| < \infty$, $y = x + \sum_{n=0}^{\infty} x_n$ is well defined. Obviously y belongs to S_1 , and in case $\alpha = 1$, to $S_1 \cap (\overline{S_2 + \varepsilon' U}) \subseteq S_1 \cap (S_2 + \varepsilon U)$. Finally $\tau(x) = \tau(y)$ and $||x - y|| \leq \alpha \sum_{n=1}^{\infty} \varepsilon_n + \alpha \gamma' < \alpha \gamma$.

Now the main result of this paper is near at hand.

THEOREM 1. Suppose that the annihilator of a closed subspace M is the range of a projection P and that S, S_1 and S_2 are closed convex subsets containg 0. Then (a) the image of S under the canonical map τ from E to E/M is closed whenever S is splittable. (b) If both S_1 and S_2 are splittable and $(S_1 \cap S_2)^{\sim} = S_1^{\sim} \cap S_2^{\sim}$ then $\tau(S_1) \cap \tau(S_2) = \tau(S_1 \cap S_2)$. (c) If both S_1 and S_2 are splittable and $||1 - P|| \leq 1$, then the inclusion $\tau(S_1) \cap \tau(S_2) \subseteq \tau(S_1 \cap (S_2 + \varepsilon U))$ holds for any $\varepsilon > 0$.

Proof. (a) follows from Lemma 3 with $S_1 = S_2 = S$. Also (c) is a direct consequence of Lemma 3. (b) $S_1 \cap S_2$ is splittable by Corollary 2 and $S_1 \cap S_2 + M$ is closed by (a). Now since by hypothesis

$$P^*\{(S_1+M)\cap (S_2+M)\} \sqsubseteq P^*(S_1)\cap P^*(S_2) \sqsubseteq S_1^\sim\cap S_2^\sim = (S_1\cap S_2)^\sim$$
 ,

it follows that

$$(S_1+M)\cap (S_2+M) \subseteq E\cap (S_1\cap S_2+M)^{\sim}=S_1\cap S_2+M$$
 ,

showing $\tau(S_1) \cap \tau(S_2) \subseteq \tau(S_1 \cap S_2)$. The reverse inclusion is obvious. This completes the proof.

It follows immediately from Theorem 1 that if the unit ball U is splittable and if N is a closed splittable subspace then $\tau(N \cap U)$ is closed and coincides with $\tau(N) \cap \tau(U)$. Let us show that the same conclusion holds for a non-splittable subspace under suitable conditions.

Since by Corollary 3 splittability of N is characterized by $P(N^{\perp}) \subseteq N^{\perp} \cap M^{\perp}$, it follows by Corollary 1 that under the splittability of U, N is splittable if and only if

$$\|Qf\| = \|f - M^{\scriptscriptstyle \perp} \cap N^{\scriptscriptstyle \perp}\| \quad (f \in N^{\scriptscriptstyle \perp})$$
 .

On the other hand, Corollary 1 implies $||Qf|| = ||f - M^{\perp}||$. Thus if the unit ball is splittable, splittability of N is characterized by

$$\|\|f-M^{\scriptscriptstyle \perp}\cap N^{\scriptscriptstyle \perp}\|\leq \|f-M^{\scriptscriptstyle \perp}\| \quad (f\in N^{\scriptscriptstyle \perp})$$
 .

LEMMA 4. Let N_1 and N_2 be closed subspace. Then for $\rho > 0$ the following assertions are equivalent.

- (a) $||x N_1 \cap N_2|| \leq \rho ||x N_1||$ $(x \in N_2)$
- (b) $||f N_1^{\perp} \cap N_2^{\perp}|| \leq \rho ||f N_2^{\perp}|| (f \in N_1^{\perp})$

Proof. (a) means that

$$N_2 \cap (\overline{N_1 + U}) \subseteq \overline{N_1 \cap N_2 +
ho U}$$

which implies by polar formation

$$(N_1^{\scriptscriptstyle \perp} + N_2^{\scriptscriptstyle \perp}) \cap U^{\scriptscriptstyle 0} \sqsubseteq N_2^{\scriptscriptstyle \perp} + N_1^{\scriptscriptstyle \perp} \cap
ho U^{\scriptscriptstyle 0}$$
 .

The last relation can be converted to

$$N_{\scriptscriptstyle 1}\cap (N_{\scriptscriptstyle 2}^{\scriptscriptstyle \perp}+\,U^{\scriptscriptstyle 0}) \sqsubseteq N_{\scriptscriptstyle 1}^{\scriptscriptstyle \perp}\cap N_{\scriptscriptstyle 2}^{\scriptscriptstyle \perp}+
ho\,U^{\scriptscriptstyle 0}$$

which is nothing but (b). The reverse process can be pursued because (b) implies that $(N_1^{\tau} + N_2^{\perp}) \cap U^0$ is weak* compact, hence by the Krein-Smulian theorem that $N_1^{\perp} + N_2^{\perp}$ is weak* closed.

COROLLARY 4. Suppose that the unit ball is splittable. Then the following assertions for a closed subspace N are equivalent.

- (a) N is splittable.
- (b) $||x N \cap M|| \le ||x N||$ $(x \in M)$
- (c) $||f N^{\perp} \cap M^{\perp}|| \leq ||f M^{\perp}|| (f \in N^{\perp}).$

THEOREM 2. Let M and N be closed subspaces, and suppose that the annihilator M^{\perp} is the range of a projection P such that

(1)
$$||f|| = ||Pf|| + ||f - Pf|| \quad (f \in E^*)$$
.

