SOME ISOLATED SUBSETS OF INFINITE SOLVABLE GROUPS

D. S. Passman

Abstract

The main theorem of this paper offers necessary and sufficient conditions for a solvable group G to be covered by a finite union of certain types of isolated subsets. This result will have applications to the study of the semisimplicity problem for group rings of solvable groups.

Let H be a subgroup of G. We define

$$
\sqrt[G]{H}=\sqrt{H}=\left\{x \in G \mid x^{m} \in H \text { for some } m \geqq 1\right\}
$$

Observe that \sqrt{H} need not be a subgroup of G even if G is solvable. We say that H has locally finite index in G and write $[G: H]=l . f$. if for every finitely generated subgroup L of G we have $[L: L \cap H]<\infty$. Suppose $[G: H]=l . f$. and let $x \in G$. Then $[\langle x\rangle:\langle x\rangle \cap H]<\infty$ so $x^{m} \in H$ for some $m \geqq 1$ and $x \in \sqrt{H}$. Thus $G=\sqrt{H}$. The main result of this paper is a generalized converse of this fact for solvable groups G.

Theorem. Let G be a solvable group and let $H_{1}, H_{2}, \cdots, H_{n}$ be subgroups with

$$
G=\bigcup_{1}^{n} \sqrt{H_{i}} .
$$

Then for some $i=1,2, \cdots, n$ we have $\left[G: H_{i}\right]=l . f$.
This paper constitutes one third of the solution of the semisimplicity problem for group rings of solvable groups. The remaining two thirds can be found in [1] and [4]. Moreover a description of this latter result as well as an analogue of the above theorem for linear groups will appear in [3].

We first list some basic properties of subgroups of locally finite index.

Lemma 1. Let $G \supseteqq W \supseteqq H, G \supseteqq W_{1} \supseteq H_{1}$ and let $N \triangleleft G$.
(i) $[G: H]=l . f$. implies $[G: W]=l . f$.
(ii) $[G / N: H N / N]=l . f$. implies $[G: H N]=l . f$.
(iii) $[W: H]=l . f$. implies $[W N: H N]=l . f$.
(iv) $[W: H]=l . f$. and $\left[W_{1}: H_{1}\right]=l . f$. implies $\left[W \cap W_{1}: H \cap H_{1}\right]=l . f$.
(v) $[G: W]=l . f$. and $[W: H]=l . f$. implies $[G: H]=l . f$.

Proof. (i) If $L \subseteq G$ then $[L: W \cap L] \leqq[L: H \cap L]$ so this is clear.
(ii) Let L be a finitely generated subgroup of G. Then $L N / N$
is finitely generated so

$$
[L N / N:(H N / N) \cap(L N / N)]<\infty .
$$

Thus [$L N: H N \cap L N]<\infty$. Since $L \cong L N$ this yields [$L: H N \cap L]<\infty$.
(iii) Let L be a finitely generated subgroup of $W N$. Then there exists a finitely generated subgroup $S \subseteq W$ with $L N=S N$. Now $[S: S \cap H]<\infty$ so $[S N:(S \cap H) N]<\infty$. Observe that $(S \cap H) N \subseteq$ $S N \cap H N$ so $[S N: S N \cap H N]<\infty$. Finally $L \subseteq L N=S N$ yields $[L: L \cap H N]<\infty$ and $[W N: H N]=l . f$.
(iv) Let L be a finitely generated subgroup of $W \cap W_{1}$. Then $L \subseteq W$ yields [$L: H \cap L]<\infty$ and similarly $\left[L: H_{1} \cap L\right]<\infty$. Thus $\left[L:\left(H \cap H_{1}\right) \cap L\right]<\infty$ and $\left[W \cap W_{1}: H \cap H_{1}\right]=l . f$.
(v) Finally let L be a finitely generated subgroup of G. Since $[G: W]=l . f$. we have $[L: L \cap W]<\infty$. Thus by [1, Lemma 6.1] $L \cap W$ is finitely generated and since $[W: H]=l . f$. we have

$$
[L \cap W: L \cap W \cap H]<\infty
$$

This yields [$L: L \cap H$] $<\infty$ and the lemma is proved.
Lemma 2. Let $A H$ be a group with A a normal abelian subgroup. Set

$$
B=\left\{a \in A \mid\left[H: H \cap H^{a}\right]=l . f .\right\}
$$

Then we have
(i) $A \cap H \triangleleft A H$
(ii) if $a \in A$ then $H \cap H^{a}=N_{H}(a(H \cap A))$
(iii) B is a subgroup of A and $B \triangleleft A H$.
(iv) if $[A: B]<\infty$ and $B /(A \cap H)$ is torsion, then $[A H: H]=l . f$.

