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FIXED POINTS IN PARTIALLY ORDERED SETS

R. E. SMITHSON

In the first section of this paper a converse of a fixed point
theorem for increasing functions on partially ordered sets is
obtained. In the second part of the paper some results on
common fixed points for commuting families of functions are
extended to multifunctions and some known results are obtain-
ed as corollaries.

The results referred to above are in [1], [2], [5], and [6]. In [5]
Smithson extended a theorem of Abian and Brown [1] to multifunc-
tions, and by using the results of Davis [2] obtained a characteriza-
tion of complete lattices in terms of fixed points of multifunctions as
a corollary. In the first part of this note, the converse of Theorem
1.1 of [5] is proved and thus a characterization of certain partially
ordered sets in terms of the fixed point property is obtained. This
theorem extends a result of Davis [2]. In the second part some
theorems for commuting functions and commuting multifunctions are
obtained. These results extend a theorem of Tarski [6].

In the following (X, ^ ) is a nonempty set with a partial order
<̂ . A subset C of X is called a chain in case it is totally ordered.
Least upper bounds are defined in the usual way and x < y means
x <: y and x Φ y. A multifunction F: X—* X is a point to set cor-
respondence, (i.e., F(X) is a nonempty subset of X for each xeX.)
The term function shall mean a single-valued function. We shall
denote a multifunction by an upper case letter, F, G etc., and a func-
tion by a lower case letter. A function f:X—>X is increasing in
case xSy, x, yeX, implies that f(x) <*f{y). Let F: I - ^ I be a
multifunction on X into X. Then we use the following two condi-
tions from [5] (Condition II was designated III in [5]).

I. If xx <̂  x2, xl9 x2e X, and if y1 e F(xx), then there is a y2 e F(x2) such
that yι^y2.

II. Let C be a chain in X and suppose there is an increasing func-
tion f:C-+X such that f(x) e F(x) for all xeC. If x0 = lub C, then
there exists aj/oeF(x0) such that f(x) ^ yQ for all xeC.

Note that an increasing single-valued function may be considered
a multifunction and satisfies both Conditions I and II.

Finally if /: X—> X is a function, a fixed point of / is a point
xe X such that f(x) — x and if F is a multifunction, then x is a fixed
point in case xeF(x).
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1. The converse of a fixed point theorem. In [5] the following
extension of a result of Abian and Brown [1] was proved.

THEOREM A Suppose that each nonempty chain in X has a least
upper bound and suppose that F: X—> X is a multifunction that satis-
fies I and II. If there is an e e X and a point y e F(e) such that
e 5* V, then F has a fixed point.

First note that we only needed to assume that each chain which
contains e has a least upper bound. Next, since increasing functions
satisfy Conditions I and II, we state and prove the converse of
Theorem A for functions and obtain as a corollary a characterization
of the fixed point property for a class of multifunctions on a partially
ordered set. Theorem 1.2 is also an extension of a result of Davis [2].

Lemma 1.1. below is given as an exercise on page 68 of [4] and
the proof is omitted.

LEMMA 1.1. Every nonempty chain in a partially ordered set
contains a well ordered cofinal subset.

We also need the condition used by Wolk in [7].

D. If α, b are upper bounds of a totally ordered subset A of the
partially ordered set X, then there is an upper bound d for A such
that d <; a and d <̂  b.

THEOREM 1.2. Suppose that (X, <=) is a partially ordered set
which satisfies condition D. Let ee X and suppose that there is a
chain C in X which contains e and which does not have a least upper
bound in X. Then there exists an increasing function f: X —> X such
that e ^ f(e) and f(x) Φ x for all xe X.

Proof. By applying Lemma 1.1 we obtain a well ordered cofinal
subset W of C which contains e as a smallest element. Further,
since C does not have a least upper bound in X neither does W. We
have two main cases to consider. First assume that there is an upper
bound of W in X, and set A = {x e X: x is an upper bound of W).
Then apply the Hausdorff maximal principle to obtain a maximal
chain in A, and from this maximal chain we obtain a set B, by ap-
plying Lemma 1.1 to the dual order, such that if x is in the chain,
there is a, beB with 6 ^ x, and such that each nonempty subset of
B contains a largest element. Then by Condition D no element of A
is a lower bound of B, and we define f :X-+X as follows. First
suppose that xi A and set W(x) — {weW:w ^ x} Φ 0 . Then set
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f(x) = min W(x). Next suppose that xeA. Then the set B(x) =
{δe JB: a? ̂  6} Φ 0 , and we set f(x) — max ΰ(a ). To see that / is
increasing suppose that x1 ^ x2. If xι e A, then #2 6 A and U^) C B(X2);

hence /(a^) <̂  f(x2). If neither a?lf #2 are in A, then ίFfo) ID TF(#2) which
implies that f(Xj) ^ /(#2). Finally if xx$A and #2 e A then /(α )̂ e TF,
and /(#2) el? which again implies that ffa) t^f(x2). To see that/has
no fixed point first observe that f(X) c W U B and hence, f(x) Φ x
for all x £ W U B. If a? e W, then /(a?) = min {weWix <w} and if
#el?, then f(x) = max{δe J3: 6 < #}. In any case /(a?) Φ x. Finally
note that e <; f{e).

