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ENUMERATION OF UP-DOWN PERMUTATIONS
BY NUMBER OF RISES

L. CARLITZ

It is well known that A(n), the number of up-down per-

mutations of {1,2, ---, n} satisfies
2 A(2n)(2 5 =secz,
+1
Z A@2n + l)m = tan z.

In the present paper generating functions are obtained for
the number of up-down permutations counting the number
of rises among the ‘‘peaks’.

1. If (a, a, ---, a,) denotes an arbitrary up-down permutation,
then (b, b,, .-, b,), where

b=n—a;+1 (?:———-‘1,2,“',%),

is a down-up permutation and vice versa.
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FIGURE 1

Thus, for » > 1, there is a one-to-one correspondence between up-down
and down-up permutations so that it suffices to consider the former.

Let A(n, r) denote the number of up-down permutations of Z, =
{1,2, .-+, n} with » rises on the top line.

Let C(n, ) denote the number of down-up permutations with
rises on the top line.

A rise is a pair of consecutive elements a, b with a < b. Also
we agree to count a conventional rise on the left. For example

132546, 426153

have 8 and 2 rises, respectively.
It will be instructive first to derive the generating functions for
A(2n + 1) and A(2n). We have A(l) =1 and

(1.1) A@2n + 1) = Z ( )A(2k +1)A@Cn —-2k—-1) (n>0).

2k +

Hence if we put
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n+1
F(z) = Z A@2n + 1)m ,
it follows from (1.1) that
F'(z) =14 F*2) .
Since F(0) = 0, we get F(z) = tan z.
Next

(1.2) A@n) = k% (2” - 1)A(2k + 1)A@n — 2 — 2),

2k +1
where A(0) = 1. Hence if

6@ = 3 A@n) T,

it follows from (1.2) that
G'(z) = F(/G{?) .

Since G(0) = 1, this gives G(z) = sec 2. Thus we have proved that
[1], [2, pp. 105-112]

1.3) i A(n)f:;_ =secz + tanz.
n=0 n.

2. Turning next to A(2n + 1, r) we take
A1,0=1,AQ,r =0 (r>0.
Corresponding to (1.1) we have the recurrence

n—1 r

21) A@n+ 1,7 = Z > <2k * 1) ARk +1,8)A*@2n—2k—1,r—3),

where
A*@2n +1,7r) = A2n + 1, 7) (n > 0)
but
A4*(1,0) =0, 4*1,1) =1.
Put
Asp(x) = ; A@2n + 1, r)am, A(z) =1

A () = Ayani(@) (n>0), Af(x) = .

Then (2.1) gives
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2k +1
2.2) Apn(0) = 2(22)2Hmmg%4@ (n>0).
Hence if
2.3) 4@ = A7) = 5 Ao E
it follows from (2.2) that
A'(z) = 2 Agpi (%) —— (2 )Y
=1 +kz=', 2k+1(09)(—2m2 A (@ )—(——1), ’
so that
@.4) A'(z) =1+ AR)(AR) — 1 — x)2)
) =1— (1 — a2)2A(2) + A¥2) .
If we put
1dU dA 1 /dUN* 1 &*U
A0 =50 % ) T

(2.4) becomes

(2.5) TU L1 —wfU L y—o.
= &z

It is clear that U is an even function of z. We accordingly put

U= zenuw@y (au(@) = 1) -

Substituting in (2.5) we get
— A,y (®) + 201 — 2)a,(x) + a,(x) =0,
so that
(2.6) Uii(®) = (1 + 201 — @)a,(2) .
It follows at once from (2.6) that

au(@) = 1 (L + 21 — 2)) -

Hence

o

@) U=S (=1 + 2k — )2,
n=0 B=0 (2m)!
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and
S =) LA+ 2k — @) 2
(2.8) A®R) = ”=°m "=°M (2n -; nr
S 1 T+ 2t — 2y)e 2
=N & @n)!

The first few coefficients are given by
A(z) = 1, Ay(x) = 2z, Aj(x) = 8z + 82% A, (x) = 48z + 1762 + 482° .

It follows by induction from

w2 (20 +1
Apr () = z( o )A%H(x)Am_%_l(x) 4 20( + 2)Apa@) (0> 1)
that
2.9) WAW(E) = Apin(@) ©
X

This implies
(2.10) A@Cn +1,7) = A@n + 1, n — r 4+ 1) l=r=mwn.

Also, using the fuller notation A(z, 2), we have

(2.11) mlﬂA(%, x”%) =@ — 1z + Az, 2) .

3. Now we consider the case A(2n,r). We take
A(0,0) =1, A0, 7) =0 (r>0).

Corresponding to (1.2) we have the recurrence

7 2 1
B.1) AC@Cn +2,7) =33, < n ARk + 1, 5)A*2n — 2k, r — s)
=5 \2k + 1
(n=0),
where
A*@2n, r) = A@n, ) (n>0),
but

A*(0,0) = 0, A*(0,1) = 1.

Now put
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Aw(®) = X A@2n, 1)27, A2) = 1,

A% (@) = Ap(x)(n > 0), Af(x) = @ .
Then (3.1) gives

n (20 + 1 .
3.2) A, (x) = ;GZ(‘) <2Ic N 1)Az,,Jrl(x)./lzn_Zk(oc) (n=0) .
Hence if
. N =) zz’lb
(3:3) BG) = B, 9) = 3 A gy
we have

B(z) = AR)BR) — 1 + ) .
Replacing A(z) by U'/U, we get
3.9) UB+UB=(Q1-2U.
Since B(0) =1, U(0) = 1, it follows from (3.4) that
UB=2z+(1-2U.

