SOME ISOLATED SUBSETS OF INFINITE SOLVABLE GROUPS

D. S. PASSMAN

The main theorem of this paper offers necessary and sufficient conditions for a solvable group G to be covered by a finite union of certain types of isolated subsets. This result will have applications to the study of the semisimplicity problem for group rings of solvable groups.

Let H be a subgroup of G. We define

$$\sqrt[d]{H} = \sqrt{H} = \{x \in G \mid x^m \in H \text{ for some } m \geq 1\}$$
.

Observe that \sqrt{H} need not be a subgroup of G even if G is solvable. We say that H has locally finite index in G and write [G: H] = l.f.if for every finitely generated subgroup L of G we have $[L: L \cap H] < \infty$. Suppose [G: H] = l.f. and let $x \in G$. Then $[\langle x \rangle : \langle x \rangle \cap H] < \infty$ so $x^m \in H$ for some $m \ge 1$ and $x \in \sqrt{H}$. Thus $G = \sqrt{H}$. The main result of this paper is a generalized converse of this fact for solvable groups G.

THEOREM. Let G be a solvable group and let H_1, H_2, \dots, H_n be subgroups with

$$G = \bigcup_{i=1}^{n} \sqrt{H_i}$$
.

Then for some $i = 1, 2, \dots, n$ we have $[G: H_i] = l.f.$

This paper constitutes one third of the solution of the semisimplicity problem for group rings of solvable groups. The remaining two thirds can be found in [1] and [4]. Moreover a description of this latter result as well as an analogue of the above theorem for linear groups will appear in [3].

We first list some basic properties of subgroups of locally finite index.

LEMMA 1. Let $G \supseteq W \supseteq H$, $G \supseteq W_1 \supseteq H_1$ and let $N \triangleleft G$. (i) [G: H] = l.f. implies [G: W] = l.f.(ii) [G/N: HN/N] = l.f. implies [G: HN] = l.f.(iii) [W: H] = l.f. implies [WN: HN] = l.f.(iv) [W: H] = l.f. and $[W_1: H_1] = l.f.$ implies $[W \cap W_1: H \cap H_1] = l.f.$ (v) [G: W] = l.f. and [W: H] = l.f. implies [G: H] = l.f.

Proof. (i) If $L \subseteq G$ then $[L: W \cap L] \leq [L: H \cap L]$ so this is clear. (ii) Let L be a finitely generated subgroup of G. Then LN/N is finitely generated so

 $[LN/N: (HN/N) \cap (LN/N)] < \infty$.

Thus $[LN: HN \cap LN] < \infty$. Since $L \subseteq LN$ this yields $[L: HN \cap L] < \infty$.

(iii) Let L be a finitely generated subgroup of WN. Then there exists a finitely generated subgroup $S \subseteq W$ with LN = SN. Now $[S: S \cap H] < \infty$ so $[SN: (S \cap H)N] < \infty$. Observe that $(S \cap H)N \subseteq SN \cap HN$ so $[SN: SN \cap HN] < \infty$. Finally $L \subseteq LN = SN$ yields $[L: L \cap HN] < \infty$ and [WN: HN] = l.f.

(iv) Let L be a finitely generated subgroup of $W \cap W_1$. Then $L \subseteq W$ yields $[L: H \cap L] < \infty$ and similarly $[L: H_1 \cap L] < \infty$. Thus $[L: (H \cap H_1) \cap L] < \infty$ and $[W \cap W_1: H \cap H_1] = l.f.$

(v) Finally let L be a finitely generated subgroup of G. Since [G: W] = l.f. we have $[L: L \cap W] < \infty$. Thus by [1, Lemma 6.1] $L \cap W$ is finitely generated and since [W: H] = l.f. we have

$$[L\cap W:L\cap W\cap H]<\infty$$
 .

This yields $[L: L \cap H] < \infty$ and the lemma is proved.

LEMMA 2. Let AH be a group with A a normal abelian subgroup. Set

$$B = \{a \in A \mid [H: H \cap H^a] = l.f.\}$$
.

Then we have

- (i) $A \cap H \triangleleft AH$
- (ii) if $a \in A$ then $H \cap H^a = N_H(a(H \cap A))$
- (iii) B is a subgroup of A and $B \triangleleft AH$.
- (iv) if $[A: B] < \infty$ and $B/(A \cap H)$ is torsion, then [AH: H] = l.f.

