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WILD ARCS IN THREE-SPACE

1 : FAMILIES OF FOX-ARTIN ARCS

JAMES M. MCPHERSON

Roughly speaking, a Fox-Artin arc is an arc which is
tame modulo one endpoint at which it has penetration index
three, and which may be constructed in the way that the ex-
amples of R. H. Fox and E. Artin were constructed in their
classical paper of 1948.

For each oriented Fox-Artin arc, there is an associated
infinite sequence of oriented prime 2-component links, which
is an invariant of the local embedding type of the arc in R*.
Using existence results from link theory, this result yields
the corollary: If M is a 3-manifold and p a point in the
interior of M, then there exists an uncountable family of locally
non-invertible Fox-Artin arcs in M, which are wild at p.

Later papers will be concerned with developing invariants
of the oriented local embedding type of an arc kn which is
tame modulo one endpoint, at which it has penetration index

O* Introduction* The results of this paper originated in at-
tempts to answer the following two questions:

1. Do there exist uncountably many arcs in Euclidean 3-space
Rz, which are tame modulo one endpoint? ([1], p. 33. Such arcs are
called "nearly polyhedral" in [1].)

2. Are the arcs 1.1, 1.1*, 1.3 of [3] amphicheiral or invertible?
(Problem 17 of [2].)

In 1961, R. H. Fox and 0. G. Harrold [4] succeeded in completely
classifying the Wilder arcs of penetration index 2, and the existence
of uncountably many non-invertible Wilder arcs follows immediately
from their classification. In 1963, an affirmative answer to question
1 was announced by Giffen [5] (a more detailed development of Giffen's
ideas is given in [13]); however, Giffen developed no new invariant
of local embedding type, so there was still no way of distinguishing
nearly polyhedral arcs of the same penetration index. While S. J.
Lomonaco ([8], 1967) succeeded in algebraically distinguishing the
local types of arcs at one interior wild point, there was no theory of
local embedding type for nearly polyhedral arcs.

To the best of the present author's knowledge, the invariants of
local type of an oriented nearly polyhedral arc, developed in this
paper and in [9], are the only ones available (other than penetration
index invariants) that will differentiate one nearly polyhedral arc type
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from another. Use of these invariants will give a detailed affirmative
answer to question 1 (see § 2, and p. 91 of [9]) and a partial answer
to question 2.

The author wishes to thank Professor N. Smythe for his helpful
advice in the writing of his Ph. D. thesis [9], presented to the Uni-
versity of New South Wales. The development of the invariants of
[9] will be the subject of later papers in this series.

l Preliminaries* Let X be a set—we use Bd X, Cl X, and Int X
to denote the boundary, closure, and interior respectively of X.
X has N(X) elements. If k is an oriented arc in R3 (the orientation
of .β3 is fixed), and Xis an oriented surface, v(k Π X) is the algebraic
intersection number of k with X.

An oriented link L = lι U h of two components in Rz is splittable
if there exists a 2-sphere Sc j? 3 , such that lι and l2 lie in different
components of R3 — S; S is said to split L. If no such 2-sphere
exists, L is unsplittable. If U is another link in R3 which is F-
isotopic to L (for the definition of -F-isotopy, see either [14] or [10]),
then L' is splittable iff L' is splittable, by Theorem 1 of [14].

The main theorem of [6] states that if L is unsplittable, L has
a unique factorisation into prime links; by Theorem 1 of the same
paper, at most one of these prime links is a 2-component link ZΛ
(The other factors are 1-component links, i.e. knots, which are factors
of the knot types of the components of L.) We call L* the (oriented)
prime hub of L, and note that L and L* are F-isotopie.

Let k be an oriented arc in R3, with endpoints p and q. Let Ex

and E2 be tame closed 3-cell neighbourhoods of p, with N(k Π BdEi) = Z.
If E2aIntElf the set k Π Cl (E, — E2) is either (i) three arcs, each
with one endpoint on Bd Ex and the other on Bd E2, or (ii) one arc
7i connecting BdE1 and BdE2, one arc a} whose endpoints both lie
on Bd Eu and one arc βλ with both endpoints on Bd E2.