Proof. (i) Since $A \triangleleft A H$ we have $A \cap H \triangleleft H$. Since A is abelian we have $A \cap H \triangleleft A$. Thus $A \cap H \triangleleft A H$.
(ii) Let $h \in H \cap H^{a}$. Then $h \in H$ and $h^{a-1} \in H$ so $h^{-1} h^{a-1} \in H \cap A$ since A is normal. Thus h centralizes a modulo $H \cap A$ so h normalizes $\alpha(H \cap A)$ and $H \cap H^{a} \cong N_{H}(\alpha(H \cap A))$.

Let $h \in N_{H}(\alpha(H \cap A))$. Then $h \in H$ and $h^{a} \equiv h$ modulo $H \cap A$. Since $H \cap A \triangleleft A H$ we have $H^{a} \supseteq H \cap A$ and $h \in H^{a}(H \cap A)=H^{a}$. Thus $h \in H \cap H^{a}$.
(iii) Clearly $1 \in B$. Since $[\alpha(H \cap A)]^{-1}=\alpha^{-1}(H \cap A)$ we see that $N_{H}(a(H \cap A))=N_{H}\left(a^{-1}(H \cap A)\right)$. Thus $a \in B$ implies $a^{-1} \in B$. Finally let $a, b \in B$. Then [$H: H \cap H^{a}$] = l.f. implies [$H^{b}: H^{b} \cap H^{a b}$] $=l . f$. so by Lemma 1 (iv), $\left[H \cap H^{b}: H \cap H^{b} \cap H^{a b}\right]=l$.f. Now [$H: H \cap H^{b}$] = l.f. so Lemma $1(v)$ yields $\left[H: H \cap H^{b} \cap H^{a b}\right]=l . f$. Since $H \cap H^{a b} \supseteq$ $H \cap H^{b} \cap H^{a b}$ we have $\left[H: H \cap H^{a b}\right]=l . f$. and B is a group. Clearly $B \triangleleft A H$.
(iv) By Lemma 1 (ii) since $A \cap H \triangleleft A H, A \cap H \subseteq B, A \cap H \subseteq H$ it clearly suffices to work in $A H /(A \cap H)$ or in other words we may assume that $A \cap H=\langle 1\rangle$. Thus $A H$ is the semidirect product of A by H. Now [$A H: B H$] $<\infty$ so by Lemma 1 (v) it suffices to show that $[B H: H]=l . f$.

Let L be a finitely generated subgroup of $B H$. Then there exists a finitely generated subgroup B_{1} of B and a finitely generated subgroup H_{1} of H such that $L \cong B_{1}^{H_{1}} \cdot H_{1}$. By definition of B and by (ii) each element of B_{1} has only finitely many conjugates under the action of H_{1}. Thus $B_{1}^{H_{1}}$ is a finitely generated abelian group. Since this group is torsion by assumption we have

$$
\left|B_{1}^{H_{1}}\right|<\infty \quad \text { and } \quad\left[B_{1}^{H_{1}} \cdot H_{1}: H_{1}\right]=\left|B_{1}^{H_{1}}\right|<\infty .
$$

Finally $L \cong B_{1}^{H_{1}} \cdot H_{1}$ so $\left[L: L \cap H_{1}\right]<\infty$. Since $L \cap H=L \cap\left(B_{1}^{H_{1}} \cdot H_{1}\right) \cap$ $H=L \cap H_{1}$, the result follows.

We can now obtain the main result.
Proof of the Theorem. By induction on $d(G)$, the derived length of G. If $d(G)=0$ then $G=\langle 1\rangle$ so the result is clear. Assume the result for all groups G with $d(G) \leqq d$. For any group G let $D G=$ $G^{(d)}$ be the d th derived subgroup of G.

