ENUMERATION OF UP-DOWN PERMUTATIONS BY NUMBER OF RISES

L. CARLITZ

It is well known that A(n), the number of up-down permutations of $\{1, 2, \dots, n\}$ satisfies

$$\sum_{n=0}^{\epsilon} A(2n) \frac{z^{2n}}{(2n)!} = \sec z ,$$

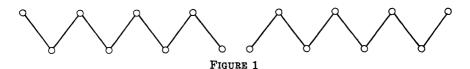
$$\sum_{n=0}^{\infty} A(2n+1) \frac{z^{2n+1}}{(2n+1)!} = \tan z.$$

In the present paper generating functions are obtained for the number of up-down permutations counting the number of rises among the "peaks".

1. If (a_1, a_2, \dots, a_n) denotes an arbitrary up-down permutation, then (b_1, b_2, \dots, b_n) , where

$$b_i = n - a_i + 1$$
 $(i = 1, 2, \dots, n)$

is a down-up permutation and vice versa.



Thus, for n > 1, there is a one-to-one correspondence between up-down and down-up permutations so that it suffices to consider the former.

Let A(n, r) denote the number of up-down permutations of $Z_n = \{1, 2, \dots, n\}$ with r rises on the top line.

Let C(n, r) denote the number of down-up permutations with r rises on the top line.

A rise is a pair of consecutive elements a, b with a < b. Also we agree to count a conventional rise on the left. For example

have 3 and 2 rises, respectively.

It will be instructive first to derive the generating functions for A(2n+1) and A(2n). We have A(1)=1 and

(1.1)
$$A(2n+1) = \sum_{k=0}^{n-1} {2n \choose 2k+1} A(2k+1) A(2n-2k-1) \quad (n>0)$$
.

Hence if we put

$$F(z) = \sum_{n=0}^{\infty} A(2n+1) \frac{z^{2n+1}}{(2n+1)!}$$
 ,

it follows from (1.1) that

$$F'(z) = 1 + F^2(z)$$
.

Since F(0) = 0, we get $F(z) = \tan z$. Next

(1.2)
$$A(2n) = \sum_{k=0}^{n-1} {2n-1 \choose 2k+1} A(2k+1) A(2n-2k-2),$$

where A(0) = 1. Hence if

$$G(z) = \sum_{n=0}^{\infty} A(2n) \frac{z^{2n}}{(2n)!}$$
 ,

it follows from (1.2) that

$$G'(z) = F(z)G(z)$$
.

Since G(0) = 1, this gives $G(z) = \sec z$. Thus we have proved that [1], [2, pp. 105-112]

$$\sum_{n=0}^{\infty} A(n) \frac{z^n}{n!} = \sec z + \tan z.$$

2. Turning next to A(2n+1, r) we take

$$A(1, 0) = 1, A(1, r) = 0$$
 $(r > 0)$.

Corresponding to (1.1) we have the recurrence

$$(2.1) \quad A(2n+1,\,r) \,=\, \sum\limits_{k=0}^{n-1}\sum\limits_{s=0}^{r}inom{2k+1}{2n}A(2k+1,\,s)A^*(2n-2k-1,\,r-s)$$
 ,

where

$$A^*(2n+1,r) = A(2n+1,r)$$
 $(n>0)$

but

$$A^*(1, 0) = 0, A^*(1, 1) = 1$$
.