Proof. (i) Since $A \triangleleft AH$ we have $A \cap H \triangleleft H$. Since A is abelian we have $A \cap H \triangleleft A$. Thus $A \cap H \triangleleft AH$.

(ii) Let $h \in H \cap H^a$. Then $h \in H$ and $h^{a^{-1}} \in H$ so $h^{-1}h^{a^{-1}} \in H \cap A$ since A is normal. Thus h centralizes a modulo $H \cap A$ so h normalizes $a(H \cap A)$ and $H \cap H^a \subseteq N_H(a(H \cap A))$.

Let $h \in N_H(a(H \cap A))$. Then $h \in H$ and $h^a \equiv h$ modulo $H \cap A$. Since $H \cap A \triangleleft AH$ we have $H^a \supseteq H \cap A$ and $h \in H^a(H \cap A) = H^a$. Thus $h \in H \cap H^a$.

(iii) Clearly $1 \in B$. Since $[a(H \cap A)]^{-1} = a^{-1}(H \cap A)$ we see that $N_H(a(H \cap A)) = N_H(a^{-1}(H \cap A))$. Thus $a \in B$ implies $a^{-1} \in B$. Finally let $a, b \in B$. Then $[H: H \cap H^a] = l.f$. implies $[H^b: H^b \cap H^{ab}] = l.f$. so by Lemma 1 (iv), $[H \cap H^b: H \cap H^b \cap H^{ab}] = l.f$. Now $[H: H \cap H^b] = l.f$. so Lemma 1 (v) yields $[H: H \cap H^b \cap H^{ab}] = l.f$. Since $H \cap H^{ab} \supseteq H \cap H^b \cap H^{ab}$ we have $[H: H \cap H^{ab}] = l.f$. and B is a group. Clearly $B \triangleleft AH$.

(iv) By Lemma 1 (ii) since $A \cap H \triangleleft AH$, $A \cap H \subseteq B$, $A \cap H \subseteq H$ it clearly suffices to work in $AH/(A \cap H)$ or in other words we may assume that $A \cap H = \langle 1 \rangle$. Thus AH is the semidirect product of Aby H. Now $[AH:BH] < \infty$ so by Lemma 1 (v) it suffices to show that [BH:H] = l.f.

Let L be a finitely generated subgroup of BH. Then there exists a finitely generated subgroup B_1 of B and a finitely generated subgroup H_1 of H such that $L \subseteq B_1^{H_1} \cdot H_1$. By definition of B and by (ii) each element of B_1 has only finitely many conjugates under the action of H_1 . Thus $B_1^{H_1}$ is a finitely generated abelian group. Since this group is torsion by assumption we have

$$|B_1^{H_1}|<\infty$$
 and $[B_1^{H_1}\boldsymbol{\cdot} H_1:H_1]=|B_1^{H_1}|<\infty$.

Finally $L \subseteq B_1^{H_1} \cdot H_1$ so $[L: L \cap H_1] < \infty$. Since $L \cap H = L \cap (B_1^{H_1} \cdot H_1) \cap H = L \cap H_1$, the result follows.

We can now obtain the main result.

Proof of the Theorem. By induction on d(G), the derived length of G. If d(G) = 0 then $G = \langle 1 \rangle$ so the result is clear. Assume the result for all groups G with $d(G) \leq d$. For any group G let $DG = G^{(d)}$ be the dth derived subgroup of G.

Suppose d(G) = d + 1. Since $G = \bigcup_{i=1}^{n} \sqrt{H_i}$ we have clearly

$$G/(DG) = \bigcup_{i=1}^{n} \sqrt{H_i(DG)/(DG)}$$
.

By induction some of these groups have locally finite index in G/(DG). Thus by Lemma 1 (ii) we have for a suitable ordering of the H_i 's that $[G: H_i(DG)] = l.f.$ for $i = 1, 2, \dots, s$ (some $s \ge 1$) and $[G: H_i(DG)] \ne l.f.$ for i > s. We call s the parameter of the situation and we prove the d(G) = d + 1 case by induction on the parameter starting with s = 0 which does not occur.

