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CLOSED RANGE THEOREMS FOR CONVEX SETS
AND LINEAR LIFTINGS

T. ANDO

Let M be a closed subspace of a Banach space E such
that its annihilator M1 is the range of a projection P. Given
a closed convex subset S containing 0, the first problem of
this paper is to find a condition for τ(S) to be closed where
τ is the canonical map from E to E\M. Closure is guaranteed
if £ is splittable in the sense that the polar S° coincides with
the norm-closed convex hull of P(S°) U Q(S°), where Q = 1 -
P. The second problem is to give a condition for existence
of a linear map φ, called a linear lifting, from E/M to E
such that τoφ = 1 and φ°τ(S) Q S. A linear lifting exists if
and only if M is the kernel of a projection making S invariant.
Of special interest is the case where S is a ball or a cone.
When the unit ball is splittable, existence of a linear lifting of
norm one is guaranteed under suitable conditions on E/M,
which are satisfied by separable Lp and C(X) on compact
metrizable X. If further E is an ordered Banach space, and
if both P and Q are positive, M is shown to be the kernel
of a positive projection of norm one.

Though the closed range theorem (Theorem 1) yields immediately
an abstract version of the Rudin-Carleson-Bishop theorem on norm-
preserving extensions of functions defined on a peak set, in § 2 further
modification (Theorem 2) is shown to include Gamelin's extension [5]
of the Rudin-Carleson-Bishop theorem in abstract form. Recently a
different approach to generalization of the Gamelin theorem was made
by Alfsen and Hirsberg [1]. In §3 it is indicated how the closed
range theorem is applied to give unified proofs for results of Davies
[4] and Perdrizet [9] on closedness of a cone in a quotient space and
on order-preserving extensions. In §4 an idea of Pelczynski-Michael
[8] is further developed for the closed range theorem to produce
existence of linear liftings under suitable conditions. The Peiczynski-
Michael theorems are generalized in abstract form (Theorems 5 and 6).

1* Preliminary• Let E be a real or complex Banach space with
unit ball U. E* and E** are its dual and second dual respectively,
and Eis always imbedded canonically into E**. x,y,z, are vectors
in E or E** while f,g,h, ••• are functional in E*. For xeE**
and / e E* f(x) is used instead of x(f). The weak topology σ(E*, E)
on E* is called the weak* topology while σ(E**, E*) on J5** is the

topology. For a subset S of E its norm-closure and its weak**
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closure (in £7**) are denoted by S and S~ respectively.
The polar S° is defined as the set of all / such that Re f(x) ^ 1

or f(x) ^ 1 on S according as the scalar field is complex or real.
When S is a subspace its polar coincides with its annihίlator SL

consisting of all / vanishing on it. The following basic facts are used
frequently in this paper. Proofs are found, for instance, in [10].
Let Si and S2 be closed convex subsets of E containing 0. (Sί Π S2)°
coincides with the weak* closure of conv (£? U S2) where conv (•) denotes
the convex hull. The weak** closure Sr coincides with the polar of
Sί in duality <#**, #*> and Sι = E Π S?. Thus coincidence (S1Π S2)~ =
ST Π S Γ occurs if and only if the weak* and the norm closure of
conv (SI U SI) coincide. In some case conv (S[ U SI) becomes itself weak*
closed. Here the Krein-Smulian theorem is quite useful: conv (S[ U Si)
is weak* closed if (and only if) 7 U° Π conv (S? U SI) is weak* closed
for every 0 ^ 7 < <χ>. If Si contains 0 in its interior then SI is weak*
compact and the norm closure of conv (SI U SI) is weak* closed. If
SΊ is a subspace or a cone, the weak* closure of conv (SI U S%) is just
that of St + SI. In case both Sλ and S2 are subspaces, St + St is
weak* closed if and only if St + S2 is norm-closed.

Suppose now that E is a real Banach space provided with a closed
proper cone E+. E+ gives rise to natural ordering in E under which
it becomes the set of all positive vectors: x ^ y means y — x e E+.
In this respect E+ is called the positive cone. The dual positive cone
EX is defined as the set of / nonnegative on E+, or equivalently JS* =
— E°+. E is called an ordered Banach space if E — E+ — E+ and if
there is 7 < 00 with (U - E+) Γ\ (U + E+) Q yU. The latter condition
is equivalent to that every subset of the form {x; yv ^ x <̂  y2} is norm-
bounded. For notational convenience the relation x <; y + ε in an
ordered Banach space means that there is z ^ 0 such that \\z\\ <
ε and x g y + z. An ordered Banach space or its norm is called
regular if | |g | | = inf {\\y\\; — y ^ x ^ y) for every x. A regular
norm is monotone on the positive cone in the sense that 0 ^ x ^ y
implies \\x\\ ̂  \\y\\. An ordered Banach space admits an equivalent
regular norm. In fact, the functional | | # | | 0 = inf {\\y\\] — y Ŝ % ̂  y}
gives a regular norm.