Suppose $d(G)=d+1$. Since $G=\bigcup_{1}^{n} \sqrt{H_{i}}$ we have clearly

$$
G /(D G)=\bigcup_{1}^{n} \sqrt{H_{i}(D G) /(D G)}
$$

By induction some of these groups have locally finite index in $G /(D G)$. Thus by Lemma 1 (ii) we have for a suitable ordering of the H_{i}^{\prime} s that $\left[G: H_{i}(D G)\right]=l . f$. for $i=1,2, \cdots, s$ (some $s \geqq 1$) and $\left[G: H_{i}(D G)\right] \neq$ $l . f$. for $i>s$. We call s the parameter of the situation and we prove the $d(G)=d+1$ case by induction on the parameter starting with $s=0$ which does not occur.

Assume the result for all groups G with either $d(G) \leqq d$ or $d(G)=$ $d+1$ and parameter $<s$. Now fix G and suppose $d(G)=d+1, G=$ $\mathrm{U}_{1}^{n} \sqrt{H_{i}}$ and the parameter of this situation is s. Set $A=D G$ so A is a normal abelian subgroup of G and say $H_{1} A, H_{2} A, \cdots, H_{s} A$ have locally finite index in G. For each $i \leqq s$ set

$$
B_{i}=\left\{a \in A \mid\left[H_{i}: H_{i} \cap H_{i}^{a}\right]=l . f \cdot\right\}
$$

By Lemma 2 (iii) B_{i} is a subgroup of A.
Step 1. For each $i \leqq s$ set

$$
A_{1 i}=\left\{a \in A \mid\left[H_{1}: H_{i}^{a} \cap H_{1}\right]=l . f_{\cdot}\right\}
$$

Then $A=\bigcup_{1}^{s} A_{1 i}$.
Proof. Fix $a \in A$ and let $x \in H_{1}$. Then $\left(a x a^{-1}\right)^{m} \in H_{j}$ for some j so $x^{m} \in H_{j}^{\sigma} \cap H_{1}$. Thus

$$
H_{1}=\bigcup_{1} \sqrt[H_{1}]{H_{i}^{a} \cap H_{1}} .
$$

If $d\left(H_{1}\right) \leqq d$ then by induction [$H_{1}: H_{i}^{a} \cap H_{1}$] $=l . f$. for some i and as in the argument below $i \leqq s$ so $a \in A_{1 i}$. Assume that $d\left(H_{1}\right)=d+1$ and consider the parameter of this situation. Observe that $D H_{1} \subseteq A \cap H_{1}$.

Suppose $\left[H_{1}:\left(H_{1}^{a} \cap H_{1}\right) D H_{1}\right]=l$.f. Now $H_{1} \supseteq D H_{1}$ and $H_{1}^{a} \supseteq\left(D H_{1}\right)^{a}=$ $D H_{1}$ since A is abelian. Thus $\left(H_{1}^{a} \cap H_{1}\right) D H_{1}=H_{1}^{a} \cap H_{1}$ so $\left[H_{1}: H_{1}^{a} \cap\right.$ $\left.H_{1}\right]=l . f$. and $a \in A_{11}$.

Thus we may suppose that $\left[H_{1}:\left(H_{1}^{a} \cap H_{1}\right) D H_{1}\right] \neq l . f$. Let $\left[H_{1}\right.$: $\left.\left(H_{j}^{*} \cap H_{1}\right) D H_{1}\right]=l$.f. Since A is normal in G and $A \supseteqq D H_{1}$ we have by Lemma 1 (iii)
$\left[H_{1} A:\left(H_{j}^{o} \cap H_{1}\right) A\right]=\left[H_{1} A:\left(H_{j}^{\alpha} \cap H_{1}\right)\left(D H_{1}\right) A\right]=l . f$.
Now [G: $\left.H_{1} A\right]=l . f$. so by Lemma 1 (v) we have [$\left.G:\left(H_{j}^{e} \cap H_{1}\right) A\right]=l . f$. Now $H_{j} A \supseteqq\left(H_{1} \cap H_{j}^{v}\right) A$ so $\left[G: H_{j} A\right]=l . f$. by Lemma 1 (i) and $j \leqq s$. Since $j \neq 1$ the parameter of this situation is $<s$.