In case (i), we say Eι and E2 are k-similar and write Et ~ E2,
without distinguishing E1 and E2. We note that " ~ " is not transi-
tive, but if Elf E29 E3 are tame closed 3-cell neighbourhoods of p with
Ei+1 c Int Ei9 and E, - Ez, E2 - E3, then E, - E%. The use of the
symbol ~ for a relation which is not an equivalence relation is un-
fortunate but seems unavoidable.

In case (ii), we write Eγ > E2 if the pair (aί9 /3i) is unsplittable
in the sense of [10]; that is, there exist oriented non-singular arcs
cί c Bd Eι and β' c Bd E2 such that the link L = {a, U a') U (& U βr)
is unsplittable. (Hereafter, we shall always assume that the arcs a'
and β' are chosen to make L a consistently oriented link.) Let L(Elf E2)
denote the prime hub of L.

Unless otherwise stated, all our "3-cells" will be tame closed 3-cell
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neighbourhoods of p, each meeting k on its boundary in exactly three
points. We fix a 3-cell E09 which will contain all other 3-cells in its
interior. When we write E2czE19 it is implicit that E2 c Int E^

We make the following observations:
A: " ~ " is not a transitive relation.
B: If E19 E2, and C are 3-cells with E^Cz) E2, and E, ~ C, then

C > E2 iff Eι > E2. In either case, L(C9 E2) = L(Eίy E2).
£*: If C ~ # 2, then C < E1 iff E2 < Ely and L(# l f C) = L(# l f #2)

in either case.
We shall only prove that C > E2 if E1 > E2 and E1 — C, and that

then L(C, E2) - L ( ^ , J52).
Let au a', βιy β', and yι be chosen as above, so that L = (ax U αf) U

(ft U βr). Let α c be an arc on Bd C — y1 which connects the two
points of ax Π Bd C, and let f be a regular neighbourhood of Ίι in
ί Ί - ( C u a,). See Figure 1.

Denote by Lc the link [ac U (αx Π C)] U (/Si U /3') The cube Q =
C l ( ^ - C u Γ ) is an "admissible cube" for the link L, and by [6],
p. 284, L is the link-product of Lc and the knot formed by the arcs
a! and ac and the two arcs of ax (J {E1 — C). This implies (i) L and
Lc have the same prime hub, i.e. L(C, E2) = L{EU E2), and (ii) Lc and
L are i^-isotopic. Since L is unsplittable, LG is unsplittable and
C > E2.

FIGURE 1
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2* Statement of the theorem*

DEFINITION, An oriented arc k in Rs, with endpoints p and q,
is a Fox-Artin arc if k — p is tame, and there exists a sequence
g7: 2£0 > £Ί > E2 > of tame closed 3-cell neighbourhoods of p,
with Π J&< = {p}. i? is a Fox-Artin sequence for &.

By [10], the Fox-Artin arcs are wild, with penetration index three
at p. Example 1.2 of [3] is a Fox-Artin arc.

Before stating the main theorem of this paper, we must recall
two definitions.

Two sequences {αj and {bά} are cofinal if there exist indices M
and N such that aM+r = bN+r for all r = 0, 1, 2, .

Two arcs &! and ifc2 are of the same oriented local type at points px

and p2 if there exist neighbourhoods Ui of p€ (which inherit their
orientation from J?3), and an orientation-preserving homeomorphism
of Uι to U2 which takes (C7Ί Π k19 p,) onto (?72 Π k2, p2) ([8], p. 323).

THEOREM. Le£ &x cmcί &2 be Fox-Artin arcs with wild endpoints
pι and p2, and Fox-Artin sequences

for kγ and k2 respectively. Then if kx and k2 have the same oriented
local type at pγ and p2, the sequences of oriented prime 2-component
links LiξfJ = {L(Eiy Ei+1)} and L(g"2) = {L(Bd, Bj+1)} are cofinal.