It is known (cf. [2] and [4]) that E is regular if and only if E*
is regular. An ordered Banach space is said to have the Riesz inter-
polation property if for y^ ^ x5 (i, j = 1, 2, , n) there is z such that
%i ̂  £ ^ Vi(i — 1, 2, , ^ ) . A regular ordered Banach space is called
a Banach lattice if it is lattice under the ordering. A Banach lattice
has the Riesz interpolation property. It is known (cf. [2] and [4])
that E has the Riesz interpolation property if and only if i?* is a
lattice. A continuous linear operator between ordered Banach spaces
is called positive if it transforms a positive cone into another.
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2* Closed range theorems* E is a real or complex Banach space
with unit ball U and M is a closed subspace The canonical map
from E to the quotient space E/M is denoted by τ.

Throughout this section it is assumed:

There is a continuous projection P from E* to ML, and Q stands
for 1- P.

Remark that the adjoint Q* projects E** onto M~ but M is not
necessarily range of any projection. S, St and S2 will denote closed
convex subsets of E containing O S is said to be splittable, or more
precisely, P-splittable if its polar S° coincides with the norm-closure
of conv (P(S°) U Q(S0)).

LEMMA 1. The following conditions are equivalent.
(a) S is splittable.
(b) S~ = {xe E**\ P*x e S~ and Q*x e S~}.
(c) θ{f) = θ(Pf) + θ(Qf) {f e E*)

where θ(f) is defined by θ{f) = sup {Re f(x); x e S}.

Proof. Since the polar of P(S°)(resp. of Q(S0)) in E** coincides
with the set{xeE**; P*α;(resp. Q*x)eS~} equivalence of (a) and (b)
is clear (cf §1).

(b) =• (c) Obviously θ{f) can be defined by

θ(f) = sup {Re f(x); x

Take x and y in S. Then by (b) P*x + Q*y belongs to S~ so that

Re Pf(x) + Re Qf(y) = Re f(P*x + Q*y) ^ θ{f) ,

leading to θ{Pf) + θ(Qf) ^ θ(f). The reverse inequality is obvious,
(c) => (b). Since the functional θ is nonnegative because of SBO,

(c) implies P(S°) U Q(S°) S S\ Therefore S~ is contained in the set {x e
E**\ P*x e S~ and Q*x e S~}. Take x with P*x, Q*x e S~. Then by (c)

Re f(x) - Re Pf(P*x) + Re Qf{Q*x) ^ θ{Pf) + θ{Qf) = θ{f) .

Thus x belongs to the polar of S° in i?**.

COROLLARY 1. The unit ball U is splittable if and only if

11/11 =

COROLLARY 2. If both St and S2 are splittable. and (Si Π S2)~ =
ϊ Π Sr, then St Π S2 is splittable.
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COROLLARY 3. A closed subspace (resp. cone) is splittable if and
only if its polar is invariant under P (resp. under P and Q).

Proof. Let N be a closed cone. P(N°) s N° and Q(N°) s N°
implies iV° - P(N°) + Q(N°) = conv (P(N°) U Q(N0)). If N is further
a subspace, ζ)(iV0) £ N° follows already from P(JV°) £ N°.

LEMMA 2. 7/ SL and S2 are splittable, for any ε > 0 and p > 0
£&e following inclusion relation holds:

, n (S2 + eto + pu} n (Sx + M) n (S2 + M)

where a = \\Q\\.

Proof. Take any a? in the set on the left hand side. Then it
follows by splittability that

Q*x eSm (ST + aεU~Π M~) + apU^ Π

There is yeapU~f) M~ such that

and

n P*(S2 + AT) £ Sr Π

Then by Lemma 1 x — yeS? and there is zeasZ7~ π Λί̂  such that
x — y — « G SΓ. Finally in view of arguments of § 1 α? belongs to

EΠ {Sr Π (S2~ + αεί7") + apU~ D Λf-}

S £7n {S, n (S, + αεC7) + apUf] M}~

= SL n (S2 + αε[/) + apUΠ M .

By definition of the quotient topology τ(x) belongs to the
closure τ(S) if and only if x is contained in S + M. In particular,
τ(S) is closed if and only if S + M is closed.

LEMMA 3. Suppose that St and S2 are splittable. If τ(x) belongs
to τ(Si) Π τ(S2) and \\x — St Π S 2 | | < 7 there is yeSt such that τ(x) =

τ(y) and \\x — 2/|| < τ | | Q | | . In case \\Q\\ — 1 for any ε > 0 y can be

chosen in S1 Π (S2 + εU).

Proof. Let a = | |Q| | and take ε' with 0 < ε' < ε. By hypothesis
a? is contained in

{Si Π (S,
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for some 7 > 7' > 0. Choose εn > 0 such that Σ~=i eΛ < 7 - 7'. By
Lemma 2 there is xQ e M such that \\xo\\ ^ ay' and 11x + x0 — Sλ Γ)

< ε l β Then

and

x + £0 e & n (S2 + αε'£7) + ^ [ 7 .