Assume the result for all groups G with either $d(G) \leq d$ or d(G) = d + 1 and parameter $\langle s.$ Now fix G and suppose d(G) = d + 1, $G = \bigcup_{i=1}^{n} \sqrt{H_i}$ and the parameter of this situation is s. Set A = DG so A is a normal abelian subgroup of G and say H_1A , H_2A , \cdots , H_sA have locally finite index in G. For each $i \leq s$ set

$$B_i = \{a \in A \, | \, [H_i \hspace{-0.5mm}: \hspace{-0.5mm} H_i \cap H_i^a] = l.f. \}$$
 .

By Lemma 2 (iii) B_i is a subgroup of A.

Step 1. For each $i \leq s$ set

$$A_{_{1i}} = \{ a \in A \, | \, [H_{_1} \!\!: H_i^a \cap H_{_1}] = \mathit{l.f.} \}$$
 .

Then $A = \bigcup_{i=1}^{s} A_{ii}$.

Proof. Fix $a \in A$ and let $x \in H_i$. Then $(axa^{-1})^m \in H_j$ for some j so $x^m \in H_j^a \cap H_i$. Thus

$$H_{\scriptscriptstyle 1} = igvee_{\scriptscriptstyle 1}^{^n} \sqrt[H_{\scriptscriptstyle 1}]{H_{\scriptscriptstyle 1}^a \cap H_{\scriptscriptstyle 1}}$$
 .

If $d(H_1) \leq d$ then by induction $[H_1: H_i^a \cap H_1] = l.f.$ for some i and as in the argument below $i \leq s$ so $a \in A_{1i}$. Assume that $d(H_1) = d + 1$ and consider the parameter of this situation. Observe that $DH_1 \subseteq A \cap H_1$.

Suppose $[H_1: (H_1^a \cap H_1)DH_1] = l.f.$ Now $H_1 \supseteq DH_1$ and $H_1^a \supseteq (DH_1)^a = DH_1$ since A is abelian. Thus $(H_1^a \cap H_1)DH_1 = H_1^a \cap H_1$ so $[H_1: H_1^a \cap H_1] = l.f.$ and $a \in A_{11}$.

Thus we may suppose that $[H_1: (H_1^a \cap H_1)DH_1] \neq l.f.$ Let $[H_1: (H_j^a \cap H_1)DH_1] = l.f.$ Since A is normal in G and $A \supseteq DH_1$ we have by Lemma 1 (iii)

$$[H_1A\colon (H_j^a\cap H_1)A]=[H_1A\colon (H_j^a\cap H_1)(DH_1)A]=l.f.$$

Now $[G: H_1A] = l.f.$ so by Lemma 1 (v) we have $[G: (H_j^a \cap H_1)A] = l.f.$ Now $H_jA \supseteq (H_1 \cap H_j^a)A$ so $[G: H_jA] = l.f.$ by Lemma 1 (i) and $j \leq s$. Since $j \neq 1$ the parameter of this situation is $\langle s.$

By induction $[H_i: H_1 \cap H_i^a] = l.f.$ for some $i \leq n$. But then by Lemma 1 (i) $[H_i: (H_1 \cap H_i^a)DH_i] = l.f.$ so $i \leq s$ by the above. Thus $a \in A_{1i}$.

Step 2. If
$$A_{1i} \neq \emptyset$$
 and $a_i \in A_{1i}$ then $A_{1i} = B_i a_i$.

Proof. Suppose $A_{1i} \neq \emptyset$ and fix $a_i \in A_{1i}$ and let $a \in A_{1i}$. Then $[H_1: H_i^a \cap H_1] = l.f.$ and $[H_1: H_i^{ai} \cap H_1] = l.f.$ yield by Lemma 1 (iii) (iv) first $[H_1: H_1 \cap H_i^a \cap H_i^{ai}] = l.f.$ and then $[H_1A: (H_1 \cap H_i^a \cap H_i^{ai})A] = l.f.$ Since $[G: H_1A] = l.f.$ we have by Lemma 1 (v) $[G: (H_1 \cap H_i^a \cap H_i^{ai})A] = H_i^{ai}A_i = l.f.$ Now

$$(H_1\cap H_i^a\cap H_i^{a_i})A \sqsubseteq (H_i^a\cap H_i^{a_i})A = (H_i\cap H_i^{aa\overline{i}^{-1}})A$$

so we have by Lemma 1 (i) (iv) $[G: (H_i \cap H_i^{aa_i^{-1}})A] = l.f.$ and

$$[H_i: H_i \cap (H_i \cap H_i^{aa_i^{-1}})A] = l.f.$$

Observe that $H_i \cap H_i^{aa_i^{-1}} \supseteq H_i \cap A$ and thus

$$H_i \cap (H_i \cap H_i^{aa_i^{-1}})A = (H_i \cap H_i^{aa_i^{-1}})(H_i \cap A) = H_i \cap H_i^{aa_i^{-1}}$$
 .