COROLLARY 1. There exists an uncountable family of locally non-
invertible Fox-Artin arcs in i23, and an uncountable family of non-
amphicheiral such arcs.

Proof 1. It is shown in [11] that there exists an infinite family
of non-invertible prime 2-component links, and the links Lnj n =
1, 2, 3, of [7] form an infinite family of non-amphicheiral prime
links.

Let k be a Fox-Artin arc, and & one of its Fox-Artin sequences.
Let λL, λ2, λ3, be an ordering of the prime links which have pro-
perty P, where P connotes non-invertibility or non-amphicheirality.
Obtain a binary number a(k) by the rule: the ith digit of a(k) is 1
if the prime λ< occurs infinitely often in the sequence L(^)9 and is 0
otherwise. Since all the binary numbers may be obtained in this way,
the result follows.

Figure 2(a) shows a Fox-Artin arc, which may be constructed
from an infinite family of cylinders of the type shown in Figure 2(a)
(cf. [3] or [1] for details). For each ί, the link L(Ei9 Ei+1) is the link
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FIGURE 2 (a)

FIGURE 2 (b)

FIGURE 3

of Figure 3, which is known to be non-amphicheiral ([7], p. 653), so
the arc of Figure 2 (b) is non-amphicheiral.

COROLLARY 2 Let M be a 3-manifold, and p a point in the in-
terior of M. If M is non-orientable, there exist uncountably many
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locally non-invertible FoxΆrtin arcs which are wild at p. If M is
oriented, there exist uncountably many locally non-invertible Fox-Artin
arcs which are wild at p, and uncountably many non-amphicheiral
such arcs.

Using the results of C. D. Sikkema in [12], we obtain

COROLLARY 3. There exist uncountably many crumpled 8-cubes.

A crumpled n-cube is a topological space which is homeomorphic
to a closed complementary domain of an (n — l)-sphere in S\ An
n-psuedo-half-space Mn is an ^-manifold with boundary, whose bound-
ary is homeomorphic to R71"1 and whose interior is homeomorphic to
R\ For nφZ, every w-psuedo-half-space is homeomorphic to the
closed half-space Rl ([12], p. 399, p. 411), However, for n = 3,
Theorem 8 of [12] yields.

COROLLARY 4. There exists an uncountable family of topologically
different 3-psuedo-halj"-spaces.

We conclude our list of corollaries with a partial answer to ques-
tion 2 of §0, namely.

COROLLARY 5. The arcs 1.1, 1.1*, and 1.2 of [3] are not amphi-
cheiral.

Proof 5. We prove that the arc 1.2 (whose projection is shown
in Figure 7 of [3]) is non-amphicheiral. Denote this arc by &, and
its mirror image by k'. k is constructed from cylinders of the type
shown in Figure 1 of [3], while kr may be constructed from cylinders
which are the mirror images of those used to construct k. A glance
at Figure 1 of [3] shows that the link obtained by identifying r_ and
s_, and £+ with r+, has linking number +1, while the corresponding
link in the mirror image of this cylinder has linking number —1.
For &, then, the sequence of oriented prime 2-component links is a
sequence of simply linked circles with linking number +1, whereas
the sequence of oriented prime 2-component links associated with kr

is a sequence of simply linked circles with linking number —1. k and
kf (the mirror image of k) therefore cannot have the same oriented
local type, so k cannot be amphicheiral.

3* The proof of the theorem* The proof consists of a sequence
of manipulatory lemmas. In each, & is a fixed Fox-Artin arc, with
fixed Fox-Artin sequence if: Eo > Eι > E2 > . α* and & are the
arcs of k Π Cl (Ei — Ei+1) whose endpoints both lie on Bd Ei9 and on
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Bd Ei+ί respectively, τ< is the unique subarc of k which connects
Bd Ei and Bd Ei+ί. Li = L(Ei9 Ei+ί) denotes the prime hub of the link
(cίi U oc) U (βi U β), where a and β are suitably chosen arcs on B d i ^
and Bd Ei+ι respectively.