Now inductive procedure based on Lemma 2 makes it possible to find
a sequence {xn} in Λf such that \\xn\\ ^ #£*, and 11a? + Σ S 1 8* — Sx Π
(S2 + αV*7)ll < en. Since Σ«=o ||a?Λ|| < 00, y = x + Σ~= oαjn is well
defined. Obviously # belongs to S1? and in case a — 1, to & Π (S2 +
i7!^) S & Π (S2 + ε?7). Finally τ(α?) = r(y) and \\x - y | | ^ ^ΣΓ=i en +
α7f < 07.

Now the main result of this paper is near at hand.

THEOREM 1. Suppose that the annihilator of a closed subspace
M is the range of a projection P and that S, Si and S2 are closed
convex subsets containg 0. Then (a) the image of S under the canonical
map T from E to E/M is closed whenever S is splittable. (b) If both
Si and S2 are splittable and (S, Π S2)~ = ST Π SΓ then τ(SJ Π τ(S2) =
τ(Si Π S2). (c) If both Si and S2 are splittable and | |1 — P| | <£ 1, then
the inclusion τ(S0 Π τ(S2) S τ(S1 Π (S? + ε U)) holds for any ε > 0.

Proof, (a) follows from Lemma 3 with Sx = S2 = S. Also (c) is a
direct consequence of Lemma 3. (b) Si Π S2 is splittable by Corollary
2 and S^ S2 + M is closed by (a). Now since by hypothesis

p^s, + M) n (S2 + M)} s p*(so n P^(S2) S s rn sr
- (Sx n s2)^,

it follows that

(^ + M) n (S2 + M) s ΐ7 n (^ n s2 + M)~ - sL n s2 + M ,

showing r(S0 Π τ(S2) S r(SL Π S2). The reverse inclusion is obvious.
This completes the proof.

It follows immediately from Theorem 1 that if the unit ball U
is splittable and if N is a closed splittable subspace then τ(Nf] U)
is closed and coincides with τ(N) f)τ(U). Let us show that the same
conclusion holds for a non-splittable subspace under suitable conditions.

Since by Corollary 3 splittability of N is characterized by P(NL) g
N1 Π M1, it follows by Corollary 1 that under the splittability of U,
N is splittable if and only if
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On the other hand, Corollary 1 implies \\Qf\\ = \\f-M1\\. Thus if
the unit ball is splittable, splittability of N is characterized by

HZ-il^niV1!! ^Wf-M^W (feNL).

LEMMA 4. Let Nt and N2 be closed subspace. Then for p > 0
the following assertions are equivalent.

(a) \\x- N^NzW^pWx- Nx\\ (xeN2)
(b) Wf-NtnNt\\£p\\f-Nέ\\(feNt)

Proof, (a) means that

N2 n (N, + U) s Nx n N2 + pU

which implies by polar formation

(Nt + N2

L) n u° s isr2

L + Nt n /o[/°.

The last relation can be converted to

Nt n (JVί + U°) QNtf] N2

L + pU°

which is nothing but (b). The reverse process can be pursued because
(b) implies that (NJ + N2

L) Π U° is weak* compact, hence by the
Krein-Smulian theorem that Nt + N2 is weak* closed.

COROLLARY 4. Suppose that the unit ball is splittable. Then the
following assertions for a closed subspace N are equivalent.

(a) N is splittable.
(b) \\x- Nf]M\\ ^ \\x- N\\ (xeM)
(c) | | / - W Π M |̂| ^ | | / - M l̂l (feN^).

THEOREM 2. Let M and N be closed subspaces, and suppose that
the annihilator ML is the range of a projection P such that

( 1 )

If for some l ^ / ) < 2

( 2 ) \\x-NnM\\^p\\x- N\\ (xeM),

then the images of the unit ball U, N and N Π U under the canonical
map τ from E to E/M are closed and

τ(NΓ)U) =τ(N)f]τ(U) .

Proof. Closedness of τ(U) follows from (1) by Corollary 1 and
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Theorem 1. Let Q = 1 — P. Then in view of (1) relation (2) is
converted by Lemma 4 to

(3) \\Pf-M±nW\\£7\\Qf\\ (feW)

where 7 = p - 1 < 1. Then for any feN1 and geM1 .

\\g- M1ΠNL\\ ^ \\Pf - M1ΠN1\\ + \\g - Pf\\

showing

\\g- M^-ΠN^W^Wg- W\\ {geM1-)

which is converted by Lemma 4 to

(4) \\x- Mf]N\\^ \\x~ M\\ (xeN) .

This last relation means that the canonical map from the Banach
space N/M ΓΊ N onto τ(N) has bounded inverse. Therefore τ(N) is
closed. Further (4) implies

NΠ (U+ M)Q U+ NΠM .

