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A BOUNDARY FOR THE ALGEBRAS
OF BOUNDED HOLOMORPHIC FUNCTIONS

DonG S. Kim

Let (X, A) bea ringed space and let D be a domain in X, Let
B=BD) ={fe AD); ||fllp < ©}. A minimal boundary for
B is defined as a unique smallest subset of D such that every
function in B attains its supremum near the set. The fol-
lowings are shown: If X is locally compact, D is relatively
compact, and B separates the points of D then there exists
a minimal boundary. Under the same assumptions, the natural
projection of the Silov boundary 03 into X is the minimal
boundary. If A is a maximum modulus algebra and the set
of frontier points for A is the minimal boundary, then any
holomorphic function which is bounded near the minimal
boundary must be bounded. Finally, if D is the spectrum of
B (with the compact open topology), then the topological
boundary of D is the set of frontier points for B.

Introduction. Let (X, A) be a ringed space; a subsheaf of rings
with identity of the sheaf of germs of continuous functions on a
Hausdorff space X. Let I'(U, A) be the set of all sections of A over
U, U is an open subset of X. Let A(U) = {feC(U): f(x) = ¢(z)(x) =
J(@), xe U}, where ¢ € I'(U, A) and ,f is the germ of f at z. A funec-
tion f in A(U) is called A-holomorphic or holomorphic. Let B(U) =
{fe A(U): f is bounded on U}. Then B(U) is an algebra (over C)
with identity.

Let D be an open subset of X and let D be the closure of D in
X. For 4c Dlet N(4) be the filter base of open neighborhoods of 4
in X and denote N,(4) be the trace of N(4) on D.

DEFINITION. For fe A(D), define cl t,(4) = {) cl f(W): W € N,(4)},
where cl f(W) is the closure of f(W) in the Riemann sphere C U (e},
the cluster set of f at 4, and write clés(x) for cli;({x}). Define
Mq(4) = sup|cli(d)] €]0, =], and write M (x) for M ({x}).

Let B = B(D). Denote B, for B with the topology of supremum
norm on D and B, for B with the topology of uniform convergence
on compact subsets of D (c.o. topology). Then B, is a Banach algebra.
Let S(B,) be the space of nonzero complex homomorphisms of B, onto
C and S(B,) be the space of nonzero continuous complex homomor-
phisms of B, onto C. Then S(B,) D> S(B,), for, if he S(B,) then there
exists a compact subset K, of D such that |A(f)| < || fll;, for all
fe B, which implies |&(f)| < || fll, for all fe B, so that ke S(B,).
Endow S(B,) with the weakest topology for which each 7 is continuous,
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where f is the Gelfand representation of f on S(B,) such that f(h) =
h(f) for all he S(B,). Then S(B,) is compact. Equip S(B,) with the
relative topology of S(B,). For ze D define h,(f) = f(x) for all fe B
then 4, e S(B,), moreover h,ec S(B,), since |h,(f)]| = |f(®)]| =< || fl|lx for
all fe B, where K is a compact subset containing {z}. Now if B
separates the points of D then it separates strongly the points of D
(in the sense of [8]), since B contains constant functions. If D is
locally compact and B separates the points then the natural embedd-
ing p of D into S(B,) is a homeomorphism (See Cor. 3.2.5 of Rickart
[8]). Henceforth, we denote o for this homeomorphism. Let = be
a continuous mapping from S(B,) into X such that 7| pD is the in-
verse mapping of o, so that = | oD is a homeomorphism of oD onto D.

The prototype of these phenomena is the following: Let D be
a relatively compact domain in C* and B = B(D). Set S = S(B,).
With the coordinate function z,, 2., -++, 2, in B, define 7#: S— C" by
w(h) = (Z.(h), <+, Z,(h)),h e S((S) is the joint spectrum of z,, 2, ++,2,.
Then 7 is continuous and it is a homeomorphism on ©D. Moreover
ns(,B)c D and 7S > D.

A minimal boundary.

ProrosITION 1.

(i) My(4) = limy,, sup {| f(W) |: We Ny(d)}, where 4cD. For
wve D, My(x) = f(@). |[fIl = 8up.ep |f(@)]| = MAD) = MsD).

(i) The function M(-): D— ][0, o] is upper semi-continuous.

(iili) For a closed subset 4 D, there ewists a point pc 4 such
that My (4) = M(p).

(iv) M,,(4) < My(4)-M,(4), where 4C D.

Proof. For (i), (ii), and (iii), see Quigley [5]. (iv) is trivial.

DEFINITION 2. Let Hc A(D). We call a subset I” of D an H-set
if I is closed in D and || f|| = M/(D) = M4I") for all fe H. An H-set
is minimal if it properly contains no H-set. Denote ", for a minimal

H-set.
If H= B = B(D), "y is a minimal B-set.