Therefore
3. Bkz) =1 — X
(3.5) (?) z + i

The first few coefficients are

Ay(x) = Axx) = 2z, A(x) = 32 + 207, Ay(x) = 152 + 38a* + 82° .

4, We turn now to C(2n,r). We take
C00,0)=1,C0O,r =0 (r>0).
We have the recurrence

2n + 1
2k

a1l C@n+2,7) = kg 5 < )C(zk, S)A*@n — 2k + 1,7 —s),

where A*(2k + 1, s) has the same meaning as in §2.
Thus, if

Con(x) = 3 C(2n, r)a”,
we get

4.2) Czn+2(x) =

k

n

(Zn—l—l

%)%mxmmm.

0
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Put

(4.3) C(z) = C(=, ?) = 2 Con(@)2— (2 ), .
Then it follows from (4.2) that
4.9 C') = Cl)(AR) — (1 — x)2) ,
so that

Ck _ U _q_

o) - T 1 —-2z.
Since C(0) = 1, this yields
(4.5) Cle) = er~1/2<1—¢>22 .

The first few coefficients are
Cyx) = 1, Cy(x) = =, Cy(x) = 2 + 32%, Cy(x) = 8x + 38a® + 15a° .

We shall now show that U = U(x, 2) satisfies the functional equation

(4.6) U(% m"2z>e‘”z“‘”)’2 = U, 2),
or
— n, S k (1 - x) 2 — o _ n
S a5 - A = S praw i

This is equivalent to

s @m) (l—m\t (1Y
D Emn | ) “le)=e-

The left hand side of (4.7) is equal to

S e ars) Bl st -5)
2/

N (27?!)! (l 2 w>”kiok(,E:;k (z(kx_ 1))

k

_1
- (2:!)! <1 - @ )”(2%;)@ ) =271 — w)"( 2(11_ 5 ) = a,(%) ,
2

n
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by Vandermonde’s theorem.
It evidently follows from (3.5), (4.5), and (4.6) that

(4.8) amwwwu4%) (n > 0)

and therefore

4.9) C@2n,r) = A@n, n —r + 1) 1sr=n).

5. Finally we consider C(2n + 1, 7). We now take
c11)=1Cc1,7r=0 (r # 1).

We have the recurrence

(5.1) C@2n+1,7) = ZZ ( )C(Zk)A*(2n — 2k, r — s) .

Thus, if
Consi(®) = 2,CC2n + 1, r)2",

it follows that

6.2 o) = 3 (51 )45
Put

D) = D@, 2) = 5 0@ sy -

Then, by (5.2),
(5.3) D'(z) = C(z)(B(z) — 1 + 2) .

It follows that
D — X —1/2(1—x)22
® Ui(z, 2) ¢
x
U(ac, 2)U(x™, x'%z)
= 2C(%, 2)C(x™", x'*z) .

Therefore

k=0

(5.4) qm@=§@QWW%w%%wm

It follows from (5.4) that
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8" Conin(#7) = Coura(®) 5
so that
(5.5) C2n+1,r=CC2n+1,n—7r+2) A=r=n-+1).
The first few values of C,,,, + () are given by

Ci(x) = 2, Cy(x) = 2 + 27, Cy(x) = 3 + 102° + 3a%, C(%)
= 152 + 121a* + 121a° + 15x*.

Note that C,,..(x) is of degree n + 1.

6. A number of special values can be obtained. It follows first
from

Ay (2) = g(%z’:_ 1) Aur@) + 201 + DA s(@) (0> 1)

and
% | Agera (%) (k> 0)

that
Asni(0) = 204;,,(0) .
This yields
6.1) A@2Cn + 1,1) = 2n4(2n — 1,1) = 2™n!.

Next, it follows from

Aorsd® = @+ DA(0) + 5 (771 e s®) + )
and
x| Ayp() (k> 0)
that
£,.00) = @+ DALO) -
This gives
(6.2) A@n,1) = (20 — 1)(2n — 8) - 3.1.

It follows from

=1 (20 + 1
Conso() = Apn(®) + X5 (
k=1 2k

+ (2n + 1)2C,,(x)

)Czk(x)A2n—2k+l(x)
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and

z|Cu(x) (k> 0)
that

Conta(®) = A2,1(0) (0> 0).
Hence
(6.8) C@2n + 2,1) = 2™n! .
Finally, from
) = Auss) + 5 (37 )0 Aess) + 9l
and
2| Cun(@) (Ez0),

we get

Cini(0) = A%(0) ,
so that
(6.4) C@en+1,1)=@n—1)2n —8)---3.1.

In view of (4.9),

C@n,r) = A@2n,n — r + 1) a=sr=smn,
we have also
(6.5) A@Cn + 2, n + 1) = 2™n!,
(6.6) C2n,n) = (2n — 1)2n — 3) .-+ 3.1.

7. We remark that the differential equation

(1.1) U’ + (L — 22l + U=0
has the second solution W = UV, where
(7.2) V' = g-lu—n2 -2

Thus, by (5.8), we have

D'(z) = 2V'(2),
so that
(7.3) D(z) = 2V() .
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Since W is an odd function of z we may put

W) == Z’.( 1)"0u(#) ———rr (2 T 1), .

It follows from the differential equation that
bpra(®) = L + 2n + 1)L — )b, (v) ,
so that

(7.4) bo(a) = :1:[:(1 @k + 1)1 — 2) .

Finally we have
Z_,O( 1) 1'[ 1+ @k+ 1A — x))- m

Z( - 1)"2 A + 2k — 7))t

(7.5) D(z) = »
(2 n)!
We may, if we prefer, express both U and V' as hypergeometric
functions of the type ,F..
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