Let us prove that really

NΠ (U+ M)SU+ NΠM

holds, which is equivalent to the required relation:

τ(N)nτ(U) ^

Suppose for contradiction that there exists x in N Π (U + M) with
(U - x) ΠNΠM = 0 . Since Nf] M is a subspace, it follows that

conv ((17 - x) U {0}) n N Γ) M = {0} .

Since conv ((Z7— x) U {0}) is closed, the last relation implies by polar
formation that (U- x)° + N1 + M1 is weak* dense in #* . Weak*
closedness of (U — x)° + NL + ifef1, if proved, leads to

conv ((CT - a?) U {0}) f] N^ f) M~ = {0}

hence to a contradiction:

Now let us prove the above weak* closedness. To this end, in
view of the Krein-Smulian theorem, it suffices to prove that for any
n > 0

{(U- x)° + N1 +M±}nnU°£δU0Γι (U- x)° + δWnN1 + M
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where δ is a constant depending on n. Remark that (U — x)° consists
of all / with | | / | | ̂  Re f(x) + 1. Since xe U+ M implies | |P*»|| ^
1, it follows from (1) that

-{\\Pf\\ \\P*x\\-\Pf(P*x)\)

- \\Qf\\.

T h i s i n d i c a t e s t h a t Q m a k e s (U — x)° i n v a r i a n t . N o w t a k e f e ( U —
xY^eN1 and heM1 with \\f + g + h\\^n. Then by (1) \\Qf +
Qg\\^n. Since xeNf] (U + M) and g&NL,

ReQ/(as) g. n\\x\\ - ReQg(x) = m||g| | + RePg(x)

^ n\\x\\ + ||Pjr - N1 Π M 1 1| ||a; - Af ||

^ w||a?|| + \\Pg-N1ΠMί\\ .

Since Qf belongs to (U - x)° as /, it follows that

\\Qg\\£n+ | | Q / | | ^

^ « ( | | a j | | + 2)

Then (3) applied to g yields

and consequently

\\Qf + g - N1 n M11| ̂  w + δx = δ2 .

Since xeN,geNλ and Qfe(U-x)0,

HQ/II g Re Q/(x) + 1 ̂  δa||a?|| + 1 ^

and

U s - ΛΓ^nM1!! ^ δ 2 + δ3 = δ

This implies that

f + g + h = Qf + g + (Pf + h)

This completes the proof.
Consider the sup-norm Banach space C{X) of continuous functions

on a compact Hausdorff space X. By the Riesz theorem its dual is
realized by the space of regular Borel measures on X with total-
variation norm. Given a closed subset Y of X, let M be the subspace
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of functions in C(X) vanishing on Y. Then M1 is the set of measures
with support in Y and becomes the range of a projection P: Pm —
χm for each measure m where χ is the characteristic function of Y.
Obviously (1) is satisfied. Now let N be a closed subspace of C(X).
As shown in [5] (3) is equivalent to the property that for any xeN
with \x(t)\ < l ( ί e Y) and any closed subset ZaX with Yf] Z = 0
t h e r e isyeN s u c h t h a t x(t) = y(t) (t e Y), \ y{s) | < 7 (s e Z) a n d \\y\\ <
max (1, 7). Remark that \\x — M\\ coincides with the norm of the
restriction x \ Yoΐx to Yand that x(t) = y(t)(t e Y) is equivalent to x — y e
M. Thus Theorem 2 shows that if (3) with 7 < 1, or equivalently
(2) with p < 2, is satisfied then for any x e N there is y e N such that
x\γ — y\Y and ||τ/|| — \\x\ Y\\. The case 7 — 0 is the generalized Carle-
son-Rudin theorem (cf. [6] Chap. II). As Gamelin [5] shows, Theorem
2 can further yield the following: suppose that (3) with 7 < 1, or
equivalently (2) with p < 2, is satisfied and that p e C(X) satisfies
p(t) =1 (teY) a n d p(s) > 7 (seX). T h e n if xeN s a t i s f i e s \x(t)\ £
p(t) (te Y) t h e r e i s yeN s u c h t h a t x(t) = y(t) (te Y) a n d \y(s)\ ^
p(s) (seX). The case 7 = 0 is the Bishop theorem (cf. [6] Chap. II).
Generalization of the Gamelin theorem to other direction is treated
by Alfsen and Hirsberg [1].

3* Ordered Banach spaces* Let E be an ordered Banach space
with positive cone E+. A closed subspace M is called an ideal if (M —
E+) Π (M + E+) g M. An ideal M is hypostrict if its annihilator ML

is the range of a projection P such that / Ξ> P / ^ 0 for every / ^ 0
The requirement means that both P and Q — 1 — P are positive.
Perdrizet [9] shows that a closed subspace M is a hypostrict ideal if
and only if the following two conditions are satisfied: (1) Given x19

x2eM and y e E with xlf x2 <̂  y, for any ε > 0 there is z e M such
that xlf x2 ^ z <£ 7/ + ε, and (2) given α? e Λί and yl9 y2 e E+ with x ^
?/i + y2 there are X!, α;2 e M such that # = xι + α;2 and x4 ^ 7/i + ε i =
1, 2. Under the Riesz interpolation property an ideal M is hypostrict
if and only if it is positively generated in the sense: M = M f)E+
MΠE+.