If for some $1 \leq \rho < 2$

(2)
$$||x - N \cap M|| \leq \rho ||x - N|| \quad (x \in M)$$
,

then the images of the unit ball U, N and $N \cap U$ under the canonical map τ from E to E/M are closed and

$$au(N\cap U)= au(N)\cap au(U)$$
 .

Proof. Closedness of $\tau(U)$ follows from (1) by Corollary 1 and

398

Theorem 1. Let Q = 1 - P. Then in view of (1) relation (2) is converted by Lemma 4 to

$$(3) \qquad \qquad ||Pf - M^{\scriptscriptstyle \perp} \cap N^{\scriptscriptstyle \perp}|| \leq \gamma ||Qf|| \quad (f \in N^{\scriptscriptstyle \perp})$$

where $\gamma=
ho-1<1.$ Then for any $f\in N^{\scriptscriptstyle \perp}$ and $g\in M^{\scriptscriptstyle \perp}$.

showing

$$||g-M^{\scriptscriptstyle \perp}\cap N^{\scriptscriptstyle \perp}|| \leq ||g-N^{\scriptscriptstyle \perp}|| \quad (g\in M^{\scriptscriptstyle \perp})$$
 ,

which is converted by Lemma 4 to

(4)
$$||x - M \cap N|| \leq ||x - M|| \quad (x \in N)$$
.

This last relation means that the canonical map from the Banach space $N/M \cap N$ onto $\tau(N)$ has bounded inverse. Therefore $\tau(N)$ is closed. Further (4) implies

$$N \cap (U + M) \subseteq \overline{U + N \cap M}$$
.

Let us prove that really

$$N \cap (U + M) \subseteq U + N \cap M$$

holds, which is equivalent to the required relation:

$$au(N) \cap au(U) \subseteq au(N \cap U)$$
.

Suppose for contradiction that there exists x in $N \cap (U + M)$ with $(U - x) \cap N \cap M = \emptyset$. Since $N \cap M$ is a subspace, it follows that

 $\operatorname{conv} ((U - x) \cup \{0\}) \cap N \cap M = \{0\}$.

Since conv $((U - x) \cup \{0\})$ is closed, the last relation implies by polar formation that $(U - x)^{\circ} + N^{\perp} + M^{\perp}$ is weak* dense in E^* . Weak* closedness of $(U - x)^{\circ} + N^{\perp} + M^{\perp}$, if proved, leads to

$$\operatorname{conv} ((U^{\sim} - x) \cup \{0\}) \cap N^{\sim} \cap M^{\sim} = \{0\}$$

hence to a contradiction:

$$x \notin E \cap (U^{\sim} + N^{\sim} \cap M^{\sim}) = \overline{U + N \cap M}$$
 .

Now let us prove the above weak^{*} closedness. To this end, in view of the Krein-Smulian theorem, it suffices to prove that for any n > 0

$$\{(U-x)^{\scriptscriptstyle 0}+N^{\scriptscriptstyle \perp}+M^{\scriptscriptstyle \perp}\}\cap n\,U^{\scriptscriptstyle 0}\subseteq \delta\,U^{\scriptscriptstyle 0}\cap(U-x)^{\scriptscriptstyle 0}+\delta\,U^{\scriptscriptstyle 0}\cap N^{\scriptscriptstyle \perp}+M^{\scriptscriptstyle \perp}\}$$

where δ is a constant depending on *n*. Remark that $(U-x)^{\circ}$ consists of all f with $||f|| \leq \text{Re } f(x) + 1$. Since $x \in U + M$ implies $||P^*x|| \leq 1$, it follows from (1) that

$$1 + \operatorname{Re} f(x) - ||f||$$

$$\leq 1 + \operatorname{Re} Qf(x) - ||Qf||$$

$$- \{||Pf|| ||P^*x|| - |Pf(P^*x)|\}$$

$$\leq 1 + \operatorname{Re} Qf(x) - ||Qf||.$$

This indicates that Q makes $(U-x)^{\circ}$ invariant. Now take $f \in (U-x)^{\circ}$, $g \in N^{\perp}$ and $h \in M^{\perp}$ with $||f + g + h|| \leq n$. Then by (1) $||Qf + Qg|| \leq n$. Since $x \in N \cap (U + M)$ and $g \in N^{\perp}$,

$$egin{aligned} &\operatorname{Re}\,Qf(x) &\leq n\,||x\,|| - \operatorname{Re}\,Qg(x) = n||x\,|| + \operatorname{Re}\,Pg(x) \ &\leq n\,||x\,|| + ||Pg - N^{\scriptscriptstyle \perp} \cap M^{\scriptscriptstyle \perp}|| \,\, ||x - M\,|| \ &\leq n\,||x\,|| + ||Pg - N^{\scriptscriptstyle \perp} \cap M^{\scriptscriptstyle \perp}|| \,\,. \end{aligned}$$

Since Qf belongs to $(U-x)^{\circ}$ as f, it follows that

$$egin{aligned} || \, Qg \, || &\leq n \,+\, \operatorname{Re}\, Qf(x) \,+\, 1 \ &\leq n(||x|| \,+\, 2) \,+\, || \, Pg \,-\, N^{\scriptscriptstyle \perp} \cap M^{\scriptscriptstyle \perp} \,|| \;. \end{aligned}$$

Then (3) applied to g yields

$$\|Pg-N^{\scriptscriptstyle \perp}\cap M^{\scriptscriptstyle \perp}\| \leq rac{\gamma(n\|x\|+2)}{1-\gamma} \equiv \delta_{\scriptscriptstyle 1}$$

and consequently

$$||Qf+g-N^{\scriptscriptstyle \perp}\cap M^{\scriptscriptstyle \perp}||\leq n+\delta_{\scriptscriptstyle 1}\equiv \delta_{\scriptscriptstyle 2}$$
 .