Put

$$A_{2n+1}(x)=\sum_{r}A(2n+1,\,r)x^{r},\,A_{1}(x)=1$$

$$A_{2n+1}^{*}(x)=A_{2n+1}(x)\qquad \qquad (n>0),\,A_{1}^{*}(x)=x\;.$$

Then (2.1) gives

$$(2.2) A_{2n+1}(x) = \sum_{k=0}^{n-1} {2k+1 \choose 2n} A_{2k+1}(x) A_{2n-2k-1}^*(x) (n>0).$$

Hence if

(2.3)
$$A(z) = A(x, z) = \sum_{n=0}^{\infty} A_{2n+1}(x) \frac{z^{2n+1}}{(2n+1)!},$$

it follows from (2.2) that

$$egin{align} A'(z) &= \sum\limits_{n=0}^{\infty} A_{2n+1}(x) rac{z^{2n}}{(2n)!} \ &= 1 + \sum\limits_{k=0}^{\infty} A_{2k+1}(x) rac{z^{2k+1}}{(2k+1)!} \sum\limits_{n=1}^{\infty} A_{2n-1}^*(x) rac{z^{2n-1}}{(2n-1)!} \; ext{,} \end{array}$$

so that

(2.4)
$$A'(z) = 1 + A(z)(A(z) - (1 - x)z) = 1 - (1 - x)zA(z) + A^{2}(z).$$

If we put

$$A(z)=rac{1}{U}rac{d\,U}{dz}, rac{d\,A}{dz}=rac{1}{U^2}ig(rac{d\,U}{dz}ig)^2-rac{1}{U}rac{d^2U}{dz^2}$$
 ,

(2.4) becomes

(2.5)
$$\frac{d^2U}{dz^2} + (1-x)z\frac{dU}{dz} + U = 0.$$

It is clear that U is an even function of z. We accordingly put

$$U = \sum_{n=0}^{\infty} (-1)^n a_n(x) \frac{z^{2n}}{(2n)!}$$
 $(a_0(x) = 1)$.

Substituting in (2.5) we get

$$-a_{n+1}(x) + 2n(1-x)a_n(x) + a_n(x) = 0$$
.

so that

$$(2.6) a_{n+1}(x) = (1 + 2n(1-x))a_n(x).$$

It follows at once from (2.6) that

$$a_n(x) = \prod_{k=0}^{n-1} (1 + 2k(1-x))$$
.

Hence

$$(2.7) U = \sum_{n=0}^{\infty} (-1)^n \prod_{k=0}^{n=1} (1 + 2k(1-x)) \cdot \frac{z^{2n}}{(2n)!},$$

and

$$A(z) = rac{\sum\limits_{n=0}^{\infty} (-1)^n \prod\limits_{k=0}^n (1+2k(1-x)) oldsymbol{\cdot} rac{z^{2n+1}}{(2n+1)!}}{\sum\limits_{n=0}^{\infty} (-1)^n \prod\limits_{k=0}^{n-1} (1+2k(1-x)) oldsymbol{\cdot} rac{z^{2n}}{(2n)!}} \ oldsymbol{\cdot}$$

The first few coefficients are given by

$$A_1(x) = 1$$
, $A_3(x) = 2x$, $A_5(x) = 8x + 8x^2$, $A_7(x) = 48x + 176x^2 + 48x^3$.

It follows by induction from

$$A_{2n+1}(x) = \sum_{k=1}^{n-2} {2n+1 \choose 2k} A_{2k+1}(x) A_{2n-2k-1}(x) + 2n(1+x) A_{2n-1}(x) \quad (n>1)$$

that

$$(2.9) x^{n+1}A_{2n+1}\left(\frac{1}{x}\right) = A_{2n+1}(x).$$

This implies

$$(2.10) A(2n+1, r) = A(2n+1, n-r+1) (1 \le r \le n).$$

Also, using the fuller notation A(x, z), we have

$$(2.11) x^{1/2}A\left(\frac{1}{x}, x^{1/2}z\right) = (x-1)z + A(z, x).$$

3. Now we consider the case A(2n, r). We take

$$A(0, 0) = 1, A(0, r) = 0$$
 $(r > 0).$

Corresponding to (1.2) we have the recurrence

$$(3.1) \quad A(2n+2,r) = \sum_{k=0}^{n} \sum_{s} \binom{2n+1}{2k+1} A(2k+1,s) A^{*}(2n-2k,r-s)$$
 $(n \geq 0)$

where

$$A^*(2n, r) = A(2n, r) \qquad (n > 0) ,$$

but

$$A^*(0,0) = 0, A^*(0,1) = 1$$
.

