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SOME ISOLATED SUBSETS OF INFINITE
SOLVABLE GROUPS

D. S. PASSMAN

The main theorem of this paper offers necessary and
sufficient conditions for a solvable group G to be covered by
a finite union of certain types of isolated subsets. This result
will have applications to the study of the semisimplicity problem
for group rings of solvable groups.

Let H be a subgroup of G. We define

W = VH = {xeG\xmeH for some m ̂  1} .

Observe that i/ίΓ need not be a subgroup of G even if G is solvable.
We say that H has locally finite index in G and write [G: H] = l.f.
if for every finitely generated subgroup L of G we have [L: L Π H] < °o.
Suppose [G: H] = l.f. and let x e G. Then [(x): {x) Π H] < oo so α;m e H
for some m ̂  1 and x e i/I?. Thus G = VΊR. The main result of
this paper is a generalized converse of this fact for solvable groups G.

THEOREM. Let G be a solvable group and let Hly H2, •••, Hn be

subgroups with

G = \JlVHt .

Then for some i = 1, 2, , n we have [G: Hi] — l.f.

This paper constitutes one third of the solution of the semisim-
plicity problem for group rings of solvable groups. The remaining
two thirds can be found in [1] and [4J. Moreover a description of
this latter result as well as an analogue of the above theorem for
linear groups will appear in [3].

We first list some basic properties of subgroups of locally finite
index.

LEMMA 1. Let G a W^ H, G a Wx 2 Hx and let N <\G.

( i ) [G: H] = l.f. implies [G: W] = l.f.
(ii) [G/N: HN/N] - l.f. implies [G: HN] - l.f.
(iii) [W: H] = l.f. implies [WN: HN] = l.f.
(iv) [ W: H] - l.f. and [ W,ι H,] = l.f. implies [WΠW^HΠH^ l.f.
(v) [G: W] - l.f. and [W: H] = l.f. implies [G: H] = l.f.

Proof. (i) If L S G then [L: W Π L] ^ [L: HΠ L] so this is clear,
(ii) Let L be a finitely generated subgroup of G. Then LN/N
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is finitely generated so

[LN/N: (HN/N) Π (LN/N)] < oo .

Thus [LN: HNΠLN] < co. Since LSLNthis yields [L: HNni]<oo,
(iii) Let L be a finitely generated subgroup of WN. Then there

exists a finitely generated subgroup £>£ W with LN — SN. Now
[S: S Π ίί] < oo so [SW: (S Π ff)ΛΓ] < oo. Observe that (S ίl H)NS
SNf]HN so [SN:SNf]HN]<oo. Finally LSLN=SN yields
[L: L n ίίi^] < oo and [WN: HN] = Z./.

(iv) Let L be a finitely generated subgroup of TFΠ TFi Then
L^W yields [L: if Π L] < oo and similarly [L: H, Π £] < oo. Thus
[L: (£ΓΠ ίίO ί l L ] < o o and [TFfΊ TΓX: ff Π HJ = L/.

(v) Finally let L be a finitely generated subgroup of G. Since
[G: W] = l.f. we have [L: L ί) W] < oo. Thus by [1, Lemma 6.1]
L Π TF is finitely generated and since [ W: H] = £./. we have

This yields [L: L Π if] < °o and the lemma is proved.

LEMMA 2. Let AH be a group with A a normal abelίan sub-
group. Set

B= [aeA\[H:Hf]Ha] = l.f.} .

Then we have
( i ) Af]H<]AH
(ii) if a e A then Hf] Ha = NH(a(H Π A))
(iii) B is a subgroup of A and B <\ AH.
(iv) if [A: B]< oo and B/(A Π H) is torsion, then [AH: H] = i./.

Proof. ( i ) Since A <J Afί we have A Π if <] if. Since A is abelian
we have A Π if < A. Thus A n if < Aif.