When M is an ideal, the Banach space E/M is preordered by the
cone τ(E+) where τ is the canonical map from E to E/M. The following
theorem was first proved by Davies [4] under the Riesz interpolation
property and then by Perdrizet [9] in general case. Let us give a
proof based on Theorem 1.

THEOREM 3. Let E be an ordered Banach space with positive cone
E+. If M is a hypostrict ideal then E/M is an ordered Banach space
with τ(E+) as its positive cone. If E is regular in addition, so is
E/M.
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Proof. Since hypostrictness means that E% — — E+ is invariant
under both P and Q, E+ is splittable by Corollary 3. Then τ(E+) is
closed by Theorem 1. M1 is isometric to the dual of E/M, and the
dual positive cone is identified with ML Π E%. Suppose that E is
regular. Then E* is regular. Since P is positive and is of norm
one in this case, M 1 is a regular ordered Banach space with M1 Π EX
as its positive cone. Therefore E/M is regular as stated in §1. This
completes the proof because every ordered Banach space admits an
equivalent regular norm.

COROLLARY 5. Suppose that the positive cone E+ has nonempty
interior and that M is a hypostrict ideal. If a closed subspace N is
splittable and if it contains an interior point of E+ then τ(N Π E+)
is closed and τ(N Π E+) = τ(N) Π τ(E+).

Proof. Since E+ is splittable, in view of Corollary 2 and Theorem
1 it suffices to prove that (N Π E+)° = NL + E% Remark that /
belongs to (N Π E+)° if and only if the restriction of — / to N is
positive. However it is known (cf. [10] Chap. V §5) that when N
contains an interior point of E+ every continuous positive linear
functional on N admits a continuous positive linear extension to E,
in other words, - (N Π E+)° = - (NL + E°+).

Since E/M is ordered by the cone τ(E+), for any y, z with τ(z) <£
τ(y) there is yf such that z i^y' and τ(y) = τ(^/'). The next task is
to treat the case τ(z) ̂  τ(y) ̂  τ(x) and « <ί a? and to find a condition
of existence 2/" such that z ^ yn ^ x and τ(τ/) — τ(y").

LEMMA 5. Let Sι and S2 be closed convex subsets containing 0.
If for any 0 < λ < 1, / e Si and g e S°2 there are f e S? and g' e S°2 such
that

Xf + (1 - X)g = Xf + (1 - \)g'

and

then (SiΓiSz)^ coincides with SΓ Π SΓ where ( )~ denotes the weak**
closure.

Proof. In view of the Krein-Smulian theorem it suffices to prove
that for any 7 > 0 the weak* closure of conv (Sί U S2°) Γ\ΎU0 is con-
tained in the norm closure of conv (Sf U Sζ). Suppose that 0 < Xa <
1, fa e S?, flrβ G S2° and | |λ β / β + (1 - Xa)ga\\ ^ 7 and that the net {Xafa +
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(1 — Xa)ga} weak* converges to h and the net {λα} converges to λ.
-By hypothesis {λα/α} and {(1 — λα)#α} can be assumed to be bounded,
hence to weak* converge to / ' and g' respectively. If 0 < λ < 1, {/„}
and {ga} can be assumed to weak* converge to f'eS} and g"eSl
respectively. Then h = λ/" + (1 - \)g" belongs to conv (S? U S£). In
case λ = 0, h = / ' + g" and nf belongs to SI for any n > 0. There-
fore h9 as the norm limit of l/n(nf) + (1 — l/n)g", belongs to the norm
closure of conv (SjUSί). The case λ = 1 is treated similarly.

COROLLARY 6. ( f i l l («< — E+))~ = Π?=i fo — E+)~ whenever xt ^
0 i = l , 2 , . . . , Λ .

Proof. E, hence £7*, can be assumed to be regular, (α̂  — £7+)°
consists of all 0 ^ / with /(»<) ^ 1. Suppose that λ< JΞ> 0, Σ?=i λ* —
1 and / i G (a?! — E+)°. Since the norm is monotone on the dual posi-
tive cone by regularity, it follows that ^j\\fi\\^\\Σi=:i^ifi\\j =
1, 2, •• ,n. Now inductive application of Lemma 5 yields the assertion.

The following theorem was proved by Perdrizet [9]. Let us give
a proof based on Theorem 1.

THEOREM 4. Let E be an ordered Banach space with positive
cone E+. Suppose that M is a hypostrict ideal and E/M is ordered
by the cone τ(E+) where τ is the canonical map from E to E/M. If
Zi ̂  0 ^ Xi and τ(zι) ̂  τ(y) <Ξ zfa) i = 1, 2, , n, then for any ε > 0
there is yr such that s< <£ y' ^ a?4 + ε i = 1, 2, , w α^d r(y) = r(y').
Further ε can be made 0 if every x{ is an interior point of E+ or if
E has the Riesz interpolation property.