PROPOSITION 2. If D s relatively compact then a minimal H-set
exists for every HC A(D).

Proof. See Quigley [5].

ProOPOSITION 8. Let X be locally compact and B separate the
points of D. Let w be a continuous mapping from S(B,) into X such
that wop 1is the identity mapping on D. Let clpD be the closure of
oD in S(B,). Then n(cl oD) = D and n(cl oD — oD) = D — D.
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Proof. Since cl pD is compact and z(cl oD) 2 D, n(cl pD) =2 D.
Let hecl oD then for any net {r,} < oD which converges to &, {w(k,)}
converges to m(h), since 7 is continuous. Since {rx(h,)}< D, n(h) € D.
So 7#(clpD) = D. Hence n(clpD) = D

Let heclpoD — pD and assume that w(h) e D. Take any feB.
Since f is continuous, we may choose, for arbitrary ¢ > 0, a neigh-
borhood U of #n(h); U = {xeD:|fi(x) — filzx(h)| <&, i1=1,2, -+, n},
such that y e U implies | f(y) — f(z(h))| < ¢’. Again, since f is con-
tinuous on S(By) and heclpD, there is y,€ D with oy) e N = {pe
S(B,): |fie) — fi()| <&, =1,2,+--,n} such that | f(h) — f(o(y,))| < &'
Note that y,e U=n=x | OD(N), so |f(¥,) -—f(ﬂ.‘(h))| <ée. Also f(y) =
Flo(,) and f(z(k) = Flo@m(h), so it follows that | F(h)—Flo@h)) | < 2¢'.
Since ¢’ is arbitrary, we have f(h) = f(o(z(h))) foy every fe B. Hence
h = p(r(h)) € oD, which is absurd. Hence n(cl oD — pD) = D — D.

THEOREM 1. Let X be locally compact and D be relatively com-~
pvact in X. If B(D) separates the points of D, then the minimal B-
set I'p is unique.

Proof. Let I', and I, be minimal B-sets, and let pel’, be an
arbitrary point of I,. We will show that every neighborhood of p
intersects I", so that pel’,. So I'yC ;. The same argument shows
that I",c I',. .

Let peI',. Let W be any neighborhood of p in D and let p¢
cl oD such that n(p) = p. Take a neighborhood N of ¢ in S(B,) = S
such that NCcz(W); N= {heS:|filh) — Fi@)| <&, i=1,2, -+, n}.
PutU= {weD:|fi») — a;| <é&,4=1,2,++,n}, where a; = 7(#). Then
U=aWN)NDca(N). LetV={weD: M;_,(x)<¢/2,7=12,---,n}
Since M, ,, (%) = |fi(®) — a;| for xe D, VN D = U. And, since M, _,,
is upper semicontinuous, V is open in D and it is easy to see that
M;,_.(p) = 0, soV is an open neighborhood of p. Note that M, (p) =
la;|. Now, since My, ,,(*) <¢/2 in V, we may choose a neighborhood
G of p in D such that |(f; — a;)(x)| <e forallze GN D and G C N.
Then Vc G aNCW.

Since I, — V is closed in D and it is a proper subset of I, it is
not a B-set. Hence there exists g€ B(D) such that M (I", — V) <
M) =llgll. So M,(I',— V)|lgl|™* <1. Choose m large enough
such that {M,(", — V)|lgl™}" <e@ + X7 |[fi — a;l)™' =0, and set
F=g" Then MAI', — V) = Mpw(I" — V) < {M,(I" — V)}* <3 lgl|" =
ollflle If zeV then M, _,,(x) <¢/2 so that

MWM@=MW@M@<§WD=§ww

If xel’, — V then My (x) < M,(I", — V) < d||f]|, so that again
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M;,o My(3) < 2|1 f1] -

Since I', is a B-set it follows that M, _, M(D) < (¢/2)M D) = (¢/2)|| 1|
Let ¢ be any point of I, with M(q) = M D) = MD) = || f]|
Then M;,_,.(q)M:(q) < (¢/2)|[f|l. Hence M; _,(q) <¢&/2 and this is
true for all 4+ =1,2,.--,n. Thus geV, so VNI,%# @. Hence
W NI,+¢. Since I', is closed, pel',. The proof is complete.

We call the unique minimal B-set the minimal boundary for B.

Note. Let I', be a minimal boundary for B then xzel’, if and
only if for every neighborhood U of z there exists fe B such that
1l = MAU) > MAD — U).

THEOREM 2. Let X be locally compact and D be relatively com-
pact in X. We assume that B separates the points of D. Then
7oB is a minimal boundary.