By induction [$H_{1}: H_{1} \cap H_{i}^{q}$] $=l . f$. for some $i \leqq n$. But then by Lemma 1 (i) $\left[H_{1}:\left(H_{1} \cap H_{i}^{c}\right) D H_{1}\right]=l . f$. so $i \leqq s$ by the above. Thus $a \in A_{1 i}$.

Step 2. If $A_{1 i} \neq \varnothing$ and $a_{i} \in A_{1 i}$ then $A_{1 i}=B_{i} a_{i i}$.
Proof. Suppose $A_{1 i} \neq \varnothing$ and fix $a_{i} \in A_{1 i}$ and let $a \in A_{1 i}$. Then [$H_{1}: H_{i}^{a} \cap H_{1}$] $=l . f$. and [$H_{1}: H_{i}^{t_{i}} \cap H_{1}$] $=l . f$. yield by Lemma 1 (iii) (iv) first [$\left.H_{1}: H_{1} \cap H_{i}^{a} \cap H_{i}^{o_{i}}\right]=l . f$. and then [$\left.H_{1} A:\left(H_{1} \cap H_{i}^{a} \cap H_{i}^{\sigma_{i}}\right) A\right]=$ l.f. Since [G: $\left.H_{1} A\right]=$ l.f. we have by Lemma 1 (v) $\left[G:\left(H_{1} \cap H_{i}^{a} \cap\right.\right.$ $\left.\left.H_{i}^{i_{i}}\right) A\right]=$ l.f. \quad Now

$$
\left(H_{1} \cap H_{i}^{a} \cap H_{i}^{\sigma_{i}}\right) A \cong\left(H_{i}^{a} \cap H_{i}^{q_{i} i}\right) A=\left(H_{i} \cap H_{i}^{a a_{i}^{-1}}\right) A
$$

so we have by Lemma 1 (i) (iv) [$\left.G:\left(H_{i} \cap H_{i}^{a \sigma_{i}^{-1}}\right) A\right]=l . f$. and

$$
\left[H_{i}: H_{i} \cap\left(H_{i} \cap H_{i}^{a a_{i}-1}\right) A\right]=l . f .
$$

Observe that $H_{i} \cap H_{i}^{a a_{i}^{-1}} \supseteq H_{i} \cap A$ and thus

$$
H_{i} \cap\left(H_{i} \cap H_{i}^{a a_{i}^{-1}}\right) A=\left(H_{i} \cap H_{i}^{a a_{i}^{-1}}\right)\left(H_{i} \cap A\right)=H_{i} \cap H_{i}^{a a_{i}^{-1}} .
$$

Therefore the above yields [$H_{i}: H_{i} \cap H_{i}^{a a_{i}^{1}}$] $=l$.f. so $a a_{i}^{-1} \in B_{i}$ and $a \in$ $B_{i} a_{i}$. Hence $A_{1 i} \cong B_{i} a_{i}$.

Now let $b \in B_{i}$. Then $\left[H_{i}: H_{i}^{b} \cap H_{i}\right]=l . f$. yields $\left[H_{i}^{q_{i}}: H_{i}^{b_{i}} \cap H_{i}^{r_{i}}\right]=$
l.f. so by Lemma 1 (iv) $\left[H_{1} \cap H_{i}^{a_{i}}: H_{1} \cap H_{i}^{b a_{i}} \cap H_{i}^{a_{i}}\right]=l . f$. Since $\left[H_{1}: H_{1} \cap H_{i}^{a_{i}}\right]=$ l.f. Lemma 1 (v) yields $\left[H_{1}: H_{1} \cap H_{i}^{b_{i}} \cap H_{i}^{a_{i}}\right]=l . f$. Since $H_{1} \cap H_{i}^{b a_{i}} \supseteq H_{1} \cap H_{i}^{b a_{i}} \cap H_{i}^{a_{i}}$ we have $\left[H_{1}: H_{1} \cap H_{i}^{b a_{i}}\right]=l . f$. and $b a_{i} \in A_{1 i}$. Thus $B_{i} a_{i} \cong A_{1 i}$ and this fact follows.

