VARIETIES OF IMPLICATIVE SEMI-LATTICES II

W. Nemitz and T. Whaley

Abstract

This paper is concerned with a process of coordinatization of the lattice of varieties of implicative semilattices. Equational descriptions of some elements in each coordinate class, and a complete equational description of one coordinate class are given.

1. Introduction. This paper is a continuation of [8]. Familiarity with [8] and [6] is assumed. After stating some of the consequences of the local finiteness of the variety of implicative semilattices, we describe a system for partitioning the lattice of varieties of implicative semi-lattices into coordinate intervals, and give some results that can be obtained from a study of this coordinatization. Finally, we give equational descriptions for the largest and smallest varieties in each coordinate class, the covers of the smallest variety in each coordinate class and a complete equational description of the coordinate class 4,2.

Recall that an implicative semi-lattice is subdirectly irreducible if and only if it has a single dual atom. In accordance with the usage of [8], this dual atom will be denoted by u. If in a subdirectly irreducible implicative semi-lattice, the dual atom is deleted, the remaining structure is both a subalgebra and a homomorphic image of the original. Thus every subdirectly irreducible implicative semi-lattice may be thought of as obtained by appending a single dual atom to some already given implicative semi-lattice. If L is an implicative semilattice, the subdirectly irreducible implicative semilattice obtained in this manner will be denoted by \hat{L}.
2. Local finiteness. The following theorem was proven first by A. Diego [2] in a slightly different context. McKay [4] extended the result to implicative semi-lattices. We present a much simpler proof here.

Theorem 2.1. The variety of implicative semi-lattices is locally finite.

Proof. Let F_{n} denote the free implicative semi-lattice on n generators. The proof proceeds by induction. F_{1} has two elements. Assume that F_{n} is finite. $F_{n+1} \leqq{ }_{s} \Pi \hat{L}_{i}$, where each \hat{L}_{i} is $n+1$ generated. Hence each L_{i} is n generated. It follows from the induction assumption that there are only a finite number of distinct L_{i} each
of which is finite. Therefore the same statement applies to the \hat{L}_{i}, and hence F_{n+1} is finite.

Corollary 2.2. Every variety of implicative semi-lattices is generated by its finite sub-directly irreducible members.

Corollary 2.3. If f is a homomorphism of an implicative semilattice L onto a finite implicative semi-lattice M, then there exists $L^{\prime} \leqq{ }_{s} L$ such that $f \mid L^{\prime}$ is an isomorphism.

Corollary 2.4. The lattice of all varieties of implicative semilattices is itself implicative.

Corollary 2.5. If L is a finite subdirectly irreducible implicative semi-lattice, then the class of all those implicative semilattices which do not contain a sub-implicative semi-lattice isomorphic to L is a variety.
3. Coordinates of varieties. In this section, A will denote a subdirectly irreducible implicative semi-lattice. Also the term "algebra" will be used in place of "implicative semi-lattice". Let \mathscr{C}_{n} denote the variety generated by C_{n}, the n chain, and \mathscr{B}_{n} denote the variety generated by \hat{B}_{n}, where B_{n} is the Boolean algebra with n atoms. Let $\overline{\mathscr{C}}_{n}$ denote the variety of all algebras which do not have $n+1$ chains as subalgebras, and similarly let $\overline{\mathscr{B}}_{n}$ denote the variety of all algebras which do not have sub-algebras isomorphic to \widehat{B}_{n+1}. (Throughout n and m will denote natural numbers.) Let $W_{n, m}=\mathscr{C}_{n} \vee \mathscr{B}_{m}$, and $V_{n, m}=\overline{\mathscr{C}}_{n} \cap \overline{\mathscr{B}}_{m}$. We say that a variety has coordinates n, m if it is in the interval [$W_{n, m}, V_{n, m}$].

Lemma 3.1. If $A \in V_{n, m}$, and if A is finite, then $|A| \leqq 2^{m(n-3)}\left(2^{m}+\right.$ $1)$, where $|A|$ denotes the number of elements in A.

Proof. Since A is subdirectly irreducible and does not contain \widehat{B}_{m+1} as a subalgebra, A cannot contain B_{m+1}. Thus the closed algebra of A has at most m atoms. The proof now proceeds by induction. The case $n=3$ holds since $A \in V_{3, m}$ implies $A=\hat{B}_{l}$ for some $l \leqq m$. Assume that the proposition holds for some n, and let $A \in V_{n+1, m}$. Then the dense filter D of A is an element of $V_{n, m}$. Thus $|D| \leqq$ $2^{m(n-3)}\left(2^{m}+1\right)$. The proposition follows for the $n+1$ case since every element of A is the meet of a closed element and a dense element.