Since $x \in N, \, g \in N^{\scriptscriptstyle \perp}$ and $Qf \in (U-x)^{\scriptscriptstyle 0}$,

$$||Qf|| \leq \operatorname{Re} Qf(x) + 1 \leq \delta_2 ||x|| + 1 \equiv \delta_3$$

and

$$||g-N^{\scriptscriptstyle \perp}\cap M^{\scriptscriptstyle \perp}|| \leq \delta_{\scriptscriptstyle 2}+\delta_{\scriptscriptstyle 3}\equiv \delta$$
 .

This implies that

$$egin{array}{ll} f+g+h=Qf+g+(Pf+h)\ &\subseteq \delta U^{\scriptscriptstyle 0}\cap (U-x)^{\scriptscriptstyle 0}+\delta U^{\scriptscriptstyle 0}\cap N^{\scriptscriptstyle \perp}+M^{\scriptscriptstyle \perp} \ . \end{array}$$

This completes the proof.

Consider the sup-norm Banach space C(X) of continuous functions on a compact Hausdorff space X. By the Riesz theorem its dual is realized by the space of regular Borel measures on X with totalvariation norm. Given a closed subset Y of X, let M be the subspace of functions in C(X) vanishing on Y. Then M^{\perp} is the set of measures with support in Y and becomes the range of a projection P: Pm = χm for each measure m where χ is the characteristic function of Y. Obviously (1) is satisfied. Now let N be a closed subspace of C(X). As shown in [5] (3) is equivalent to the property that for any $x \in N$ with $|x(t)| < 1(t \in Y)$ and any closed subset $Z \subset X$ with $Y \cap Z = \emptyset$ there is $y \in N$ such that x(t) = y(t) $(t \in Y)$, $|y(s)| < \gamma$ $(s \in Z)$ and $||y|| < \gamma$ max $(1, \gamma)$. Remark that ||x - M|| coincides with the norm of the restriction $x \mid Y$ of x to Y and that x(t) = y(t) ($t \in Y$) is equivalent to $x - y \in Y$ M. Thus Theorem 2 shows that if (3) with $\gamma < 1$, or equivalently (2) with $\rho < 2$, is satisfied then for any $x \in N$ there is $y \in N$ such that x | Y = y | Y and ||y|| = ||x| | Y ||. The case $\gamma = 0$ is the generalized Carleson-Rudin theorem (cf. [6] Chap. II). As Gamelin [5] shows, Theorem 2 can further yield the following: suppose that (3) with $\gamma < 1$, or equivalently (2) with $\rho < 2$, is satisfied and that $p \in C(X)$ satisfies p(t) = 1 $(t \in Y)$ and $p(s) > \gamma$ $(s \in X)$. Then if $x \in N$ satisfies $|x(t)| \leq 1$ p(t) $(t \in Y)$ there is $y \in N$ such that x(t) = y(t) $(t \in Y)$ and $|y(s)| \leq 1$ p(s) $(s \in X)$. The case $\gamma = 0$ is the Bishop theorem (cf. [6] Chap. II). Generalization of the Gamelin theorem to other direction is treated by Alfsen and Hirsberg [1].

3. Ordered Banach spaces. Let E be an ordered Banach space with positive cone E_+ . A closed subspace M is called an *ideal* if $(M - E_+) \cap (M + E_+) \subseteq M$. An ideal M is hypostrict if its annihilator M^{\perp} is the range of a projection P such that $f \ge Pf \ge 0$ for every $f \ge 0$ The requirement means that both P and Q = 1 - P are positive. Perdrizet [9] shows that a closed subspace M is a hypostrict ideal if and only if the following two conditions are satisfied: (1) Given x_1 , $x_2 \in M$ and $y \in E$ with $x_1, x_2 \le y$, for any $\varepsilon > 0$ there is $z \in M$ such that $x_1, x_2 \le z \le y + \varepsilon$, and (2) given $x \in M$ and $y_1, y_2 \in E_+$ with $x \le y_1 + y_2$ there are $x_1, x_2 \in M$ such that $x = x_1 + x_2$ and $x_i \le y_i + \varepsilon$ i =1, 2. Under the Riesz interpolation property an ideal M is hypostrict if and only if it is positively generated in the sense: $M = M \cap E_+$ $M \cap E_+$.

When M is an ideal, the Banach space E/M is preordered by the cone $\tau(E_+)$ where τ is the canonical map from E to E/M. The following theorem was first proved by Davies [4] under the Riesz interpolation property and then by Perdrizet [9] in general case. Let us give a proof based on Theorem 1.

THEOREM 3. Let E be an ordered Banach space with positive cone E_+ . If M is a hypostrict ideal then E/M is an ordered Banach space with $\tau(E_+)$ as its positive cone. If E is regular in addition, so is E/M.