LEMMA 1. Let C be a 3-cell with EiZ)Cz) Et+19 some i. Then
either C ~ E{, or C ~ Ei+1.

Proof. Suppose α^ c Int (Et — C)—we assert that βi Π Bd C Φ 0
and that C ~ Ei+1.

So suppose βi Π Bd C = 0 , i e that βt c Int C Then Bd C is a
2-sphere that splits the pair (aif βi), contradicting the hypothesis that
Ei>Ei+1. Hence βt Π Bd C Φ 0 , and βi therefore meets BdC in
precisely two points, for N(k Π Bd C) = 3 and v{βi Π Bd C) = O Also,
7* must meet Bd C in only one point.

To prove C ~ Ei+1, assume to the contrary, and that a is a subarc
of k in C — Ei+1 whose endpoints both lie on Bd C. If a joins the
points of βi Π Bd C, then a U (βi Π Cl (2?* — C)) is a simple closed curve
in the arc k, which is impossible. One of the endpoints of a must
therefore be the point 7« Π Bd C — so a must be a subarc of yif else
k intersects itself at 7« Π Bd C. But then 7* meets Bd C in at least
two points, for

2 = N(a Π Bd C) ^ iVr(7< Π Bd C)

since α c 7». But 7« meets Bd C in only one point, so 7* ΓΊ Bd C cannot
be an endpoint of a.

Hence no such subarc a of k exists, and k Π Cl (C — £i+ 1) must
therefore consist of three arcs connecting Bd C and Bd Ei+1. Thus
C ~ E<+1.

Similarly, C — ^ if β{ c Int C.
The cases a* aEi — C and /3i c Int C are the only two cases pos-

sible; it is impossible that both at Π Bd C and βt Π Bd C be nonempty
together. For α€ and ^ are disjoint, and both have algebraic inter-
section number zero with BdC, so

N(k ΓΊ Bd C) ^ iVfe n Bd C) + N(β< Π Bd C) ^ 4

because at and βt must both meet Bd C in at least two points. So
if N(k Π Bd C) = 3, one and only one of the sets a4 Π Bd C, βt Π Bd C
is empty.

LEMMA 2. If C is a 3-cell, C — £?<, E^x 3 C z> J5<+1

8": EQ > Ex > > JS^! >C> Ei+1>
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is a Fox-Artin sequence for k, and

Proof. This is a straightforward application of the results B and
£* of §1.

If C DEif then C < E^ and L(E^l9C) = L(E^19 E,)y by £*.
Also, Ei > Ei+ί so C > # ί + 1 and L(C, Ei+1) = L{Eh Ei+1), by B. This
is sufficient to show that g7' is a Fox-Artin sequence for k.

If C c 2^, the proof is similar.

Let Ei+1e ĝ  A containing sequence for Ei+1, of length s in EQ9

is a 3-cell sequence

EQ = B,> B,> B,> .-* > Bs> B8+1 = Ei+ι.

The associated sequence of prime links is the sequence {L(Biy JŜ +i)}.

LEMMA 3. Any two containing sequences for Ei+1 in Eo have the
same length (length i), and the associated sequences of prime links
are identical. Thus any two Fox-Artin sequences if and %?' which
start at Eo and have Ei+1 as a common term also have the first i + 1
terms of L(g7) and L(^r) in common.

Proof. Let g^+1 denote the containing sequence

E0>E1>--->Ei> Ei+1

for Ei+1 in Eo, let

Eo > Bx > > Bs > Ei+1

be another containing sequence for Ei+1, and assume s > i. Let &
be the class of all containing sequences for Ei+1, of length s in EQ,
whose associated sequences of prime links are identical with the se-
quence {L(Bh B3+1)}. & is not empty by hypothesis, so there exists
a sequence

Eo = Co >• Ci > C2 > > Cs > Cs+1 — Ei+1

in & with the properties:
(i) each 2-sphere Bd Cj is in general position with respect to

the 2-spheres Bd E19 , Bd Ei9 and
(ii) the number of elements of the family

C(gVi) - U U Bd Cά ίΊ Bd Eh
j = lh=l

of intersection curves is minimal in ^ , and none of these intersec-
tion curves meets k.
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Note that by (i), each intersection curve is a simple closed curve
σ c Bd Cj Π Bd Ek, which bounds discs on both Bd C, and Bd Eh.