Corollary 3.2. $V_{n, m}$ contains only a finite number of distinct finite subdirectly irreducible algebras.

ThEOREM 3.3. $V_{n, m}$ contains no infinite subdirectly irreducible algebras.

Proof. Assume the contrary, and let n be the least integer for which there is an m such that $V_{n, m}$ has an infinite subdirectly irreducible algebra, A. Now A is unbounded, since if A were bounded, the dense filter of A would be an infinite subdirectly irreducible algebra in $V_{n-1, m}$. This reasoning also shows that any principal filter of A is bounded in size by the bound of Lemma 3.1, and this in turn implies that A is bounded, which establishes a contradiction.

Corollary 3.4. If V is a variety of implicative semi-lattices, then the following are equivalent:
(i) V has only finitely many subvarieties.
(ii) V is generated by a finite algebra.
(iii) V has coordinates n, m for some natural numbers n and m.

L_{1}

L_{2}

Figure 1

Figure 2

In order for A to be in $V_{4,2}$, the closed algebra of A must be B_{1} or B_{2}, and the dense filter of A must be \hat{B}_{2}, C_{2} or C_{3}. In [6] a method is given for constructing all algebras having a given closed algebra and a given dense filter. We omit the details, but using this process one finds that the subdirectly irreducible members of $V_{4,2}-W_{4,2}$ are those shown in Figure 1. We have $L_{1} \leqq{ }_{s} L_{5}, L_{2} \leqq{ }_{s} L_{5} ; L_{2}, L_{3} \leqq{ }_{s} L_{4}$; $L_{1}, L_{2}, L_{3} \leqq_{s} L_{6}$; and these are the only subalgebra relations holding among these six algebras. Thus the interval [$W_{4,2}, V_{4,2}$] is as pictured in Figure 2, where the numbers beside a point in the lattice correspond to the indices of the algebras which generate that variety.

For $n \leqq 4$ and $m \leqq 2$, it is clear that the varieties $W_{n+1, m}, W_{n, m+1}$, and $W_{n, m} \vee\left\{L_{i}\right\}^{e}$ for $i=1,2,3$ cover $W_{n, m}$. $\quad\left(\{L\}^{e}\right.$ is the variety generated by L.) It is also clear that any other cover of $W_{n, m}$ would have to be a subvariety of $V_{n, m}$. We now show that there are no additional covers of $W_{n, m}$.

Definition 3.5. For $B, D \leqq_{s} L$, we say B is fixed with respect to D if $d^{*} b=b$ for $b \in B$, and $d \in D$. We say that D is total with respect to B if $b * d \in D$ for $b \in B, d \in D$. Let $B \nabla D=\{b \wedge d \mid b \in B$, $d \in D\}$.

It was shown in [5] that $B \nabla D$ is a subalgebra of L if B is fixed with respect to D and D is total with respect to B.

Theorem 3.6. If L is a subdirectly irreducible implicative semilattice, and if $C_{4} \leqq s$, then either L is a chain or $L_{i} \leqq{ }_{s} L$ for some $i=1,2,3$.

Proof. First, consider the case where L is bounded. If the dense filter of L is not a chain, then it contains \hat{B}_{2} as a subalgebra, and thus $L_{3} \leqq{ }_{s} L$. Hence, we may assume that the dense filter of L is a chain. If the closed algebra of L is simple, then L is also a chain. Therefore we may assume that the closed algebra of L contains a subalgebra $\left\{1, b, b^{\prime}, 0\right\}$, where b^{\prime} is the complement of b in the closed algebra. Now either $b * d=1$ for every dense element d, or there is a dense element $d<1$ such that $b * d=d$. If $b * d=d$, then $b^{\prime} * d=$ 1. Thus in either case, we have a subalgebra $D=\{1, u, d\}$ of the dense filter of L such that B is fixed with respect to D and D is total with respect to B. Hence $B \nabla D \leqq{ }_{s} L$. We may assume that $b^{\prime} \leqq d$. If $b \leqq d$, then $B \nabla D=L_{1}$. If $b \not \equiv d$, then $B \nabla D=L_{2}$. Now suppose that L is not bounded and that $L_{i} \not \mathbb{K}_{s} L$ for any $i=1,2$, or 3. Let $a, b \in L$, and let d be the least element of some example of C_{4} in L. Then from consideration of the bounded case, it follows that the principal filter generated by $a \wedge b \wedge d$ is a chain. Thus a and b are comparable and so L is a chain.