Proof. Since hypostrictness means that $E_+^* = -E_+^0$ is invariant under both P and Q, E_+ is splittable by Corollary 3. Then $\tau(E_+)$ is closed by Theorem 1. M^{\perp} is isometric to the dual of E/M, and the dual positive cone is identified with $M^{\perp} \cap E_+^*$. Suppose that E is regular. Then E^* is regular. Since P is positive and is of norm one in this case, M^{\perp} is a regular ordered Banach space with $M^{\perp} \cap E_+^*$ as its positive cone. Therefore E/M is regular as stated in §1. This completes the proof because every ordered Banach space admits an equivalent regular norm.

COROLLARY 5. Suppose that the positive cone E_+ has nonempty interior and that M is a hypostrict ideal. If a closed subspace N is splittable and if it contains an interior point of E_+ then $\tau(N \cap E_+)$ is closed and $\tau(N \cap E_+) = \tau(N) \cap \tau(E_+)$.

Proof. Since E_+ is splittable, in view of Corollary 2 and Theorem 1 it suffices to prove that $(N \cap E_+)^\circ = N^\perp + E_+^\circ$. Remark that f belongs to $(N \cap E_+)^\circ$ if and only if the restriction of -f to N is positive. However it is known (cf. [10] Chap. V §5) that when N contains an interior point of E_+ every continuous positive linear functional on N admits a continuous positive linear extension to E, in other words, $-(N \cap E_+)^\circ = -(N^\perp + E_+^\circ)$.

Since E/M is ordered by the cone $\tau(E_+)$, for any y, z with $\tau(z) \leq \tau(y)$ there is y' such that $z \leq y'$ and $\tau(y) = \tau(y')$. The next task is to treat the case $\tau(z) \leq \tau(y) \leq \tau(x)$ and $z \leq x$ and to find a condition of existence y'' such that $z \leq y'' \leq x$ and $\tau(y) = \tau(y')$.

LEMMA 5. Let S_1 and S_2 be closed convex subsets containing 0. If for any $0 < \lambda < 1$, $f \in S_1^\circ$ and $g \in S_2^\circ$ there are $f' \in S_1^\circ$ and $g' \in S_2^\circ$ such that

$$\lambda f + (1 - \lambda)g = \lambda f' + (1 - \lambda)g'$$

and

$$\lambda \|f'\|, (1-\lambda)\|g'\| \leq \|\lambda f + (1-\lambda)g\|$$

then $(S_1 \cap S_2)^{\sim}$ coincides with $S_1^{\sim} \cap S_2^{\sim}$ where $(\cdot)^{\sim}$ denotes the weak^{**} closure.

Proof. In view of the Krein-Smulian theorem it suffices to prove that for any $\gamma > 0$ the weak^{*} closure of conv $(S_1^\circ \cup S_2^\circ) \cap \gamma U^\circ$ is contained in the norm closure of conv $(S_1^\circ \cup S_2^\circ)$. Suppose that $0 < \lambda_\alpha < 1$, $f_\alpha \in S_1^\circ$, $g_\alpha \in S_2^\circ$ and $||\lambda_\alpha f_\alpha + (1 - \lambda_\alpha)g_\alpha|| \leq \gamma$ and that the net $\{\lambda_\alpha f_\alpha +$ $(1 - \lambda_{\alpha})g_{\alpha}$ weak* converges to h and the net $\{\lambda_{\alpha}\}$ converges to λ . By hypothesis $\{\lambda_{\alpha}f_{\alpha}\}$ and $\{(1 - \lambda_{\alpha})g_{\alpha}\}$ can be assumed to be bounded, hence to weak* converge to f' and g' respectively. If $0 < \lambda < 1$, $\{f_{\alpha}\}$ and $\{g_{\alpha}\}$ can be assumed to weak* converge to $f'' \in S_{1}^{0}$ and $g'' \in S_{2}^{0}$ respectively. Then $h = \lambda f'' + (1 - \lambda)g''$ belongs to conv $(S_{1}^{0} \cup S_{2}^{0})$. In case $\lambda = 0$, h = f' + g'' and nf' belongs to S_{1}^{0} for any n > 0. Therefore h, as the norm limit of 1/n(nf') + (1 - 1/n)g'', belongs to the norm closure of conv $(S_{1}^{0} \cup S_{2}^{0})$. The case $\lambda = 1$ is treated similarly.

COROLLARY 6. $(\bigcap_{i=1}^{n} (x_i - E_+))^{\sim} = \bigcap_{i=1}^{n} (x_i - E_+)^{\sim}$ whenever $x_i \ge 0$ $i = 1, 2, \dots, n$.

Proof. E, hence E^* , can be assumed to be regular. $(x_i - E_+)^0$ consists of all $0 \leq f$ with $f(x_i) \leq 1$. Suppose that $\lambda_i \geq 0$, $\sum_{i=1}^n \lambda_i = 1$ and $f_i \in (x_i - E_+)^0$. Since the norm is monotone on the dual positive cone by regularity, it follows that $\lambda_j ||f_j|| \leq ||\sum_{i=1}^n \lambda_i f_i|| j = 1, 2, \dots, n$. Now inductive application of Lemma 5 yields the assertion.

The following theorem was proved by Perdrizet [9]. Let us give a proof based on Theorem 1.