(ii) Let A G if n ifa. Then λ e if and h""1 e H so /r 1/^ 1 e if n A
since A is normal. Thus h centralizes a modulo if n A so Λ normalizes
α(if Π A) and if n HaSNH(a(Hf] A)).

Let heNH(a(Hf]A)). Then heH and ha Ξ= h modulo i f n A .
Since ifnA<|Aίf we have Ha^Hf]A and heHa(Hf] A) = Ha.
Thus heHf]H\

(iii) Clearly l e β . Since [α(ίf Π A)]-1 = α ^ ί f Π A) we see that
NH(a(HΠ A)) = NH{a~\HΠ A)). Thus aeB implies a"1 eB. Finally
let aybeB. Then [H: HpιHa] = l.f. implies [ifδ: Hb n ifαδ] - ί./.
so by Lemma 1 (iv), [HΠ if&: if Π Hb n ifαδ] - «./. Now [if: if n if6] -
Z./. so Lemma 1 (v) yields [H: H Γ) Hb Π ifαδ] = Z./. Since if n ίfαδ 2
if Π iϊ δ Π ifαδ we have [H: if Π ifαδ] = Z./. and B is a group. Clearly
J5<1 Aif.
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(iv) By Lemma 1 (ii) since A Π H < AH, A Π i ϊ § B,Af) i ϊ s H
it clearly suffices to work in AH/(A Π H) or in other words we may
assume that A Π H = <1>. Thus AH is the semidirect product of A
by H. Now [AH: 5i ϊ ] < ^ so by Lemma 1 (v) it suffices to show
that [BH: H] = l.f.

Let L be a finitely generated subgroup of BH. Then there exists
a finitely generated subgroup Bt of B and a finitely generated sub-
group Hx of H such that L £ J5f* fζ. By definition of 5 and by (ii)
each element of Bx has only finitely many conjugates under the ac-
tion of fli. Thus Bf1 is a finitely generated abelian group. Since
this group is torsion by assumption we have

|£?i | < - and [j&fi H,: H,] = \B^\ < oo .

Finally L s^f 1 Hλ so [L: L n Hx] < oo. Since L n £Γ= 1/ Π (Bfι #0 Π
H = L Γ) Hlf the result follows.

We can now obtain the main result.

Proof of the Theorem. By induction on d(G), the derived length
of G. If d(G) = 0 then G = <1> so the result is clear. Assume the
result for all groups G with d(G) ^ d. For any group G let DG =
G(rf) be the dth derived subgroup of G.

Suppose d(G) = d + 1. Since G = (JΓ i/ ίZi we have clearly

G/(DG) = \JV Hi{DG)l{DG) .

By induction some of these groups have locally finite index in G/(DG).
Thus by Lemma 1 (ii) we have for a suitable ordering of the His
that [G: H^DG)] = l.f. for ί = 1, 2, . . , s (some β ̂  1) and [G: Ht(DG)] Φ
l.f. for i > s. We call s the parameter of the situation and we prove
the d(G) =d + l case by induction on the parameter starting with s = 0
which does not occur.

Assume the result for all groups G with either d(G) ^ d or d(G) =
d + 1 and parameter < s. Now fix G and suppose d(G) = d + 1, G =
\yiV Hi and the parameter of this situation is s. Set A = DG so
A is a normal abelian subgroup of G and say HxA, H2A, , H8A have
locally finite index in G. For each i ^ a set

£<= {aeAUHs.HtΠH?] = i./.} .

By Lemma 2 (iii) I?; is a subgroup of A.

1. For each i <* s set

Λ14 = {α G AI [if,: fl? ΓΊ flil = i./.} .
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Then A = (Ji Λ*.