Corollary 3.7. For $n \geqq 4$ and $m \geqq 2$, $W_{n, m}$ has exactly five covers.
Corollary 3.8. $\quad \mathscr{C}_{n} \vee \overline{\mathscr{G}}_{3}$ and $\mathscr{\mathscr { B }}_{m} \vee \overline{\mathscr{B}}_{2}$ have exactly three covers.
4. Identities. If $g\left(x_{1}, \cdots, x_{n}\right)$ is an implicative semi-lattice term and if L is an implicative semi-lattice, then we say that $g\left(x_{1}, \cdots, x_{n}\right)$ holds in L, or simply that g holds in L, provided the equation $g\left(x_{1}\right.$, $\left.\cdots, x_{n}\right)=1$ holds in L. If this is not the case we say that g fails in L. We let $V(g)$ denote the variety of all implicative semi-lattices in which g holds. We are interested here only in subdirectly irreducible implicative semi-lattices, and we let u denote the dual atom in any such algebra. If there exist elements $a_{1}, \cdots, a_{n} \in L$ such that $g\left(a_{1}\right.$, $\left.\cdots, a_{n}\right)=u$, then we say that $g u$-fails in L. If $g u$-fails in every subdirectly irreducible algebra in which it fails, then we say that g has property U.

We let $a+b$ denote the psuedo-join (see [7]) of the elements a and $b\left(\right.$ i.e. $\left.a+b=\left(\left(a^{*} b\right)^{*} b\right) \wedge\left(\left(b^{*} a\right)^{*} a\right)\right)$. In general this is not an associative operation, and when not indicated otherwise, we intend for the grouping to be to the left (i.e. $a+b+c=(a+b)+c$). If a and b are comparable elements, then $a+b$ is the larger of the two.

Lemma 4.1. If $a_{1} \geqq a_{i}$ for $i=2, \cdots, n$, then

$$
a_{1}+a_{2}+\cdots+a_{n}=a_{1}
$$

We should note that this lemma depends on our convention of association.

DEFINITION 4.2. If $g_{1}\left(x_{1}, \cdots, x_{n}\right)$ and $g_{2}\left(x_{1}, \cdots, x_{m}\right)$ are terms, then we let

$$
\left(g_{1} \oplus g_{2}\right)\left(x_{1}, \cdots, x_{n+m}\right)=g_{1}\left(x_{1}, \cdots, x_{n}\right)+g_{2}\left(x_{n+1}, \cdots, x_{n+m}\right)
$$

and

$$
\left(g_{1} \wedge g_{2}\right)\left(x_{1}, \cdots, x_{n+m}\right)=g_{1}\left(x_{1}, \cdots, x_{n}\right) \wedge g_{2}\left(x_{n+1}, \cdots, x_{n+m}\right)
$$

Lemma 4.3. If $g_{1} u$-fails in L and if g_{2} fails in L, then $g_{1} \oplus$ g_{2} u-fails in L. Thus if g_{1} has property U, then so does $g_{1} \oplus g_{2}$.

Lemma 4.4. If g_{1} has property U, then $V\left(g_{1}\right) \vee V\left(g_{2}\right)=V\left(g_{1} \oplus g_{2}\right)$.
Proof. By [2, Lemma 4.1] any subdirecly irreducible member, L, of $V\left(g_{1}\right) \vee V\left(g_{2}\right)$ is in $V\left(g_{1}\right) \cup V\left(g_{2}\right)$. Thus g_{1} holds in L or g_{2} holds in L. Hence $g_{1} \oplus g_{2}$ holds in L.

On the other hand, if L is any subdirectly irreducible not in
$V\left(g_{1}\right) \vee V\left(g_{2}\right)$, then g_{1} and g_{2} both fail in L. Thus $g_{1} u$-fails in L; so $g_{1} \oplus g_{2}$ fails in L.

Lemma 4.5. $\quad V\left(g_{1}\right) \wedge V\left(g_{2}\right)=V\left(g_{1} \wedge g_{2}\right)$. Furthermore, if g_{1} and g_{2} both have property U, then so does $g_{1} \wedge g_{2}$.

The main idea in the following theorem is present in a similar theorem for Heyting algebras due to Alan Day [1].