Now put

$$A_{2n}(x)=\sum_{r}A(2n,\,r)x^{r},\,A_{\scriptscriptstyle 0}(x)=1$$
 , $A_{\scriptscriptstyle 2n}^{*}(x)=A_{\scriptscriptstyle 2n}(x)(n>0),\,A_{\scriptscriptstyle 0}^{*}(x)=x$.

Then (3.1) gives

$$(3.2) A_{2n+2}(x) = \sum_{k=0}^{n} {2n+1 \choose 2k+1} A_{2k+1}(x) A_{2n-2k}^*(x) (n \ge 0).$$

Hence if

(3.3)
$$B(z) = B(x, z) = \sum_{n=0}^{\infty} A_{2n}(x) \frac{z^{2n}}{(2n)!},$$

we have

$$B'(z) = A(z)(B(z) - 1 + x)$$
.

Replacing A(z) by U'/U, we get

(3.4)
$$UB' + U'B = (1 - x)U'.$$

Since B(0) = 1, U(0) = 1, it follows from (3.4) that

$$UB = x + (1 - x)U$$
.

Therefore

(3.5)
$$B(z) = 1 - x + \frac{x}{U}.$$

The first few coefficients are

$$A_{\scriptscriptstyle 0}(x) = A_{\scriptscriptstyle 2}(x) = x$$
, $A_{\scriptscriptstyle 4}(x) = 3x + 2x^{\scriptscriptstyle 2}$, $A_{\scriptscriptstyle 6}(x) = 15x + 38x^{\scriptscriptstyle 2} + 8x^{\scriptscriptstyle 3}$.

4. We turn now to C(2n, r). We take

$$C(0, 0) = 1, C(0, r) = 0$$
 $(r > 0).$

We have the recurrence

$$C(2n+2,\,r)=\sum\limits_{k=0}^{n}\sum\limits_{s}inom{2n+1}{2k}C(2k,\,s)A^{*}(2n-2k+1,\,r-s)\;,$$

where $A^*(2k+1, s)$ has the same meaning as in §2. Thus, if

$$C_{2n}(x) = \sum_r C(2n, r)x^r$$
,

we get

$$C_{2n+2}(x) = \sum_{k=0}^{n} {2n+1 \choose 2k} C_{2k}(x) A_{2n-2k+1}^*(x) .$$

Put

(4.3)
$$C(z) = C(x, z) = \sum_{n=0}^{\infty} C_{2n}(x) \frac{z^{2n}}{(2n)!}.$$

Then it follows from (4.2) that

$$(4.4) C'(z) = C(z)(A(z) - (1-x)z),$$

so that

$$\frac{C'(z)}{C(z)} = \frac{U'}{U} - (1-x)z.$$

Since C(0) = 1, this yields

(4.5)
$$C(z) = \frac{1}{U}e^{-1/2(1-x)z^2}.$$

The first few coefficients are

$$C_0(x) = 1$$
, $C_2(x) = x$, $C_4(x) = 2x + 3x^2$, $C_6(x) = 8x + 38x^2 + 15x^3$.

We shall now show that U = U(x, z) satisfies the functional equation

(4.6)
$$U\left(\frac{1}{x}, x^{1/2}z\right)e^{-1/2(1-x)z^2} = U(x, z),$$

or

$$\sum_{0}^{\infty} (-1)^n a_n \left(\frac{1}{x}\right) \frac{x^n z^{2n}}{(2n)!} \sum_{0}^{\infty} (-1)^k \frac{(1-x)^k z^{2k}}{2^k \cdot k!} = \sum_{0}^{\infty} (-1)^n a_n(x) \frac{z^{2n}}{(2n)!} .$$