Proof. Fix ae A and let a?e Hx. Then (am"1)9* e H3 for some j
so xm e Hf Π JHi. Thus

H, = u Vfl?nfl; .
1

If d(-Hi) g d then by induction [J3i: fl? Π 23i] = Z./. for some i and as in
the argument below i <^ s so α e AH. Assume that d(Hj) ~ d + 1 and
consider the parameter of this situation. Observe that DHλ g A f l -HΊ

Suppose [H,: (Hΐ Π HJDHJ = Z./. Now fli a J5fli and Hΐ a (^Dίίi)α -
D i ^ since A is abelian. Thus (Hΐ f] H^DH, = ^ n Jϊi so [iϊ;: Hΐ Π
-HΊ] = Z / and α 6 An

Thus we may suppose that \Hγ\ (HL

a n H^DH,] Φ l.f. Let [ίfr
(£Γ; Π H^DH,] = L/. Since A is normal in G and A a DH, we have
by Lemma 1 (iii)

[fliA: (ff; Π f?i)A] - [iϊίA: (J5Γ; Π fli)(Z)fli)A] - Z./.

Now [G: J3iA] - Z./. so by Lemma 1 (v) we have [G: (#"; n iίi)A] = l.f.
Now HjA^iH, Π if/)A so [G: ί ζ A] = l.f. by Lemma 1 (i) and j ^ s.
Since j Φ 1 the parameter of this situation is < s.

By induction [J3i: flΊ Π iϊiα] = Z./. for some i ^ n. But then by
Lemma 1 (i) [H,: (Ht f] H^DH,] = Z./. s o i g s by the above. Thus
a e AH.

Step 2. If AH Φ 0 and a{ e AH then Aλi = B ^ .

Proof. Suppose AH ^ 0 and fix at e AH and let a e AH. Then
[ifc fl? Π HJ - l.f. and [iί,: J3?« n fli] - Z./. yield by Lemma 1 (iii)
(iv) first [fli: ftnffίίl fl?«] - Z./. and then [i/.A: (fli n Hi Π H?*)A] =
Z./. Since [G: ΐ^A] = l.f. we have by Lemma 1 (v) [G: (#, Π -ί̂ α Π

(fl, n # ? n fl?*)^- s (fl? n #?«)A - ( ^ n fl?^1)A

so we have by Lemma 1 (i) (iv) [G: (H, n Hf^^A] = Z./. and

[Hs. H{ n (s, n Hr^)A] = if.

Observe that Ht Π fl?α^x 3 if* Π A and thus

if, n (if, n J S ^ Γ 1 ) ; ! - (H{ n Hr^ 1

Therefore the above yields [H,: H, Π H?^1] = l-f. so aat e B{ and a e
Bia{. Hence AliξΞiBiaί.

Now let b e B,. Then [HA m n ίf. ] - Z./. yields \Hΐκ H*ai Π fl?*] =
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l.f. so by Lemma 1 (iv) [H, Π Hf<: H, Π H}ai Π Ht

ai] = l.f. Since
[JBi: H, n H^] = l.f. Lemma 1 (v) yields [H,: H, f] H^ n #?'] = Z./.
Since Ή n H?ai a # i Π fl?'* n JEΓ * we have [fli: JBi Π iϊ?α*] = Z / . and
bdi e AH. Thus U ^ S AH and this fact follows.

Step 3. We may assume that for all ί = 1, 2, « , s we have
[A: Bi] < oo and BJ(A Π Ht) not torsion.

Proof. By Steps 1 and 2 we have

A = U - B Λ over all AH =£ 0

and hence by Lemma 5.2 of [1]

i over all Au Φ 0 , [A: 2?{] < oo .

In particular since leA there exists k ^ s with [A: J5fe] < oo and
l e i l f c .

Suppose k Φ 1. Then 1 e Alk implies that [Hji Hk Π -HJ = ϊ./ and
hence as we observed earlier this yields H\[Hk~rΠSχ — Hx. Since this
clearly yields G<fH^ QGJ Hk we then have G = U^ Vίίί. Observe that
here [G: H^DG)] = Z./. precisely for ΐ = 2, 3, , s so that parameter
of this new situation is s — 1. By induction [G: Hi] = l.f. for some
i and the result follows. Thus we may assume that k — 1. Hence

Note that B^An H, since A Π fli < 4 ^ . If ^/(A n ίίi) is
torsion then Lemma 2 (iv) implies that [i^A: £?i] = Z./. Since [G: H^] =
ϊ./ we conclude by Lemma 1 (v) that [G: i i j = i./. and the result
follows again. Thus we may assume that BJ(A Π Hλ) is not torsion.