Step 3. We may assume that for all $i=1,2, \cdots, s$ we have [$A: B_{i}$] $<\infty$ and $B_{i} /\left(A \cap H_{i}\right)$ not torsion.

Proof. By Steps 1 and 2 we have

$$
A=\cup B_{i} a_{i} \quad \text { over all } A_{1 i} \neq \varnothing
$$

and hence by Lemma 5.2 of [1]

$$
A=\bigcup B_{i} a_{i} \quad \text { over all } \quad A_{1 i} \neq \varnothing, \quad\left[A: B_{i}\right]<\infty
$$

In particular since $1 \in A$ there exists $k \leqq s$ with $\left[A: B_{k}\right]<\infty$ and $1 \in A_{1 k}$.

Suppose $k \neq 1$. Then $1 \in A_{1 k}$ implies that $\left[H_{1}: H_{k} \cap H_{1}\right]=l . f$. and hence as we observed earlier this yields $\sqrt[H_{1}]{H_{k} \cap H_{1}}=H_{1}$. Since this clearly yields $\sqrt[G]{H_{1}} \subseteq \sqrt[G]{H_{k}}$ we then have $G=\mathbf{U}_{2}^{n} \sqrt{H_{i}}$. Observe that here $\left[G: H_{i}(D G)\right]=l . f$. precisely for $i=2,3, \cdots, s$ so that parameter of this new situation is $s-1$. By induction [G: H_{i}] $=$ l.f. for some i and the result follows. Thus we may assume that $k=1$. Hence $\left[A: B_{1}\right]<\infty$.

Note that $B_{1} \supseteq A \cap H_{1}$ since $A \cap H_{1} \triangleleft A H_{1}$. If $B_{1} /\left(A \cap H_{1}\right)$ is torsion then Lemma 2 (iv) implies that $\left[H_{1} A: H_{1}\right]=$ l.f. Since $\left[G: H_{1} A\right]=$ l.f. we conclude by Lemma 1 (v) that $\left[G: H_{1}\right]=l . f$. and the result follows again. Thus we may assume that $B_{1} /\left(A \cap H_{1}\right)$ is not torsion.

In a similar manner for each $j \leqq s$ we can define sets $A_{j i}$ for $i=1,2, \cdots, s$ and conclude that we may assume $\left[A: B_{j}\right]<\infty$ and $B_{j} /\left(A \cap H_{j}\right)$ is not torsion.

Step 4. Completion of the proof.
Proof. Now A is abelian so $\sqrt[4]{A \cap H_{i}}$ is a group. Since $A \neq$ $\sqrt[4]{A \cap H_{i}}$ for $i \leqq s$ by Step 3 we cannot even have $\left[A: \sqrt[4]{A \cap H_{i}}\right]<\infty$. Thus by Lemma 1.2 of [2], $A \neq \bigcup_{1}^{s} \sqrt[4]{A \cap H_{i}}$ so choose $a \in A, a \notin$ $\sqrt[4]{A \cap H_{i}}$ for all $i \leqq s$.

Let $B=B_{1} \cap B_{2} \cap \cdots \cap B_{s}$. Then $[A: B]<\infty$ and say $a^{t}=b \in B$ with $t \geqq$. Then clearly $b \notin \sqrt[4]{A \cap H_{i}}$ for all $i \leqq s$. For each $i \leqq s$ let $E_{i}=H_{i} \cap H_{i}^{b}=N_{H_{i}}\left(b\left(H_{i} \cap A\right)\right)$ by Lemma 2 (ii). Then $b \in B_{i}$ implies that $\left[H_{i}: E_{i}\right]=l . f$. so by Lemma 1 (iii) (v) since $\left[G: H_{i} A\right]=l . f$. we have $\left[G: E_{i} A\right]=l . f$. Observe that A abelian implies that
$E_{i} A \subseteq N_{G}\left(b\left(H_{i} \cap A\right)\right)$. If $E=\bigcap_{i}^{i} E_{1} A$ then by Lemma 1 (iv), $[G: E]=l . f$.
Let $e \in E$. Now $G=\bigcup_{1}^{n} \sqrt{H_{i}}$ so for the $n+1$ elements $e, b e, b^{2} e$, $\cdots, b^{n} e$ there exists integers $m_{j}, k_{j} \geqq 1$ with

$$
\left(b^{j} e\right)^{m_{j}} \in H_{k_{j}} \quad \text { for } \quad j=0,1, \cdots, n .
$$