THEOREM 4. Let E be an ordered Banach space with positive cone E_+ . Suppose that M is a hypostrict ideal and E/M is ordered by the cone $\tau(E_+)$ where τ is the canonical map from E to E/M. If $z_i \leq 0 \leq x_i$ and $\tau(z_i) \leq \tau(y) \leq \tau(x_i)$ $i = 1, 2, \dots, n$, then for any $\varepsilon > 0$ there is y' such that $z_i \leq y' \leq x_i + \varepsilon$ $i = 1, 2, \dots, n$ and $\tau(y) = \tau(y')$. Further ε can be made 0 if every x_i is an interior point of E_+ or if E has the Riesz interpolation property.

Proof. E is assumed to be regular, hence Q is of norm one. $z_i + E_+$ is a closed convex set containing 0. It is splittable because both P^* and Q^* are positive and z_i is negative. Similary $x_i - E_+$ is splittable. Let $S_1 = \bigcap_{i=1}^n (z_i + E_+)$ and $S_2 = \bigcap_{i=1}^n (x_i - E_+)$. Then by Corollaries 2, 6, and Theorem 1 both S_1 and S_2 are splittable and

$$\bigcap_{i=1}^{n} \tau(z_i + E_+) \cap \bigcap_{i=1}^{n} \tau(x_i - E_+)$$
$$= \tau(S_1) \cap \tau(S_2) \subseteq \tau(S_1 \cap (S_2 + \varepsilon U))$$

which is just the first assertion.

If every x_i is an interior point of E_+ , S_2 contains 0 in its interior and by Corollary 2 and Theorem 1

$$au(S_{\scriptscriptstyle 1}) \cap au(S_{\scriptscriptstyle 2}) = au(S_{\scriptscriptstyle 1} \cap S_{\scriptscriptstyle 2})$$
 .

Suppose finally that E has the Riesz interpolation property. Since E^{**} becomes a lattice as stated in §1, S_1^{\sim} consists of all $w \in E^{**}$ with $\bigvee_{i=1}^n z_i \leq w$, where $\bigvee_{i=1}^n z_i$ denotes the supremum of z_1, \dots, z_n in E^{**} . Then S_1^0 consists of all $0 \geq f$ with $f(\bigvee_{i=1}^n z_i) \leq 1$. Similarly S_2^0 consists of all $0 \leq g$ with $g(\bigwedge_{i=1}^n x_i) \leq 1$ where $\bigwedge_{i=1}^n x_i$ denotes the infimum of x_1, \dots, x_n , in E^{**} . Take $0 < \lambda < 1$, $f \in S_1^0$ and $g \in S_2^0$ and let $h = \lambda f + (1 - \lambda)g$. Since E^* is a Banach lattice as stated in §1, and since both -f and g are positive, it follows that $0 \geq h \land 0 \geq \lambda f$ and $0 \leq h \lor 0 \leq (1 - \lambda)g$. Let $f' = (1/\lambda)(h \land 0)$ and $g' = (1)/(1 - \lambda)h \lor 0$. Then it follows from the above characterization of S_i^0 that $f' \in S_1^0$, $g' \in S_2^0$ and $h = \lambda f' + (1 - \lambda)g'$. Now since $||h \land 0||$, $||h \lor 0|| \leq ||h||$, Lemma 5 yields $(S_1 \cap S_2)^{\sim} = S_1^{\sim} \cap S_2^{\sim}$ and the assertion follows from Theorem 1.

4. Linear lifting. Let E be a Banach space with unit ball U and M a closed subspace. The canonical map from E to E/M is denoted by τ . A continuous linear map φ from E/M to E is called a *linear lifting* if $\tau \circ \varphi = 1$. If φ is a linear lifting, $\varphi \circ \tau$ is a projection with M as its kernel. Conversely, a linear lifting exists if M is the kernel of a continuous projection.

In this section it is assumed:

There is a projection P from E^* to M^{\perp} such that

$$||f|| = ||Pf|| + ||f - Pf|| \quad (f \in E^*)$$

and Q stands for 1 - P.

Let F be a finite dimensional Banach space with unit ball V. Consider the dual system $\langle F^* \otimes E, F \otimes E^* \rangle$ of tensor products. When $F^* \otimes E$ is provided with the Minkowski functional of $(V \otimes U^{\circ})^{\circ}$ as norm, it is called the *inductive* tensor product of F^* and E and is denoted by $F^* \bigotimes E$. When $F \otimes E^*$ is provided with the Minkowski functional of conv $(V \otimes U^{\circ})$ as norm, it is called the *projective* tensor product of F and E^* and is denoted by $F \otimes E^*$. Let B = B(F, E)denote the Banach space of all continuous linear maps from F to E, provided with operator-norm. Since F is finite dimensional, B is isometric to the inductive tensor product $F^* \bigotimes E$ under the canonical correspondence. The following lemma, whose proof is found in [10] Chap. IV §9, is basic in the subsequent development.

LEMMA 6. The dual of B(F, E) is isometric to the projective tensor product $F \otimes E^*$ while the second dual is isometric to the inductive tensor product $F^* \otimes E^{**}$, hence to $B(F, E^{**})$.

In view of Lemma 6 B^{**} is always identified with $B(F, E^{**})$.

404

In this case the imbedding of B to B^{**} is just the natural imbedding of B(F, E) to $B(F, E^{**})$. In accordance with the terminology in §1 the weak^{**} closure of a subset G of B is formed in $B(F, E^{**})$ and is denoted by G^{\sim} . When K and S are a subset of F and a closed convex subset of E containing 0 respectively, G(K, S) and $\mathcal{G}(K, S^{\sim})$ denote the set of all $\varphi \in B$ with $\varphi(K) \subseteq S$ and the set of all $\psi \in B^{**}$ with $\psi(K) \subseteq S^{\sim}$. Obviously G(K, S) is a closed convex subset of B containing 0 and its weak^{**} closure is contained in $\mathcal{G}(K, S^{\sim})$.