To complete the proof suppose that W has no upper bound. Then
for xe X, set W(x) — {we W: w -$> x}, and set f(x) = min TF(a?). The
verification that e ^ /(β),/ is increasing and that / has no fixed point
is analogous to the above case.

COROLLARY 1.3. Let e e X and let j ^ ~ be the set of multifunc-
tions on X which satisfies Conditions I and II. Further, suppose
that for each F e ^~ there is a y e F(e) such that e ^ y. Then every
multifunction in j ^ has a fixed point if and only if each chain in
X which contains e has a least upper bound in X.

2. Commuting families. In this section we obtain an analog of
Theorem A for commuting families of functions, and we extend a
theorem of Tarski's [6] to commuting families of multif unctions where
a family of functions is commuting in case /, g e ^~ implies that
f°9 = g°f*

Theorem 2.1 below is a version of a theorem of DeMarr [3].

THEOREM 2.1. Let e e X and let ^ be a commuting family of
increasing functions on X into X such that e ^ f(e) for all fzj^.
If each chain in X which contains e has a least upper bound in X,
then there is a point xeX such that f(x) = x for all f

Proof. Let £f be the set of all chains in X which contain e and
which satisfy: If x e C e £f, then x ^ f(x) for all fe &~. By Zorn's
lemma there exists a maximal element Co in Sf. Let x0 ~ lub Co (x0

exists since Co is a chain and eeCQ). First we shall show that x0 e Co.
For let fe ^ and let x 6 Co. Then x <; x0 and therefore x<^f(x) ^f(x0).
Hence, f(x0) is an upper bound for Co and thus x0 ^ /(#<>). Next sup-
pose that x0 Φ f(x0) for some fe^~. Then we shall show that
CO U {/(Xo)} e S*. For this let g e jr*. Then xQ ^ g(x0) and f(x0) ^
g(f(x0)). Hence, Co (J {(f(Xo)} e Sf which contradicts the maximality of
Co. Hence, f(xn) — x0 for all
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A family ^ of multifunctions is commuting in case FoG = G°F
for all F,Ge^ where FoG(x) = F(G(x)) = \J {F(y): y e G(x)}.

PROPOSITION 2.2. Let ^ be a family of commuting multifunc-
tions on X into X such that each member of J^~ satisfies I. Suppose
that lub F(x) e F(x) for all F e &~ and xeX. Then for F e jF~ define
f(x) = lubF(x) for all xeX. If ^ is the collection of such functions,
then j^l is a commuting family and each member of J?o is increasing.

Proof. Let f,ge ^ 0 where f(x) — lub F(x) and g(x) — lub G(x)
for all xeX. Then f(g{x)) eF(G(x)) = G(F(x)). Thus there is a y eF(x)
such that f(g(x)) e G(y). Further, y ^f(x) = lub F{x), and so by I
there exists a z e G(f(x)) such that f(g(x)) ^ z. Therefore f(g(x)) ^
g(f(x))9 and we also get g(f(x)) ^f(g(x)) by a similar argument. Thus
fog = gof. Finally, if xι <^ x2, Condition I implies that lub F(Xχ) ̂
\ύbF(x2) and hence, each fe^l is increasing.

Before giving the next theorem we examine a simple example
which shows that Condition I was needed in Proposition 2.2.

EXAMPLE. Let X = [0,1] and define two multifunction F and G
as follows: Let G(x) = X for all xeX and F(x) = X for 0 ̂  x < 1
and F(ΐ) = 0. Then FoG = GoF but if f(x) = luh F(x) and flr(Λ?) =
lubG(α), then /((/(»)) = 0 and flf(/(«)) = 1 for all xeX,

THEOREM 2.3. Let e e X and suppose each chain containing e has
a lub in X. Let ^ be a commuting collection of multif unctions on
X into X such that there exists y e F(e) with e ̂  y for each F e J^.
If each F e &~ satisfies Condition /, and if lub F(x) e F(x) for each
F e &~ and for all xe X, then there exists an xe X such that x e F(x)
for all

Proof. Apply Proposition 2.2 and Theorem 2.1.

As a corollary we obtain an extension of a theorem of Tarski [6]

COROLLARY 2.4. Let X be a complete lattice and let άf be a
commuting family of multif unctions on X. If each F e ̂  satisfies
Condition I and if lub F(x) e F(x) for each F e Jf and xeX, then
there is a common fixed point for the members of J^~'.
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