By the pigeon hole principle there exists $i \neq j$ with $\left(b^{i} e\right)^{m_{i}},\left(b^{j} e\right)^{m_{j}}$ both in H_{k}. Thus if $m=m_{i} m_{j}$ then $\left(b^{i} e\right)^{m},\left(b^{i} e\right)^{m}$ both belong to H_{k}.

Suppose that $k \leqq s$. Now $e \in E \subseteq E_{k} A \subseteq H_{k} A$ so e normalizes the cosets $b\left(H_{k} \cap A\right)$ and $\left(H_{k} \cap A\right)$. Thus

$$
\left(b^{i} e\right)^{m} \in b^{i m} e^{m}\left(H_{k} \cap A\right), \quad\left(b^{i} e\right)^{m} \in H_{k}
$$

so $b^{i m} e^{m} \in H_{k}$. Similarly $b^{j m} e^{m} \in H_{k}$ and hence $b^{(i-j) m}=\left(b^{i m} e^{m}\right)\left(b^{j m} e^{m}\right)^{-1} \in$ H_{k}, a contradiction since $(i-j) m \neq 0$ and $b \notin \sqrt{H_{k} \cap A}$. Thus $k>s$.

Since $\left(b^{i} e\right)^{m} \in H_{k}$ for $k>s$ and $b \in A$ we see that $e^{m} \in H_{k} A$ and hence $E=\bigcup_{s+1}^{n} \sqrt[E]{H_{k} A \cap E}$. Thus $E / A=\bigcup_{s+1}^{n} \sqrt{\left(H_{k} A \cap E\right) / A}$. Since $D E \subseteq A$ we have $d(E / A) \leqq d$ so by induction and Lemma 1 (ii), $\left[E: H_{k} A \cap E\right]=l . f$. for some $k>s$. Since $[G: E]=l . f$. we then have by Lemma 1 (v) (i) $\left[G: H_{k} A\right]=l . f$. for some $k>s$. However this contradicts the definition of the parameter s and the theorem is proved.

We close with a few comments about the theorem and proof.
First, some assumption on G is obviously needed in the theorem. For example let G be the finitely generated infinite p-group constructed by E. S. Golod (see Corollary 27.5 of [2]). Then $G=\sqrt{\langle 1\rangle}$ but $[G:\langle 1\rangle] \neq l . f$.

Second, one might be tempted to guess that the appropriate definition of locally finite index should be $[G: H]=\widetilde{l . f}$. if and only if $[\langle H, S\rangle: H]<\infty$ for every finite subset S of G. However this is not the right condition here. For example let $G=Z_{p} \backslash Z_{p \infty}$ and let $H=Z_{p \infty}$. Then G is solvable and periodic so $G=\sqrt{H}$ but

$$
\left[\left\langle H, Z_{p}\right\rangle: H\right]=\infty .
$$

Third, it is interesting to observe in the proof that if $G \neq\langle 1\rangle$ is abelian, then $G=A$ so the results of the first three steps are trivial in this case. The proof for $G=A$ is contained in the first paragraph of the fourth step.

Finally, we remark that the proof of the special case of this result in which G is assumed to equal $\sqrt{\bar{H}}$ is very much simpler.

References

1. C. R. Hampton and D. S. Passman, On the semisimplicity of group rings of solvable groups, Trans. Amer. Math. Soc., 173 (1972), 289-301.
2. D. S. Passman, Infinite Group Rings, Marcel Dekker, New York, 1971.
3. D. S. Passman, On the semisimplicity of group rings of linear groups, Pacific. J. Math., to appear.
4. A. E. Zalesskii, A semisimplicity criteria for the group ring of a solvable group (in Russian), Doklady Akad. Nauk CCCP, to appear.

Received December 23, 1971. Research supported by N. S. F. Contract GP 29432.
University of Wisconsin