COROLLARY 6. (a) $G(V, U)^{\sim} = \mathcal{G}(V, U^{\sim})$. (b) $\{G(H, 0) \cap G(F, N)\}^{\sim} = \mathcal{G}(H, 0) \cap \mathcal{G}(F, N^{\sim})$ if H and N are closed subspaces of F and E respectively. (c) $G(K, S)^{\sim} = \mathcal{G}(K, S^{\sim})$ if K is a cone generated by a linearly independent basis $\{x_1, \dots, x_n\}$ of F and S is a cone.

Proof. (a) is an immediate consequence of Lemma 6. (b) $G(F, N)^{\sim} = \mathscr{G}(F, N^{\sim})$ follows from Lemma 6 applied to N instead of E. Since F is finite dimensional, H is the kernel of a projection σ . Then

$$\mathscr{G}(H, 0) \cap \mathscr{G}(F, N^{\sim}) = \mathscr{G}(F, N^{\sim}) \circ \sigma = G(F, N)^{\sim} \circ \sigma$$

$$\subseteq \{G(F, N) \circ \sigma\}^{\sim} = \{G(H, 0) \cap G(F, N)\}^{\sim},$$

while the reverse inclusion is obvious. (c) Take any φ in $\mathscr{G}(K, S^{\sim})$ and let $y_i = \varphi(x_i)$ $i = 1, 2, \dots, n$. Since each y_i belongs to S^{\sim} , there are nets $\{y_{i,\alpha}\}$ in S, weak^{**} converging to y_i $i = 1, 2, \dots, n$. Consider a net $\{\varphi_{\alpha}\}$ in B defined by $\varphi_{\alpha}(x_i) = y_{i,\alpha}$ $i = 1, 2, \dots, n$. By hypothesis it is contained in G(K, S) and weak^{**} converges to φ . Thus $\mathscr{G}(K, S^{\sim})$ is contained in $G(K, S)^{\sim}$ with the reverse inclusion is obvious.

Since B^* is identified with the projective tensor product $F \otimes E^*$ by Lemma 6, the operators $1 \otimes P$ and $1 \otimes Q$ are considered to define projections in B^* . The adjoints of $1 \otimes P$ and $1 \otimes Q$ are realized in $B(F, E^{**})$ according to the following formula:

(5)
$$(1 \otimes P)^* \varphi = P^* \circ \varphi$$
 and $(1 \otimes Q)^* \varphi = Q^* \circ \varphi \ (\varphi \in B(F, E^{**}))$.

LEMMA 7. The annihilator $G(F, M)^{\perp}$ is the range of $1 \otimes P$.

Proof. Since Q^* is a projection onto M^\sim , by (5) $(1 \otimes Q)^*$ projects B^{**} onto $\mathcal{G}(F, M^\sim)$, which coincides with $G(F, M)^\sim$ by Corollary 6. Then $1 \otimes P$ is obviously a projection from B^* to $G(F, M)^\perp$.

On the basis of Lemma 7, a sentence "G(K, S) is splittable" will always mean that G(K, S) is $1 \otimes P$ -splittable.

COROLLARY 7. If S is splittable and $G(K, S)^{\sim} = \mathscr{G}(K, S^{\sim})$ then

G(K, S) is splittable.

Proof. This follows from (5) by Lemma 1.

The following lemma can be considered a development of a basic device in Michael and Pełczynski [8], treating linear lifting in a special case. The crucial requirement for P plays a decisive role in the proof.

LEMMA 8. Suppose that S is splittable and $G(K, S)^{\sim} = \mathscr{G}(K, S^{\sim})$ for a subset K of F. If ψ belongs to

$$G(\pi(K), S) \cap G(\pi(V), U) \cap G(K, S + M) \cap G(V, U + M)$$

where π is a projection of F to a subspace H, then for any $\varepsilon > 0$ there is φ in $G(K, S) \cap G(V, U)$ such that

$$\tau \circ \varphi = \tau \circ \psi \quad and \quad ||(\varphi - \psi)|H|| < \varepsilon.$$

Proof. Remark first of all that the requirement for P means by Corollary 1 that the unit ball U is splittable.

Let $\psi_1 = \psi - Q^* \circ \psi \circ (1 - \pi)$. Since $Q^* \circ \psi_1(K) \subseteq Q^* \circ \psi \circ \pi(K) \subseteq Q^*(S) \subseteq S^{\sim}$

and

$$P^* \circ \psi_1(K) \subseteq P^* \circ \psi(K) \subseteq P^*(S + M) \subseteq S^{\sim}$$

by splittability of S, ψ_1 belongs to $\mathscr{G}(K, S^{\sim})$ by Lemma 1, hence to $G(K, S)^{\sim}$ by hypothesis. Since U is splittable and $G(V, U)^{\sim} = \mathscr{G}(V, U^{\sim})$ by Corollary 6, the same argument shows that ψ_1 belongs also to $G(V, U)^{\sim}$. Moreover it belongs to $\{G(K, S) \cap G(V, U)\}^{\sim}$ because G(V, U) is the unit ball of B. On the other hand, $Q^* \circ \psi \circ (1 - \pi)$ belongs to $\mathscr{G}(H, 0) \cap \mathscr{G}(F, M^{\sim})$, hence to $\{G(H, 0) \cap G(F, M)\}^{\sim}$ by Corollary 6. Thus ψ belongs to

$$\{G(K, S) \cap G(V, U) + G(H, 0) \cap G(F, M)\}^{\sim}$$
 .