Therefore the above yields $[H_i: H_i \cap H_i^{aa_i^{-1}}] = l \cdot f \cdot \text{ so } aa_i^{-1} \in B_i \text{ and } a \in B_i a_i$. Hence $A_{1i} \subseteq B_i a_i$.

Now let $b \in B_i$. Then $[H_i: H_i^b \cap H_i] = l.f.$ yields $[H_i^{a_i}: H_i^{ba_i} \cap H_i^{a_i}] =$

l.f. so by Lemma 1 (iv) $[H_1 \cap H_i^{a_i}: H_1 \cap H_i^{ba_i} \cap H_i^{a_i}] = l.f.$ Since $[H_1: H_1 \cap H_i^{a_i}] = l.f.$ Lemma 1 (v) yields $[H_1: H_1 \cap H_i^{ba_i} \cap H_i^{a_i}] = l.f.$ Since $H_1 \cap H_i^{ba_i} \supseteq H_1 \cap H_i^{ba_i} \cap H_i^{a_i}$ we have $[H_1: H_1 \cap H_i^{ba_i}] = l.f.$ and $ba_i \in A_{1i}$. Thus $B_i a_i \subseteq A_{1i}$ and this fact follows.

Step 3. We may assume that for all $i = 1, 2, \dots, s$ we have $[A: B_i] < \infty$ and $B_i/(A \cap H_i)$ not torsion.

Proof. By Steps 1 and 2 we have

 $A = \bigcup B_i a_i$ over all $A_{1i} \neq \emptyset$

and hence by Lemma 5.2 of [1]

 $A = igcup B_i a_i$ over all $A_{1i}
eq arnothing$, $[A:B_i] < \infty$.

In particular since $1 \in A$ there exists $k \leq s$ with $[A: B_k] < \infty$ and $1 \in A_{1k}$.

Suppose $k \neq 1$. Then $1 \in A_{1k}$ implies that $[H_1: H_k \cap H_1] = l.f.$ and hence as we observed earlier this yields ${}^{H_1}\!\sqrt{H_k \cap H_1} = H_1$. Since this clearly yields ${}^{c}\!\sqrt{H_1} \subseteq {}^{c}\!\sqrt{H_k}$ we then have $G = \bigcup_{2}^{n} \sqrt{H_i}$. Observe that here $[G: H_i(DG)] = l.f.$ precisely for $i = 2, 3, \dots, s$ so that parameter of this new situation is s - 1. By induction $[G: H_i] = l.f.$ for some i and the result follows. Thus we may assume that k = 1. Hence $[A: B_1] < \infty$.

Note that $B_1 \supseteq A \cap H_1$ since $A \cap H_1 \triangleleft AH_1$. If $B_1/(A \cap H_1)$ is torsion then Lemma 2 (iv) implies that $[H_1A: H_1] = l.f$. Since $[G: H_1A] = l.f$. we conclude by Lemma 1 (v) that $[G: H_1] = l.f$. and the result follows again. Thus we may assume that $B_1/(A \cap H_1)$ is not torsion.

In a similar manner for each $j \leq s$ we can define sets A_{ji} for $i = 1, 2, \dots, s$ and conclude that we may assume $[A: B_j] < \infty$ and $B_j/(A \cap H_j)$ is not torsion.

Step 4. Completion of the proof.

Proof. Now A is abelian so $\sqrt[4]{A \cap H_i}$ is a group. Since $A \neq \sqrt[4]{A \cap H_i}$ for $i \leq s$ by Step 3 we cannot even have $[A: \sqrt[4]{A \cap H_i}] < \infty$. Thus by Lemma 1.2 of [2], $A \neq \bigcup_{i=1}^{s} \sqrt[4]{A \cap H_i}$ so choose $a \in A, a \notin \sqrt[4]{A \cap H_i}$ for all $i \leq s$.