Our first step is to show C(g^+1) — 0 .
For some I and h, let α c Bd Cx Π Bd iS* be an intersection curve.

σ separates Bd Eh into two discs, A and A> and one of these discs
contains at most one point of k, because N(k Π Bd Eh) — 3 Let this
disc be D{σ).

Suppose there exists an index j and an intersection curve
α c B d Cj Π Int D(σ), which bounds a disc D c Int D(σ) containing
no other intersection curves, a also separates Bd Cj into two
discs; one of these, say D', together with D is the boundary of a
3-cell S which does not contain Cj+1. Let N be a closed regular
neighbourhood of S. We write C = Cj U N if D c Cl (£•> - Cj), and
C; - Cl (Cj - N) if DdCj.

Then Cy is a tame closed 3-cell neighbourhood of p, with Cy-i z>
Cj 3 C i + 1; we will show

(a) N(k Π Bd C;) = N(k ΓΊ Bd Cy) = 3, and
(b) Cfj<Cj^C'j>Cj+1,

L(Cj-19 Cj) = L(Cj-lf Cj) ,

and

L(Cj, Cί+ι) — L(Cj, Cj+1) .

The sequence

E0>Cί> > Cj^ > Cfj > Cj+1 > > Cs > Ei+1

will then be a sequence in & by Lemma 2; and we note that

Bd C; Π B d ^ c Bd Cά n BdE% ,

particularly iί I = h, when

Bd C; Π Bd # , c Bd C, ΠBdEh- {a} .

But this new sequence in £& has at least one less intersection
curve in C(ξ?i+1) than our original sequence, contradicting the mini-
mality hypothesis (ii). Hence if (a) and (b) hold, we must conclude
that C($fi+ι) is empty.

(a) k meets Bd Cj in at least three points, for k has penetration
index three at p. So N(k Π Bd C-) ̂  N(k Π Bd C, ), i.e. N(k Π D) ̂
N(k ΓΊ ΰ') But

iV(& n /y) ̂  N(k ΠD)^ N(k Π D(σ)) ̂  1

so certainly k f) D' is empty if A: Π D — 0 , and k meets 17 in precisely
one point if N(k Π D) = 1, because v(& Π Bd S) = 0. In both cases,
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then, N(k f] D) = N(k n U) and N(k Π Bd Cj) = 3.
(b) If k Π D = 0 , this is trivial. If A Π I? and i n i ) ' are both

one-point sets, k Γ\ S must consist of one arc 7 joining D and 17, so
Cj and Cy are Λ-similar. Then it follows from Lemma 1 that Cj •< C^
and C; > Ci+1, and from B and 5* that

L(Cj-19 Cj) =

and

Cj+i) = L(Cj,

We conclude that C(gVn) = 0 ; that is, that BdC, n Bd j£A = 0
for all indices j = 1, , s and /& = 1, , i. Our next aim is to show
that the assumption s > i leads to a contradiction; and to this end,
we let n{h) denote the number of 2-spheres Bd C3 contained in
ϊnt(Eh- Eh+d,h= 0, . . . , i .

That w(0) and n(i) are both at most 1 follows from Lemma 1.
Indeed, suppose Bd C$^ U Bd Cs c Int (J5* - Ei+ί). Then C8 - Ei be-
cause Cs > Ei+1, so there is no subarc of k in Cl (Et — C8) which has
both endpoints lying on Bd Cs. Since Et z> Cs_! 3 Cs, it is therefore
impossible that Cs^ > Cs. So Cs_x must contain ^ in its interior,
and n{i) ̂  1. Similarly n(0) £ 1.