It follows that ψ must be contained in the norm closure of

$$G(K, S) \cap G(V, U) + G(H, 0) \cap G(F, M)$$
.

Therefore there is $\psi_2 \in B$ such that $\psi - \psi_2 \in G(H, 0) \cap G(F, M)$ and

$$||\psi_2 - G(K,S) \cap G(V,U)|| < \varepsilon$$
.

Since $G(K, S) \cap G(V, U)$ is splittable by hypothesis and Corollary 7, Lemma 3 guarantees that there is $\varphi \in G(K, S) \cap G(V, U)$ such that $\varphi - \psi_2 \in G(F, M)$ and $||\varphi - \psi_2|| < \varepsilon$. Now $\psi_2 - \psi \in G(H, 0) \cap G(F, M)$

406

implies that $\tau \circ \varphi = \tau \circ \psi$ and

$$\| \left(arphi - \psi
ight) | H \| = \| \left(arphi - \psi_2
ight) | H \| \leqq \| arphi - \psi_2 \| < arepsilon$$
 .

Let S be a closed splittable subset of E and L a subset of $\tau(S)$. Suppose that there is a sequence of projections $\{\pi_n\}$ in E/M such that (1) the range F_n of π_n is of finite dimension, (2) $||\pi_n|| \leq 1$, (3) $\pi_n \cdot \pi_m = \pi_n$ for $n \leq m$, (4) $\pi_n(L) \subseteq L$ and (5) π_n converges strongly to the identity as $n \to \infty$.

Let \mathscr{G}_n denote the set of all $\varphi \in B(F_n, E)$ with $\varphi \circ \pi_n(L) \subseteq S$ while G_n is the set of all $\psi \in B(F_n, E^{**})$ with $\psi \circ \pi_n(L) \subseteq S^{\sim}$. As before, the second dual of $B(F_n, E)$ is identified with $B(F_n, E^{**})$.

LEMMA 9. If the weak^{**} closure of G_n coincides with \mathcal{G}_n , n = 1, 2, ..., then there is a linear lifting φ from E/M to E such that $\varphi(L) \subseteq S$ and $||\varphi|| \leq 1$.

Proof. Let $\pi_0 = 0$ and $\varphi_0 = 0$. Assume that linear maps $\varphi_j \in B(F_j, E)$ $j = 0, 1, \dots, n$ have been found in such a way that $\tau \circ \varphi_j = 1$ on $F_j, ||\varphi_j|| \leq 1, \varphi_j \circ \pi_j(L) \subseteq S$ and $||(\varphi_{j-1} - \varphi_j)|F_{j-1}|| < 1/2^{j-1} j = 0, 1, \dots, n$. Since F_{n+1} is finite dimensional by hypothesis, there is $\psi \in B(F_{n+1}, E)$ such that $\tau \circ \psi = 1$ on F_{n+1} . Consider the map $\psi' = \varphi_n \circ \pi_n + \psi \circ (1 - \pi_n)$ from F_{n+1} to E. Then by assumption

$$\psi' \circ \pi_n(\pi_{n+1}(L)) = arphi_n \circ \pi_n(L) \sqsubseteq S$$

and in view of $||\pi_n|| \leq 1$

$$\psi' \circ \pi_n(V_{n+1}) = \varphi_n(V_n) \subseteq U$$

where V_i denotes the unit ball of F_i . Since $V_{n+1} \subseteq \tau(U)$ by Theorem 1 and $\pi_{n+1}(L) \subseteq \tau(S)$,

$$\psi'(V_{n+1}) \subseteq U + M \text{ and } \psi'(\pi_{n+1}(L)) \subseteq S + M.$$

Since the weak^{**} closure of G_n coincides with \mathscr{G}_n by hypothesis, Lemma 8, applied to $F_{n+1}, \pi_{n+1}(L)$ and π_n instead of F, K and π , yields that there is $\varphi_{n+1} \in G_{n+1}$ such that $||\varphi_{n+1}|| \leq 1, \tau \circ \varphi_{n+1} = 1$ on F_{n+1} and $||(\varphi_{n+1} - \varphi_n)|F_n|| < 1/2^n$, completing induction. Now the sequence $\{\varphi_n \circ \pi_n\}$ is uniformly bounded and

$$\sum_{k=n}^{\infty} \left\| \left(\varphi_{k+1} - \varphi_k \right) \left| F_n \right\| \leq \sum_{j=n}^{\infty} 1/2^k < \infty
ight.$$

guaranteeing convergence of $\mathcal{P}_k(x)$ for every $x \in F_n$ as $k \to \infty$. Then $\{\mathcal{P}_n \circ \pi_n\}$ converges strongly to some map φ from E/M to E. Obviously φ is a required linear lifting.

It is better to introduce some terminology before stating the main

result on linear lifting. A Banach space E is called a π -space if there is a sequence $\{F_n\}$ of finite dimensional subspaces such that $F_1 \subseteq F_2 \subseteq \cdots$ with $\overline{\bigcup_{n=1}^{\infty} F_n} = E$ and each F_n is the range of a projection of norm one. Here projections π_n can be assumed to have the property that $\pi_n \pi_m = \pi_n$ for $n \leq m$ and that π_n converges strongly to the identity as $n \to \infty$. An ordered Banach space is called a Π -space if, in addition, projections can be chosen positive and if each F_n has the positive cone generated by a linearly independent basis.