This is equivalent to

(4.7)
$$\sum_{k=0}^{n} \frac{(2n)!}{(2k)!(n-k)!} \left(\frac{1-x}{2}\right)^{n-k} a_k \left(\frac{1}{x}\right) = a_n(x) .$$

The left hand side of (4.7) is equal to

$$\begin{split} &\frac{(2n)!}{n!} \left(\frac{1-x}{2}\right)^n \sum_{k=0}^n (-1)^k \frac{(-n)_k}{k! \left(\frac{1}{2}\right)_k} \left(\frac{x}{2(1-x)}\right)^k \prod_{j=0}^{k-1} \left(1+2j\left(1-\frac{1}{x}\right)\right) \\ &= \frac{(2n)!}{n!} \left(\frac{1-x}{2}\right)^n \sum_{k=0}^n \frac{(-n)_k}{k! \left(\frac{1}{2}\right)_k} \left(\frac{x}{2(k-1)}\right)_k \\ &= \frac{(2n)!}{n!} \left(\frac{1-x}{2}\right)^n \frac{\left(\frac{1}{2(1-x)}\right)_n}{\left(\frac{1}{2}\right)_k} = 2^n (1-x)^n \left(\frac{1}{2(1-x)}\right)_n = a_n(x) , \end{split}$$

by Vandermonde's theorem.

It evidently follows from (3.5), (4.5), and (4.6) that

(4.8)
$$C_{2n}(x) = x^{n+1} A_{2n} \left(\frac{1}{x}\right) \qquad (n > 0)$$

and therefore

(4.9)
$$C(2n, r) = A(2n, n - r + 1)$$
 $(1 \le r \le n)$.

5. Finally we consider C(2n + 1, r). We now take

$$C(1, 1) = 1, C(1, r) = 0$$
 $(r \neq 1).$

We have the recurrence

(5.1)
$$C(2n+1, r) = \sum_{k=0}^{n} \sum_{s} {2n \choose 2k} C(2k) A^{*}(2n-2k, r-s)$$
.

Thus, if

$$C_{2n+1}(x) = \sum_{r} C(2n+1, r)x^{r}$$
,

it follows that

(5.2)
$$C_{2n+1}(x) = \sum_{k=0}^{n} {2n \choose 2k} C_{2k}(x) A_{2n-2k}^*(x) .$$

Put

$$D(z) = D(x, z) = \sum_{n=0}^{\infty} C_{2n+1}(x) \frac{z^{2n+1}}{(2n+1)!}$$
.

Then, by (5.2),

(5.3)
$$D'(z) = C(z)(B(z) - 1 + x).$$

It follows that

$$egin{align} D'(z) &= rac{x}{U^2(x,\,z)} e^{-1/2(1-x)\,z^2} \ &= rac{x}{U(x,\,z)\,U(x^{-1},\,x^{1/2}z)} \ &= xC(x,\,z)C(x^{-1},\,x^{12}z) \;. \end{split}$$

Therefore

(5.4)
$$C_{2n+1}(x) = \sum_{k=0}^{n} {2n \choose 2k} x^{n-k+1} C_{2k}(x) C_{2n-2k}(x^{-1}).$$

It follows from (5.4) that

$$x^{n+2}C_{2n+1}(x^{-1}) = C_{2n+1}(x)$$
,

so that

(5.5)
$$C(2n+1, r) = C(2n+1, n-r+2) \quad (1 \le r \le n+1)$$
.

The first few values of $C_{2n+1} + (x)$ are given by

$$C_1(x) = x$$
, $C_3(x) = x + x^2$, $C_5(x) = 3x + 10x^2 + 3x^3$, $C_7(x) = 15x + 121x^2 + 121x^3 + 15x^4$.

Note that $C_{2n+1}(x)$ is of degree n+1.

6. A number of special values can be obtained. It follows first from

$$A_{2n+1}(x) = \sum_{k=1}^{n-2} {2n \choose 2k+1} A_{2k+1}(x) + 2n(1+x) A_{2n-1}(x)$$
 $(n>1)$

and

$$x \mid A_{2k+1}(x) \qquad (k > 0)$$

that

$$A'_{2n+1}(0) = 2nA'_{2n-1}(0)$$
.