THEOREM 4.6. Letting t^{*} denote $t^{*}\left(x_{1} \wedge \cdots \wedge x_{n+1}\right)$ and $l_{i j}$ denote $x_{i}{ }^{* *} * x_{j}{ }^{* *}$, we have

$$
\overline{\mathscr{B}_{n}}=V\left(P_{n}\right)
$$

where

$$
P_{n}\left(x_{1}, \cdots, x_{n+2}\right)=x_{n+2}+l_{12}+l_{21}+\cdots+l_{n+1, n}
$$

where each $l_{i j}$ with $i \neq j$ and $i, j \leqq n+1$ occurs exactly once. Also, P_{n} has property U.

Proof. Let a_{1}, \cdots, a_{n+1} be the atoms of \hat{B}_{n+1}. Then $a_{i}{ }^{* *}=a_{i}$ and $a_{i}{ }^{* *} * a_{j}{ }^{* *}<1$ if $i \neq j$. Thus $P_{n}\left(a_{1}, \cdots, a_{n+1}, u\right)=u$. Hence $V\left(P_{n}\right) \sqsubseteq$ $\overline{\mathscr{B}_{n}}$.

Suppose now that L is any subdirectly irreducible member of $\overline{\mathscr{B}_{n}}$ and that $P_{n}\left(a_{1}, \cdots, a_{n+2}\right)<1$ in L. Then $a_{1}^{* *}, \cdots, a_{n+1}^{* *}$ are pairwise incomparable closed elements in the principal filter generated by $a_{1} \wedge$ $\cdots \wedge a_{n+1}$. Thus $\widehat{B}_{n+1} \leqq_{s} L$, a contradiction. Hence P_{n} holds in L.

In [8] terms were given which characterize the varieties \mathscr{C}_{n} and $\overline{\mathscr{C}_{n}}$. Denote these terms by q_{n} and r_{n}, respectively. It is easy to see that q_{n} and r_{n} have property U.

Corollary 4.7. $\quad V_{n, m}=V\left(P_{m} \wedge r_{n}\right)$. In particular, $\mathscr{B}_{m}=$ $V\left(P_{m} \wedge r_{3}\right)$.

Corollary 4.8. $W_{n, m}=V\left(q_{n} \oplus\left(P_{m} \wedge r_{3}\right)\right)$.

We now turn our attention to the varieties of the interval [$W_{4,2}$ $V_{4,2}$]. First we shall give an indexed list of identities which can be used to describe these varieties. Note that for a term t, t^{*} is as defined in Theorem 4.6.