Proof. E is assumed to be regular, hence Q is of norm one.
zt + E+ is a closed convex set containing 0. It is splittable because
both P* and Q* are positive and zt is negative. Similary x€ — E+ is
splittable. Let S, = ΓlΓ=i (s» + E+) and S2 = ΓlLi (α* - ^ + ) . Then by
Corollaries 2, 6, and Theorem 1 both Si and S2 are splittable and

which is just the first assertion.
If every α?< is an interior point of E+, S2 contains 0 in its interior

and by Corollary 2 and Theorem 1

n τ(s2) = Γ φ n s 2 ) .
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Suppose finally that E has the Riesz interpolation property. Since
i£** becomes a lattice as stated in §1, Sr consists of all weE** with
V?=i3i ^ w> where V3Us* denotes the supremum of zu •••, zn in j?**.
Then Si consists of all 0 ^ / with /(V?=i «<) ^ l Similarly S2° consists
of all O^g with #(A?=i^ΐ) ^ 1 where Ai=ιχi denotes the infimum
of xl9 a?n, in #**. Take 0 < λ < 1, / e Si and g e S°2 and let h =
λ/ + (1 — λ)#. Since 22* is a Banach lattice as stated in § 1, and
since both — / and g are positive, it follows that 0 ^ h A 0 ^ λ/
and 0 ^ Λ V 0 ^ ( l - λ)#. Let / ' = (l/λ)(Λ Λ 0) and g' = (1)/(1 - λ)Λ, V
0. Then it follows from the above characterization of SI that / ' e
Si, g'eS°2 and Λ = λ/' + (1 - \)g'. Now since ||Λ A 0||, \\h V 0|| ^ ||Λ||,
Lemma 5 yields (Si Π S2)~ = Sr Π Sr and the assertion follows from
Theorem 1.

4% Linear lifting* Let E be a Banach space with unit ball Z7
and M a closed subspace. The canonical map from E to E/M is
denoted by r. A continuous linear map 9> from i?/ikf to £? is called
a linear lifting iί τoφ = 1. If 9? is a linear lifting, φoτ is a projec-
tion with M as its kernel. Conversely, a linear lifting exists if M is the
kernel of a continuous projection.

In this section it is assumed:
There is a projection P from E* to M1 such that

and Q stands for 1 — P.

Let F be a finite dimensional Banach space with unit ball V.
Consider the dual system <F* (x) E, F® E*} of tensor products. When
F* 0 E is provided with the Minkowski functional of ( F ® U°)° as
norm, it is called the inductive tensor product of F* and E and is
denoted by F* (g) E. When F® E* is provided with the Minkowski
functional of conv ( F ® U°) as norm, it is called the protective tensor
product of F and E* and is denoted by F®E*. Let B = B{F, E)
denote the Banach space of all continuous linear maps from F to E,
provided with operator-norm. Since F is finite dimensional, B is
isometric to the inductive tensor product F* (g) E under the canonical
correspondence. The following lemma, whose proof is found in [10]
Chap. IV §9, is basic in the subsequent development.

LEMMA 6. The dual of B(F, E) is isometric to the projective
tensor product F' (§) E* while the second dual is isometric to the inductive
tensor product F * ® ^ * * , hence to B(F, E**).

In view of Lemma 6 5** is always identified with B(F, E**).
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In this case the imbedding of B to j?** is just the natural imbedding
of B(F, E) to B(F, E**). In accordance with the terminology in §1
the weak** closure of a subset G of B is formed in B(F, E**) and is
denoted by G~. When K and S are a subset of F and a closed convex
subset of E containing 0 respectively, G(K, S) and ̂ (K, S~) denote the
set of all φeB with φ(K) £ S and the set of all ψeB** with
ψ{K) £ JS~. Obviously G(K, S) is a closed convex subset of B con-
taining 0 and its weak** closure is contained in

COROLLARY 6. (a) G(V, U)~ = &(V, U~). (b) {G(H, 0) n G(F,

~ = &(H, 0) Π ̂ ( F , N~) if H and N are closed subspaces of F
and E respectively, (c) G(K, S)~ = &(K, S~) if K is a cone generated
by a linearly independent basis {xu •••,#*} of JP αwώ S is a cone.

Proof, (a) is an immediate consequence of Lemma 6. (b) G{F, N)~ =
^ ( ί 7 , iV~) follows from Lemma 6 applied to N instead of E. Since F is
finite dimensional, H is the kernel of a projection σ. Then

gf (H, 0) n Sf (F, JV-) = gf (F, i\Γ-)oσ - G(F, iST)~oa

, N)oσ}~ = {G(fl, 0) n G(F,

while the reverse inclusion is obvious, (c) Take any φ in
and let yi = <p(xt) i = 1, 2, , n. Since each yt belongs to S~, there
are nets {yίf£r} in S, weak** converging to yt i = 1, 2, , n. Consider
a net {φa} in 5 defined by φa(Xi) = ̂ ,α i = 1, 2, , n. By hypothesis
it is contained in G(K, S) and weak** converges to φ. Thus
is contained in G(K, S)~ with the reverse inclusion is obvious.