Let $B = B_1 \cap B_2 \cap \cdots \cap B_s$. Then $[A:B] < \infty$ and say $a^t = b \in B$ with $t \ge 1$. Then clearly $b \notin \sqrt[4]{A \cap H_i}$ for all $i \le s$. For each $i \le s$ let $E_i = H_i \cap H_i^b = N_{H_i}(b(H_i \cap A))$ by Lemma 2 (ii). Then $b \in B_i$ implies that $[H_i: E_i] = l.f.$ so by Lemma 1 (iii) (v) since $[G: H_iA] = l.f.$ we have $[G: E_iA] = l.f.$ Observe that A abelian implies that $E_iA \subseteq N_G(b(H_i \cap A))$. If $E = \bigcap_1^s E_1A$ then by Lemma 1 (iv), [G: E] = l.f. Let $e \in E$. Now $G = \bigcup_1^n \sqrt{H_i}$ so for the n + 1 elements e, be, b^2e , $\cdots, b^n e$ there exists integers $m_j, k_j \ge 1$ with

$$(b^{j}e)^{m_{j}} \in H_{k_{j}}$$
 for $j = 0, 1, \dots, n$.

By the pigeon hole principle there exists $i \neq j$ with $(b^i e)^{m_i}$, $(b^j e)^{m_j}$ both in H_k . Thus if $m = m_i m_j$ then $(b^i e)^m$, $(b^j e)^m$ both belong to H_k .

Suppose that $k \leq s$. Now $e \in E \subseteq E_k A \subseteq H_k A$ so e normalizes the cosets $b(H_k \cap A)$ and $(H_k \cap A)$. Thus

$$(b^i e)^m \in b^{im} e^m (H_k \cap A) \;, \qquad (b^i e)^m \in H_k$$

so $b^{im}e^m \in H_k$. Similarly $b^{jm}e^m \in H_k$ and hence $b^{(i-j)m} = (b^{im}e^m)(b^{jm}e^m)^{-1} \in H_k$, a contradiction since $(i-j)m \neq 0$ and $b \notin \sqrt{H_k \cap A}$. Thus k > s.

Since $(b^{i}e)^{m} \in H_{k}$ for k > s and $b \in A$ we see that $e^{m} \in H_{k}A$ and hence $E = \bigcup_{s=1}^{n} \sqrt[E]{H_{k}A \cap E}$. Thus $E/A = \bigcup_{s=1}^{n} \sqrt{(H_{k}A \cap E)/A}$. Since $DE \subseteq A$ we have $d(E/A) \leq d$ so by induction and Lemma 1 (ii), $[E: H_{k}A \cap E] = l.f.$ for some k > s. Since [G: E] = l.f. we then have by Lemma 1 (v) (i) $[G: H_{k}A] = l.f.$ for some k > s. However this contradicts the definition of the parameter s and the theorem is proved.

We close with a few comments about the theorem and proof.

First, some assumption on G is obviously needed in the theorem. For example let G be the finitely generated infinite p-group constructed by E. S. Golod (see Corollary 27.5 of [2]). Then $G = \sqrt{\langle 1 \rangle}$ but $[G: \langle 1 \rangle] \neq l.f.$

Second, one might be tempted to guess that the appropriate definition of locally finite index should be $[G:H] = \widetilde{l.f.}$ if and only if $[\langle H, S \rangle : H] < \infty$ for every finite subset S of G. However this is not the right condition here. For example let $G = Z_p \wr Z_{p\infty}$ and let $H = Z_{p\infty}$. Then G is solvable and periodic so $G = \sqrt{H}$ but

$$[\langle H, Z_p \rangle: H] = \infty$$
 .

Third, it is interesting to observe in the proof that if $G \neq \langle 1 \rangle$ is abelian, then G = A so the results of the first three steps are trivial in this case. The proof for G = A is contained in the first paragraph of the fourth step.

Finally, we remark that the proof of the special case of this result in which G is assumed to equal \sqrt{H} is very much simpler.

References

318

^{1.} C. R. Hampton and D. S. Passman, On the semisimplicity of group rings of solvable groups, Trans. Amer. Math. Soc., 173 (1972), 289-301.

2. D. S. Passman, Infinite Group Rings, Marcel Dekker, New York, 1971.

3. D. S. Passman, On the semisimplicity of group rings of linear groups, Pacific. J. Math., to appear.

4. A. E. Zalesskii, A semisimplicity criteria for the group ring of a solvable group (in Russian), Doklady Akad. Nauk CCCP, to appear.

Received December 23, 1971. Research supported by N. S. F. Contract GP 29432.

UNIVERSITY OF WISCONSIN