In a similar manner for each j ^ s we can define sets AH for
i— 1, 2, •••,§ and conclude that we may assume [A: B5] < oo and
Bj/(A Π fli) is not torsion.

Step 4. Completion of the proof.

Proof. Now A is abelian so V X Γ Γ H Γ is a group. Since A
A4A Π iϊί for i g s by Step 3 we cannot even have [A: ijA Π Hi] < o

Thus by Lemma 1.2 of [2], A ^ Uf ̂ -^ Π H{ so choose α G A , α g
V̂ A n ί/i for all i ^ s.

Let J5 = B, Π JB2 Π Π B8. Then [A: B] < co and say α* = 6 e B
with £ ;> 1. Then clearly b $ i/Af] Hi for all i £ s. For each i ^ s
let Ei = Hif) Hϊ = NH.(b(Hi Π A)) by Lemma 2 (ii). Then b e B{

implies that [H{: Ei] = l.f. so by Lemma 1 (iii) (v) since [G: H{A] = l.f.
we have [G: EiA] = ϊ./. Observe that A abelian implies that
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EtA S NQ(b(Hi Π A)). HE= Πί EΛ then by Lemma 1 (iv), [G: E] = Lf.
Let eeE. Now G = (JΓ V Hi so for the n + 1 elements e, δβ, δ2β,

• , bne there exists integers m3 , k3- ^ 1 with

(6^)m^ G JEΓ̂  for i = 0,1, , n .

By the pigeon hole principle there exists i Φ j with (δ^)m% (bόe)mJ
both in Hk. Thus if m = miMj then (&*'β)m, (bje)m both belong to ίZ .̂

Suppose that k ^ s. Now ee E^EkAξΞ:HkA so e normalizes the
cosets b(Hk Π A) and (iίfc Π A). Thus

bimem(Hk n

so δίmem G Hk. Similarly bjmem e Hk and hence b{i"i)M = (6<mgm)(ymgw)"1 G
iϊfc, a contradiction since (i — i)m ^ 0 and δ <g i/fl,. Π A. Thus k > s.

Since (δ̂ )™ e Hk ίoτ k > s and δ e A we see that βm e HkA and
hence .# - U?+i E^HkAnE. Thus E'/A - \J%y{HkA n JS)/A. Since
DE^A we have d(E/A)^d so by induction and Lemma 1 (ii),
[£7: iϊfcA π £/] = ί./. for some k> s. Since [G: J57] — ί./. we then have
by Lemma 1 (v) (i) [G: HkA] = Z./ for some k > s. However this
contradicts the definition of the parameter s and the theorem is proved.

We close with a few comments about the theorem and proof.

First, some assumption on G is obviously needed in the theorem.
For example let G be the finitely generated infinite p-group constructed
by E. S. Golod (see Corollary 27.5 of [2]). Then G - τ/<I> but
[G: <1>] Φ Lf.

Second, one might be tempted to guess that the appropriate defi-
nition of locally finite index should be [G: H] = l.f. if and only if
[<iϊ, S}: H] < oo for every finite subset S of G. However this is not
the right condition here. For example let G = Zp I Zpoo and let
H = Zvoo. Then G is solvable and periodic so G = VΈ but

[<H, Z,y. H) - oo .

Third, it is interesting to observe in the proof that if G Φ <1>
is abelian, then G = A so the results of the first three steps are
trivial in this case. The proof for G = A is contained in the first
paragraph of the fourth step.

Finally, we remark that the proof of the special case of this
result in which G is assumed to equal VΉ is very much simpler.
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