Suppose n(h) = r; that is, that the 2-spheres Bd C, , , Bd Cj+r^
all lie in Int (Eh — Eh+1). If Cj and Eh are not A -similar, then Cj~Eh+1

by Lemma 1. Again, this means that there is no subarc of k in
Cj — Eh+1 which has both its endpoints on Bd Cj, so it is impossible
that Cj > Cj+1 if Cj 3 Cj+1 3 Eh+1. So r = 1 if Cj - Eh+1.

If Cj — Eh, then ^ > C i + 1 (by the remark B in §1) because Cά>
Cj+1. By Lemma 1, Cj+1 and Eh+ι must be Λ-similar. It is then im-
possible that Cj+ί > Cj+2 if Bd Cj+2 c Int (C i + 1 - -K*+ι), so Cί+2 c JF A + 1 .

Hence r = 2 if C, - Ek.
Thus w(fe) = r ^ 2 for all h. Suppose n(h) = 2 and w(£) = 1 for

all I < h. Then E%^ z>Cιz>Eι for all Z, and Cλ - £Ί because Cι < EQ,
by Lemma 1. C2 and J5Ί cannot be ^-similar, for then Ct ~ C2, so
C2 ^ E2 by Lemma 1. Similarly, C3 — JÊ , C4 — E4, , CΛ — £7A: but
the preceding paragraphs show Ch+ί ~ Eh because n(h) = 2. Because
Ch^Eh~DCh+1, Ch and Ch+1 must be /b-similar, which contradicts the
hypothesis Ch > Ch+i Then n(l) must be zero for at least one I < h.

Similarly, we may show that if h is the last index such that
n(h) = 2, then there is an index I > h such that w(Z) = 0.

Now suppose n(h) — n(t) = 2, but n(r) = 1 for all h < r < ί Let
C; be the 3-cell which is ^-similar to Eh+1. Then Cι+ι ~ Eh+2, so
Cι+2 ~ Eh+z, , and Cι+t-h-ι ~ Et. But because

Cι+t-h-ι ^> EtZD Cι+t-h >" C ί+ί_fe+i Z> -E'ί-i-i ,
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it follows that Ci+t_Λ ~ Et; but then Cι+t-h-ι ~ Cι+t-h> which is impos-
sible. So n(r) must be zero for some r, h < r < t.

Thus, in the sequence n(0), n(ϊ), •• ,n(i), we have shown that
there is an 0 preceding the first 2, succeeding the last 2 is a 0, and
between any two 2's there is a 0. There are more 0's than 2's
therefore. But then

s = i>(/0 < i + 1 ̂  s

which is impossible. So the assumption s > i leads to a contradiction.
However if s < i, we let m(j) denote the number of 2-spheres Bd Eh

in Int (Cj — Cj+1), and deduce, as above, that

i = Σ w(i) < s + 1 ^ i

This forces s — i.
We now have two containing sequences for Ei+lf of length i in

Eo; we wish to show that the associated sequences of prime links are
identical.

For each index h, it is impossible that Ch > Eh if ChZ) Eh9 for
then

EQ > Cx > C2 > Ch > Eh

is a containing sequence for Eh, of length h in E09 while

E$>- Eι>- >- JS7Λ_I >• Eh

is a containing sequence of length h — 1 in J57O. But from the part
of the lemma already proven, any two containing sequences for Eh

must have the same length — h — 1 — in Eo. Therefore Ch and Ek

are fc-similar if Ch Z) ̂  similarly, Ch — ̂  if Ch c -EA

Then to prove L(CA, CA+1) = L(J^A, Eh+1), we have several possibil-
ities to consider: we shall only prove that the prime hubs are identical
if Ehi)Ch> Ch+1 => Eh+1. We have

L(ChJ Ch+ί) — L(Eh, Ch+1) — L(Eh, Eh+ί)

where the equalities follow from the statements B and J5* of §1.
The other possibilities may be considered similarly, and we con-

clude that L(Ch, Ch+1) — L{Eh, Eh+1) for all h; that is, the associated
sequences of prime links are identical.