$$
\begin{aligned}
g_{1}= & x_{4}+\left(\left(x_{1} \wedge x_{2}\right) *\left(x_{1} \wedge x_{2} \wedge x_{3}\right)\right)+\left(x_{1} * x_{2}\right)+\left(x_{2} * x_{1}\right) \\
g_{12}= & x_{4}+\left(x_{1} * x_{2}\right)+\left(x_{2} * x_{1}\right)+\left(x_{1} \wedge x_{2}\right)^{*}+\left(x_{1}^{* *} * x_{1}\right)+\left(x_{2}^{* *} * x_{2}\right) \\
g_{23}= & x_{4}+\left(x_{4} * x_{3}\right)+\left(x_{1} * x_{2}\right)+\left(x_{2} * x_{1}\right)+\left(x_{3}+\left(x_{3} * x_{1}\right)\right)+\left(x_{3}+\left(x_{3} * x_{2}\right)\right) \\
g_{2}= & g_{12} \wedge g_{23} \\
g_{3}= & x_{4}+\left(x_{4} * x_{3}\right)+\left(x_{1} * x_{2}\right)+\left(x_{2} * x_{1}\right)+\left(x_{3}+\left(x_{3} *\left(x_{1} \wedge x_{2}\right)\right)\right) \\
g_{13}= & g_{1} \oplus g_{3} \\
g_{123}= & g_{12} \oplus g_{3} \\
g_{4}= & x_{4}+\left(x_{4} * x_{3}\right)+\left(\left(x_{3} \wedge x_{1}\right) *\left(x_{3} \wedge x_{2}\right)\right)+\left(\left(x_{3} \wedge x_{2}\right) *\left(x_{3} \wedge x_{1}\right)\right) \\
& +\left(\left(x_{3}+\left(x_{3} *\left(x_{3} \wedge x_{1}\right)\right)\right)+\left(x_{3}+\left(x_{3} *\left(x_{3} \wedge x_{2}\right)\right)\right)\right) \\
g_{14}= & g_{1} \oplus g_{4} \\
g_{5}= & x_{4}+\left(x_{1} * x_{2}\right)+\left(x_{2} * x_{1}\right)+\left(x_{1} * x_{3}\right)+\left(x_{3} * x_{1}\right)+\left(x_{2} * x_{3}\right) \\
g_{25}= & g_{2} \oplus g_{5} \\
g_{45}= & g_{4} \oplus g_{5} \\
g_{56}= & x_{4}+\left(x_{1} * x_{2}\right)+\left(x_{2} * x_{1}\right)+\left(x_{1} * x_{3}\right)+\left(x_{3} * x_{1}\right)+\left(x_{2} * x_{3}\right)+\left(x_{3} * x_{2}\right) \\
g_{46}= & \left.x_{5}+\left(x_{1} * x_{2}\right)+\left(x_{2} * x_{1}\right)+\left(x_{1} \wedge x_{2} \wedge x_{3}\right) *\left(x_{1} \wedge x_{2} \wedge x_{4}\right)\right) \\
& \left.+\left(x_{1} \wedge x_{2} \wedge x_{4}\right) *\left(x_{1} \wedge x_{2} \wedge x_{3}\right)\right) \\
& +\left(x_{1}+\left(\left(x_{1} \wedge x_{2}\right)+\left(x_{1} \wedge x_{2} \wedge x_{3}\right)\right)\right) \\
& +\left(x_{1}+\left(\left(x_{1} \wedge x_{2}\right) *\left(x_{1} \wedge x_{2} \wedge x_{4}\right)\right)\right) \\
& +\left(x_{2}+\left(\left(x_{1} \wedge x_{2}\right) *\left(x_{1} \wedge x_{2} \wedge x_{3}\right)\right)\right) \\
& +\left(x_{2}+\left(\left(x_{1} \wedge x_{2}\right) *\left(x_{1} \wedge x_{2} \wedge x_{4}\right)\right)\right) .
\end{aligned}
$$

Theorem 4.9. For $i, j=1, \cdots, 6$ let $h_{i}=g_{i} \wedge P_{4} \wedge r_{3}, h_{i j}=g_{i j} \wedge$ $P_{4} \wedge r_{3}, h_{123}=g_{123} \wedge P_{4} \wedge r_{3}$.
Then
(i) $\left\{L_{i}\right\}^{e}=V\left(h_{i}\right)$
(ii) $\left\{L_{i}, L_{j}\right\}^{e}=V\left(h_{i j}\right)$ for $\{i, j\}=\{1,3\},\{1,2\},\{2,3\},\{1,4\},\{2,5\}$, \{4, 5\}, \{4.6\}, and \{5.6\}.
(iii) $\left\{L_{1}, L_{2}, L_{3}\right\}^{e}=V\left(h_{123}\right)$.

Corollary 4.10. For i, j as in the previous theorem and $n>4$, $m>2$ we have
(i) $\left\{L_{i}\right\}^{e} \vee W_{n, m}=V\left(h_{i} \oplus\left(q_{n} \oplus\left(P_{m} \wedge r_{3}\right)\right)\right)$,
(ii) $\left\{L_{i}, L_{j}\right\}^{e} \vee W_{n, m}=V\left(h_{i j} \oplus\left(q_{n} \oplus\left(P_{m} \wedge r_{3}\right)\right)\right.$,
(iii) $\left\{L_{1}, L_{2}, L_{3}\right\}^{e} \vee W_{n, m}=V\left(h_{123} \oplus\left(q_{n} \oplus\left(P_{m} \wedge r_{3}\right)\right)\right)$.

In some cases the identities given can be simplified somewhat, but these were chosen for convenience in presentation.

Proof. The proof amounts to showing that each of the indexed polynomials g is valid in the corresponding variety of the diagram
of figure 2 and its subvarieties, and that it fails elsewhere in the diagram. Note that each of these identities has property U. We shall establish the validity of three of the more complicated identities only.
(1) g_{12} holds in L_{1} and L_{2}, but fails in L_{3} : If $g_{12}\left(a_{1}, \cdots, a_{4}\right)<1$ in L_{1}, then a_{1} and a_{2} are incomparable and $\left(a_{1} \wedge a_{2}\right)^{*}=1$, a contradiction.