THEOREM 5. Suppose that the annihilator of a closed subspace M is the range of a projection P such that

$$\| f \| = \| P f \| + \| f - P f \| \quad (f \in E^*)$$

If the quotient space E/M becomes a π -space then there is a linear lifting of norm one, or equivalently, M is the kernel of a projection of norm one.

Proof. Since the unit ball U is splittable by Corollary 1, all requirements in Lemma 9 are fulfilled with S = U and $L = \tau(U)$ by Corollary 7.

COROLLARY 8. Let N and M be closed subspaces and suppose that M^{\perp} is the range of a projection P such that $P(N^{\perp}) \subseteq N^{\perp}$ and

$$||f|| = ||Pf|| + ||f - Pf|| \quad (f \in E^*)$$
.

If the quotient space $N/N \cap M$ is a π -space, there is a linear lifting of norm one from $N/N \cap M$ to N.

Proof. In view of Theorem 5 it suffices to prove that the annihilator of $N \cap M$ in N^* is the range of a projection \mathscr{P} such that

$$||g|| = ||\mathscr{P}g|| + ||g - \mathscr{P}g|| \quad (g \in N^*)$$
 .

When N^* is identified with E^*/N^{\perp} , the annihilator of $N \cap M$ becomes the image of $(N \cap M)^{\perp}$ under the canonical map from E^* to E^*/N^{\perp} . Since hypothesis implies splittability of N by Corollary 3, N + M is closed by Theorem 1 so that $N^{\perp} + M^{\perp}$ is weak* closed and coincides with $(N \cap M)^{\perp}$. Therefore the annihilator of $N \cap M$ in N^* becomes the image of M^{\perp} in E^*/N^{\perp} . Since N^{\perp} is invariant under P, there arises a natural projection \mathscr{P} from N^* to the annihilator $N \cap M$. Since by hypothesis

$$\| f - N^{\scriptscriptstyle \perp} \| \geqq \| Pf - N^{\scriptscriptstyle \perp} \| + \| f - Pf - N^{\scriptscriptstyle \perp} \|$$
 ,

 \mathcal{P} is easily seen to have the required property.

When E is the space of continuous functions on a compact set and M consists of functions vanishing on a fixed closed subset, Corollary 8 was proved by Michael and Pełczynski [8].

THEOREM 6. Let M be a closed subspace of an ordered Banach space E. Suppose that M is the range of a projection P such that $f \ge Pf \ge 0$ ($f \ge 0$) and

$$||f|| = ||Pf|| + ||f - Pf|| \quad (f \in E^*)$$
.

If E/M is a Π -space under the canonical ordering, there is a positive linear lifting of norm one, or equivalently, M is the kernel of a positive projection of norm one.

Proof. Since the positive cone E_+ is splittable by Corollary 3, all requirements in Lemma 9 are fulfilled with $S = E_+$ and $L = \tau(E_+)$ by definition of a Π -space and Corollary 6.

To be a π -space or a Π -space is not so severe restriction. Let us prove:

Separable complex (resp. real) $L_p(1 \leq p < \infty)$ and complex (resp. real) C(X) on compact metrizable X are π -spaces (resp. Π -spaces).

In fact, it suffices for the first part to treat a L_p space on a finite measure space (\mathscr{B}, μ) . Since the Borel field is separable with respect to μ , there is an increasing sequence $\{\mathscr{B}_n\}$ of finite Borel subfields such that $\bigcup_{n=1}^{\infty} L_p(\mathscr{B}_n)$ is dense in L_p where $L_p(\mathscr{B}_n)$ is the subspace of \mathscr{B}_n -measurable functions. Each $L_p(\mathscr{B}_n)$ is finite dimensional and the conditional expection relative to \mathscr{B}_n becomes a (positive) projection of norm one from L_p to $L_p(\mathscr{B}_n)(cf. [3])$. The assertion for C(X) is proved in [7] by using peaked partition.

References

1. E. M. Alfsen and B. Hirsberg, On dominated extensions in linear subspaces of $C_c(X)$, Pacific J. Math., **36** (1971), 567-584.

2. T. Ando, On fundamental properties of a Banach space with a cone, Pacific J. Math., **12** (1962), 1163-1169.

3. _____, Contractive projections in L_p spaces, Pacific J. Math., **17** (1966), 391-405. 4. E. B. Davies, The structure and ideal theory of the predual of a Banach lattice, Trans. Amer. Math. Soc., **131** (1968), 544-555.

5. T. Gamelin, Restrictions of subspaces of C(X), Trans. Amer. Math. Soc., **112** (1964), 278-286.

6. ____, Uniform algebra, Prentice-Hall, Englewood Cliffs, N. J. 1969.

7. E. Michael and A. Pełczynski, Peaked partition subspaces of C(X), Illinois J. Math., **11** (1967), 555-562.

8. E. Michael and A. Pełczynski, A linear extension theorem, Illinois J. Math., 11 (1967), 563-579.

9. F. Perdrizet, Espaces de Banach ordonnés et idéaux, J. Math. Pures Appl., 49 (1970), 61-98.

10. H. H. Schaefer, Topological Vector Spaces, MacMillan N. Y., 1966.

Received October 13, 1971.

Research Institute of Applied Electricity Hokkaido University, Sapporo, Japan