Since 2?* is identified with the projective tensor product F® E*
by Lemma 6, the operators 1 (x) P and 1 (x) Q are considered to define
projections in J3*. The ad joints of 1 (x) P and 1 (x) Q are realized in
B(F, E**) according to the following formula:

(5) (1 (x) PYΨ = P*oφ and (1 (g) Q)*φ = Q*oψ (<p e B(F, E**)) .

LEMMA 7. The annihilator G(F, M)L is the range of 1 (x) P.

Proof. Since Q* is a projection onto Λf~, by (5) (1®Q)* projects
S** onto ^ ( F , Jlf~), which coincides with G(F, M)~ by Corollary 6.
Then 1 (x) P is obviously a projection from S* to G(F, ikί)1-

On the basis of Lemma 7, a sentence "(?(i£, S) is splittable" will
always mean that G(K, S) is 1 (x) P-splittable.

COROLLARY 7. 7/ S is splittable and G(K, S)~ = gf (ίΓ,
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G(K, S) is splittable.

Proof. This follows from (5) by Lemma 1.

The following lemma can be considered a development of a basic
device in Michael and Peiczynski [8], treating linear lifting in a special
case. The crucial requirement for P plays a decisive role in the proof.

LEMMA 8. Suppose that S is splittable and G(K, S)~ = 5f(K, S~)
for a subset K of F. If ψ belongs to

G(π(K), S) Π G(π(V), U) n G(K, S + M) n G(V, U + M)

where π is a projection of F to a subspace H, then for any ε > 0
there is φ in G{Kf S) Π G(V, U) such that

τoφ = roψ and \\(φ — ψ)\H\\ < ε.

Proof. Remark first of all that the requirement for P means by
Corollary 1 that the unit ball U is splittable.

Let ψi = ψ — Q*oψo(l — π). Since

Q*oψί(K) s Q*ofoπ(K) s Q*(S) S S~

and

S P*oψ(K) S P*(S

by splittability of S, ψ1 belongs to &{K, S~) by Lemma 1, hence to
G(K, S)~ by hypothesis. Since U is splittable and G(V, U)~ = ^{V,
U~) by Corollary 6, the same argument shows that ψx belongs also
to G{V, U)~. Moreover it belongs to {G(K, S) n G(V, U)}~ because
G(V, U) is the unit ball of B. On the other hand, Q*o^o(l - π)
belongs to gf (ff, 0) n S? (F, M~), hence to {G(H, 0) n G(F, M))~ by
Corollary 6. Thus ψ belongs to

{G(K, S) n G(V, U) + G(H, 0) n G{F,

It follows that ψ must be contained in the norm closure of

G(K, S) Π G(V, U) + G(H, 0) n G(F, M) .

Therefore there is f2 e B such that ψ - ψ2e G(H, 0) Π G(F, M) and

\\ψz-G(K,S)f)G(V, U)\\<ε.

Since G{K, S) Π G{V, U) is splittable by hypothesis and Corollary 7,
Lemma 3 guarantees that there is φeG(K,S)Π G(V, U) such that
φ - ψ2 e G(F, M) and \\φ - ψz\\ < ε. Now ψ2 - ψ e G{H, 0) Π G(F, M)
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implies that τoψ — zoψ and

\\(φ - ψ) I JEΓII = \\(φ - f2)\H\\ ^ \\φ - ψ2\\ < 6 .

Let S be a closed splittable subset of E and L a subset of r(S).
Suppose that there is a sequence of projections {πn} in EfM such that
(1) the range Fn of πn is of finite dimension, (2) ||τrΛ | | ^ 1, (3) 7ΓΛ τrm =
πn for n <Lm, (4) πn(L) £ L and (5) ττw converges strongly to the
identity as n —• oo .

Let gfΛ denote the set of all φeB(Fn,E) with φ<>πn(L) £ S
while GΛ is the set of all ψ e B(Fn, £r**) with ψoπn(L) S S". As before,
the second dual of B(Fn, E) is identified with B(Fn, E**).

LEMMA 9. If the weak** closure of Gn coincides with &n, n = 1,
2, , then there is a linear lifting φ from E/M to E such that φ(L) §
S and \\φ\\ ̂  1.