LEMMA 4. Let g7 be a Fox-Artin sequence for k, and let C c Int EQ

be a 3-cell. Then C has a containing sequence

Eo = Co > d > C2 > > Cs > C - Cs+1
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such that

ltd, C<+1) = L(Eiy Ei+1) , i = 0,1, - , s .

Proof. There exists an index h such that EhczIntC. Let &
be the class of all containing sequences for Eh in EQ, which therefore
have length h — 1 in Eo, and the associated sequence of prime links
for each containing sequence is the first h terms of the sequence
L(&)y by Lemma 3. & is not empty. Then there exists one sequence
in ^ , say

Eo > C, > C2 > > C*-! > Eh

with the properties:
(i) Bd C is in general position with respect to Bd Clf Bd C2, ,

Bd CA_I, and
(ii) the number of intersection curves Bd C Π U Bd Cj is minimal

in ^ ? , and none of these curves meets k.
As in the proof of Lemma 3, we may keep C fixed and modify

our sequence in £%? to eliminate those intersection curves which bound
discs on Bd C containing at most one point of k, i.e. to eliminate any
intersection curves which may occur. Since the number of curves of
Bd C Π U Bd Cj is assumed to be minimal, we conclude that Bd C Π
Bd Cj = 0 for all j = 1, 2, . - , h - 1.

Then Cj+1 aCczCj for some i, 0 ̂  j < h — 1. From Lemma 1, it
follows that either C ~ C3 or C ~ Cj+ι and C < Cj. In the first case,

E0>Cι>-- > d-! > C

is a containing sequence for C, while

E0>Cί> > Cj-t >Cj>C

is a containing sequence in the second case. Then we can take the
s in the statement of this lemma to be either j or j — 1, and the
result follows because

L(CS, C) = L(CS, C8+1) = L(ES, E8+1)

where the equality on the left follows from either statement B or
B*.

We are now ready to prove the theorem.
Since kt and k2 are of the same oriented local type at their re-

spective endpoints, there exist neighbourhoods Ui of Pi (with orienta-
tion inherited from i23), and an orientation-preserving homeomorphism

h: (JTi, E/i Π K Pi) -> (U2, U2 Π K Pύ
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which takes XJX onto U2.

Let 8^: Eo > Eι > E2 > and gf2: Bo> B,> B2> •-- be Fox-

Art in sequences for &L and &2 respectively, and consider Λ(i?i); t h a t

is, the sequence

i) > W >

which is a Fox-Artin sequence for &2. There exists an index t such

that Λ(2£t) c Int Bo; by Lemma 4, there exist 3-cells CΊ, , Cs such

that

£ 0 > d > C2 > > Cs > h(Et) > h(Et+1) > • • • > • h(Et+r)

is a containing sequence for h(Et+r) in Bo. Also, there exists an index

H(r) = H and 3-cells C s + r + 2, , C^_! such that

h(Et+r) > Cs+r+2 > > CH^ > BH

is a containing sequence for BH in h(Et+r).

Then we have two containing sequences for BH in J50> namely

BQ > Bλ > B2 > . > BH

and

Bo > d > > Cs > h(Et) > h(Et+1) > .

>• h(Et+r) > C s + r + 2 > • • • > • Cflr-! > 5 ^ .

Then by Lemma 3,

L(Et, Et+ι) = L(h(Et), h(Et+1)) = L ( 5 , + ι , Bs+2) ,

1, £7i+2) - L(h(Et+1), h(Et+2)) = L(Bs+2, Bs+5) ,

r-l9 Et+r) = L(h(Et+r^ h(Et+r)) = L(Ba+-lf Bs+r) .

Setting r = 1, 2, 3, shows that the sequences L( g\) and L( g'g)

are cofinal.
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