This yields

(6.1)
$$A(2n+1,1) = 2nA(2n-1,1) = 2^{n}n!.$$

Next, it follows from

$$A_{2n+2}(x) = (2n+1)A_{2n}(x) + \sum_{k=1}^{n-1} {2n+1 \choose 2k+1} A_{2k+1}(x) A_{2n-2k}(x) + x A_{2n+1}(x)$$

and

$$x \mid A_{2k}(x) \qquad (k > 0)$$

that

$$A'_{2n+2}(0) = (2n+1)A'_{2n}(0)$$
.

This gives

(6.2)
$$A(2n, 1) = (2n - 1)(2n - 3) \cdots 3.1.$$

It follows from

$$egin{align} C_{2n+2}(x) &= A_{2n+1}(x) \, + \, \sum\limits_{k=1}^{n-1} inom{2n+1}{2k} C_{2k}(x) A_{2n-2k+1}(x) \ &+ \, (2n+1)x C_{2n}(x) \end{array}$$

and

$$x \mid C_{2k}(x) \qquad (k > 0)$$

that

$$C'_{2n+2}(x) = A'_{2n+1}(0) \qquad (n > 0)$$
.

Hence

(6.3)
$$C(2n+2,1)=2^n n!$$
.

Finally, from

$$C_{2n+1}(x) = A_{2n}(x) + \sum_{k=1}^{n-1} {2n \choose 2k} C_{2k}(x) A_{2n-2k}(x) + x C_{2n}(x)$$

and

$$x \mid C_{2k+1}(x) \qquad (k \ge 0) ,$$

we get

$$C'_{2n+1}(0) = A'_{2n}(0)$$
,

so that

(6.4)
$$C(2n+1,1)=(2n-1)(2n-3)\cdots 3.1$$
.

In view of (4.9),

$$C(2n, r) = A(2n, n - r + 1)$$
 $(1 \le r \le n)$

we have also

(6.5)
$$A(2n+2, n+1) = 2^{n}n!,$$

(6.6)
$$C(2n, n) = (2n - 1)(2n - 3) \cdots 3.1$$
.

7. We remark that the differential equation

$$(7.1) U'' + (1-x)zU' + U = 0$$

has the second solution W = UV, where

$$(7.2) V' = e^{-1/2(1-x)z^2} U^{-2}.$$

Thus, by (5.3), we have

$$D'(z) = xV'(z) ,$$

so that

$$D(z) = xV(z).$$

Since W is an odd function of z we may put

$$W(z) = = \sum_{0}^{\infty} (-1)^{n} b_{n}(x) \frac{z^{2n+1}}{(2n+1)!}$$
.

It follows from the differential equation that

$$b_{n+1}(x) = (1 + (2n + 1)(1 - x))b_n(x) ,$$

so that

(7.4)
$$b_n(x) = \prod_{k=0}^{n-1} (1 + (2k+1)(1-x)).$$

Finally we have

$$(7.5) D(z) = x \frac{\sum_{n=0}^{\infty} (-1)^n \prod_{k=0}^{n-1} (1 + (2k+1)(1-x)) \cdot \frac{z^{2n+1}}{(2n+1)!}}{\sum_{n=0}^{\infty} (-1)^n \sum_{k=0}^{n-1} (1 + 2k(1-x)) \cdot \frac{z^{2n}}{(2n)!}} .$$

We may, if we prefer, express both U and V as hypergeometric functions of the type ${}_{1}F_{1}$.

REFERENCES

- 1. R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde (3), 14 (1966), 241-246.
- 2. E. Netto, Lehrbuch der Combinatorik, Teubner, Leipzig and Berlin, 1927.

Received November 17, 1971. Supported in part by NSF grant GP-17031.

DUKE UNIVERSITY