Proof. Let ττ0 = 0 and φ0 = 0. Assume that linear maps φό e
B(F3Ί E) j ~ 0,1, , n have been found in such a way that τ°φs —
1 on Fh \\φό\\ S 1, Ψjoπ^L) S S and \\(φs_t - φdlF^W < 1/2^ j =
0,1, * ,n. Since JP% + 1 is finite dimensional by hypothesis, there is
ψ £ B(Fn+1, E) such that r o f = 1 on Fn+1. Consider the map φ' =

Ŵ°7ΓW + ^°(1 ~ τrΛ) from JP % + 1 to S. Then by assumption

ψΌπn(πn+ι(L)) = <Pnoπn(L) £ S

and in view of 11 τrΛ 11 ̂  1

where T^ denotes the unit ball of Ft. Since Vn+ι £ r(Z7) by Theorem
1 and τr%+1(L) £ τ(S)9

ψ'(Vn+ί) £ Ϊ7 + ilί and ^ f(πn + 1(L)) £ S + i l ί .

Since the weak** closure of Gn coincides with &% by hypothesis,
Lemma 8, applied to Fn+1, πn+1(L) and πn instead of F, K and π,
yields that there is φn+1eGn+1 such that ||9>»+i|| ^l,τoψn+1 = l o n
Fn+1 and \\(φn+1 - φn)\Fn\\ <l/2n, completing induction. Now the
sequence {φn<>πn} is uniformly bounded and

Σ
Ίc=n

^ Σ l/2fc <

guaranteeing convergence of φk(x) for every xeFn as k—*°°. Then
{9*n°7Γn} converges strongly to some map 9? from E/M to JS'. Obviously
<P is a required linear lifting.

It is better to introduce some terminology before stating the main
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result on linear lifting. A Banach space E is called a π-space
if there is a sequence {Fn} of finite dimensional subspaces such that
F1 £ F2 £ with U"=i ̂  = E a n ( ϊ e a c h ^ ί s t h e range of a pro-
jection of norm one. Here projections πn can be assumed to have the
property that πnπm = πn for n ^ m and that 7ΓW converges strongly to
the identity as n —> oo. An ordered Banach space is called a Π-space
if, in addition, projections can be chosen positive and if each Fn has
the positive cone generated by a linearly independent basis.

THEOREM 5. Suppose that the annihilator of a closed subspace
M is the range of a projection P such that

\\f\\ = \\Pf\\ + \\f-Pf\\ (feE*).

If the quotient space E/M becomes a π-space then there is a linear
lifting of norm one, or equivalently, M is the kernel of a projection of
norm one.

Proof. Since the unit ball U is splittable by Corollary 1, all
requirements in Lemma 9 are fulfilled with S = U and L = τ(U) by
Corollary 7.

COROLLARY 8. Let N and M be closed subspaces and suppose that
ML is the range of a projection P such that P(NL) £ NL and

// the quotient space N/N Π M is a π-space, there is a linear lifting
of norm one from N/N ΓΊ M to N.

Proof. In view of Theorem 5 it suffices to prove that the annihilator
of NΓ\M in JV* is the range of a projection & such that

When iV* is identified with E*/NL, the annihilator of N Π M becomes
the image of (N Γ\ M)1 under the canonical map from E* to E^/N1.
Since hypothesis implies splittability of N by Corollary 3, N + M is
closed by Theorem 1 so that N1 + M1 is weak* closed and coincides
with (NΠM)1. Therefore the annihilator of N f] M in i\Γ* becomes
the image of M1 in E*/NL. Since NL is invariant under P, there
arises a natural projection & from iV* to the annihilator
Since by hypothesis

11/ - N-\\ ^ ||P/ - N-\\ + ||/ - Pf -

is easily seen to have the required property.
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When E is the space of continuous functions on a compact set
and M consists of functions vanishing on a fixed closed subset, Corollary
8 was proved by Michael and Pelczynski [8].

THEOREM 6. Let M be a closed subspace of an ordered Banach
space E. Suppose that M is the range of a projection P such that
f^Pf^O (/ ^ 0) and

\\f\\ = \\Pf\\ + \\f-Pf\\ (/eJS*).

// E/M is a Π-space under the canonical ordering, there is a positive
linear lifting of norm one, or equivalently, M is the kernel of a
positive projection of norm one.

Proof. Since the positive cone E+ is splittable by Corollary 3, all
requirements in Lemma 9 are fulfilled with S = E+ and L — τ(E+) by
definition of a 77-space and Corollary 6.

To be a 7Γ-space or a /7-space is not so severe restriction. Let
us prove:

Separable complex (resp. real) Lp(l ^ p < oo) and complex (resp.
real) C(X) on compact metrizable X are π-spaces (resp. Π-spaces).

In fact, it suffices for the first part to treat a Lp space on a finite
measure space (^, μ). Since the Borel field is separable with respect
to μ, there is an increasing sequence {&n} of finite Borel subfields
such that \Jn=ιLp(&n) is dense in Lp where Lp(&n) is the subspace
of ^^-measurable functions. Each Lp(&n) is finite dimensional and
the conditional expection relative to &n becomes a (positive) projection
of norm one from Lp to Lp(^n)(cΐ. [3]). The assertion for C(X) is
proved in [7] by using peaked partition.
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