Proof. Since My D) = ||fllo = | flleo = || flls for all feB, we
have 903 c el pD. Let 2 wdy then there exists # €03 such that x = zh.
Now, heds 1mp11es that for arbltrary nelghborhood Nof hin S = S(B,)
there exists fe B such that ||st = HfHN > Hflls xo Since S — ND
eD — NnpD, we have | Fllsew = | Flloo—xnope S0 || Fllop = || Flls >
HJ:HS—N = ”fHPD—-NﬂPD Hence it follows that ||fHPD = Hf”zvnpz) >
[|F lop—wnep- This is equivalent to || f|lr = |[f|lzwnepy > | Fllo—znons
Since (NN pD) is a trace of a neighborhood of # = zh on D and
a trace of any neighborhood of 2 on D can be written as such a form,
x = wh belongs to a minimal boundary I';. So w3 CI'3;. On the
other hand, if W is any open set containing #oj, then by the con-
tinuity of z, there exists an open set G in S containing 03 such that
n(G) S W and hence #(GNpD)SWND. For any fe B, we have

”f”wnp = ”f”(}ﬂpl) = ”fA”amcmD = Hf”bé =[fllp -

If follows that My(wos) = || fll, for all fe B. Since wos is closed, it
is a B-set. Thus #03 is a minimal boundary.

For instance: Let D be the unit open disc in C and let B(D) =
Define a natural continuous mapping 7 of S into the closed unit dise
D by m(h) = h(z), he S and z is the coordinate function. Then the
minimal boundary I", is the unit circle and the Silov boundary 03 on
S is a proper closed subset of cl oD — oD which is totally disconnect-
ed. The image of 03 under z is the unit circle.

Next, we have a question that whether a function f with
My (') < oo is bounded.
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PROPOSITION 4. Suppose A = A(D) and B = B(D) have the unique
minimal boundaries I', and I'y respectively. If I'y + 'y then there
exists a function f€ A which is bounded mear I'y (i.e., M (I"p) < o),
but not in B.

Proof. In general, I'y,DI',. Take xe€l', — 'y and choose a
neighborhood U of « in D such that M (U) = ||f]| > M (D — U) and
UNI'y;=¢. Then MAI'p) < « but f¢ B.

DEFINITION. A point 2 e D is a frontier point of D for Hc A(D)
if for each compact subset K of D with z¢ K there exists fe H such
that M:(x) > ||f||xz. Let F be the set of all frontier points of D for
H. Denote F, for A(D) and F, for B(D) respectively.

We introduce a generalized form of a theorem in Bochner and
Martin [2] (see Theorem 1, Ch.V) as follows:

PropPoOSITION 5. Let X be locally compact, D be a subset of X
which is countable at o, and let D — D be first countable. Let
A = A(D) be a maximum modulus algebra and c.o. complete. Then
xeF, if and only if there is a function fe A such that M (x) = co.
In fact, there is a single function f such that M (x) = « for all
xeF,.

Proof. Use the analogous argument as in Bochner and Martin [2].

THEOREM 3. Let X be locally compact, D be countable at -, and
D — D be first countable. Let A be a maximum modulus algebra
and c.o. complete. Suppose 'y is a minimal boundary and F, = [y
then every function fe A with M["'z) < o belongs to B.

Proof. Assume that f is unbounded then there exists a sequence
{x,} © D such that |f(x,)| — « and n— . Let ,— «then by Pro-
position 5, xe F, and so 2€l5. Thus oo = Mq(2) < M5 < oo,
which is absurd. Hence fe B.

We observe that heS(B,) — S(B,) if and only if for any compact
subset K of D there exists fe B (f may depend on K) such that

[R(A) 1 > [l

THEOREM 4. Let X be locally compact and B separate the points
of D. Let Fy be the set of all frontier points for B. If oD = S(B,)
then D — D = F,.

Proof. Let bdry S(B, =clS(B,) — S(B,). By Proposition 3,
w(bdry S(B,)) = bdry D. Now if hebdry S(B,), then for any com-
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pact subset K of D, there exists fe B such that |h(f)| > || fllzx. We
claim M (z(h)) > || fllx: Suppose Mi(z(h)) = ||fllx =7, then there
exists a net {x,} € D such that ||f(x,)| —r| <1l/n as @, , — (k). So
|f(®,) | —r. Now, let h, — h. Since 7 is continuous, f(k, )—»f(h)
So f(z,) — h(f). In partlcular | f(= Then it follows that
[h(f)| =r = i So bdry
D= F,.

Note. If D is a Stein manifold of bounded type then oD = S(B,)
(see Kim [3]).
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