If $g_{12}\left(a_{1}, \cdots, a_{4}\right)<1$ in L_{2}, then we must have $\left\{a_{1}, a_{2}\right\}=\{a, b\}$ and $a_{1} \wedge a_{2} \wedge a_{3}=0$. However, $a^{* *} * a=1$ then yields a contradiction.

In L_{3} we have

$$
g_{12}(a, b, 0, u)=u+b+a+(c * 0)+(1 * a)+(1 * b)=u .
$$

(2) g_{4} holds in L_{4} but fails in L_{1} : In L_{1} we have $g_{4}(a, b, v, u)=$ $u+v+b+a+((u+a)+(v+b))=u$.

If $g_{4}\left(a_{1}, \cdots, a_{4}\right)<1$ in L_{4}, then $a_{3}<u$. In fact $a_{3}=a, b$, or c since there must be a pair of incomparable elements below a_{3}. If $a_{3}=$ a we have $\left\{a_{3} \wedge a_{1}, a_{3} \wedge a_{2}\right\}=\{d, c\},\{d, g\}$, or $\{f, g\}$. If $\left\{a_{3} \wedge a_{1}, a_{3} \wedge\right.$ $\left.a_{2}\right\}=\{d, c\}$, then $a_{3}+\left(a_{3} * c\right)=a+b=1$. If $\left\{a_{3} \wedge a_{1}, a_{3} \wedge a_{2}\right\}=\{d, g\}$, then $a_{3}+\left(a_{3} * g\right)=a+e=1$. If $\left\{a_{3} \wedge a_{1}, a_{3} \wedge a_{2}\right\}=\{f, g\}$, then we get the same contradiction as in the preceding case. The case $a_{3}=b$ is completely analogous. If $a_{3}=c$, then $\left\{a_{3} \wedge a_{1}, a_{3} \wedge a_{2}\right\}=\{f, g\}$. Then $\left(a_{3}+\right.$ $\left.\left(a_{3} * f\right)\right)+\left(a_{3}+\left(a_{3} * g\right)\right)=(c+d)+(c+e)=a+b=1$, a contradiction.
(3) g_{46} holds in L_{4} and L_{6}, but fails in L_{5} : If $g_{46}\left(a_{1}, \cdots, a_{5}\right)<$ 1, then a_{1} and a_{2} are incomparable and there must be a pair of incomparable elements, $a_{1} \wedge a_{2} \wedge a_{3}$ and $a_{1} \wedge a_{2} \wedge a_{4}$, which are less than $a_{1} \wedge a_{2}$. Thus in L_{4} we would have to have $\left\{a_{1}, a_{2}\right\}=\{a, b\}$ and $\left\{a_{1} \wedge a_{2} \wedge a_{3}, a_{1} \wedge a_{2} \wedge a_{4}\right\}=\{f, g\}$. However, we have $a+\left((a \wedge b)^{*} g\right)=$ 1 which would give a contradiction. In L_{6} we would have to have $\left\{a_{1}, a_{2}\right\}=\{a, b\}$ and $\left\{a_{1} \wedge a_{2} \wedge a_{3}, a_{1} \wedge a_{2} \wedge a_{4}\right\}=\{f, e\}$. This would lead to a contradiction, however, since $a+((a \wedge b) * e)=1$.

In L_{5} we have

$$
\begin{aligned}
g_{40}(a, b, d, e, u)= & u+b+a+e+d \\
& +(a+d)+(a+e)+(b+d)+(b+e)=u
\end{aligned}
$$

References

1. A. Day, Varieties of Heyting algebras I, (to appear).
2. A. Diego, Sur les algebras de Hilbert, Collection de Logique Mathematique, Series A, No. 21, Paris, (1966).
3. B. Jonsson, Algebras whose congruence lattices are distributive, Math. Scand., 21 (1967), 110-121.
4. G. McKay, The decidability of certain intermediate propositional logics, JSL, 33, 2, June (1968).
5. W. Nemitz, Implicative homomorphisms with finite ranges, PAMS, 33 (1972), 319322.
6. _, Implicative semi-lattices, Trans. Amer. Math. Soc., 117 (1965), 128-142.
7. _ Semi-boolean lattices, Notre Dame Journal of Formal Logic, 10 (1969), 235238.
8. W. Nemitz and T. Whaley, Varieties of implicative semi-lattices, Pacific J. Math., 37 (1971), 759-769.

Received October 10, 1971. The second named author was supported in this work by a grant from the Research Corporation.

Southwestern at Memphis

