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ON A NEW RADICAL IN A TOPOLOGICAL RING

R. A. MASSAGLI

The radical which is referred to in this paper was treated
extensively by Wright in the case of topological groups.
The present course of attack here is threefold: (1) to show
the proximity of large powers of topologically nilpotent
elements to the radical in a topological ring, (2) to determine
a nilpotence condition on the radical and (3) to characterize
the radical of all locally compact simple rings without
divisors of zero. For a topological group, the radical possesses
little, if any, algebraic structure aside from being a subgroup
of the group. Viewed as an additive subgroup of a topological
ring R, it is shown that the radical is an ideal of R. Rela-
tive to the nilpotence of the radical, the additive group
structure of locally compact connected Jacobson semi simple
rings is established to within topological isomorphism.

In the final section the theorem on nilpotence is used
to characterize the radical of locally compact simple rings
having no zero divisors.

1* Preliminaries and definitions* Throughout this paper we
adopt the notation and terminology of Wright [8]. All topological
groups will be assumed to be Abelian and Hausdorff. For a topologi-
cal group G, a maximal 0-proper open semigroup in G is a subset
ilf C G satisfying (1) M is a semigroup in G, (2) M is an open set
in G, (3) OgM, and (4) M is maximal with respect to (l)-(3).

For subset i g G w e define s(A) = {xeG\x + A^A} and b(A) =
s(A) Γ\ s(—A). If M is a maximal 0-proper open semigroup in G,
b(M) is a closed subgroup of G and G is the disjoint union of
{M, -M,b(M)}. [8; Th. 3.3].

By the W-radical of G we mean Π b(M) where the intersection
is taken over all maximal 0-proper open semi group M in G. We
denote the T^-radical by T{G). If G contains no 0-proper open semi
groups, (for example if G is finite, or more generally if G is compact)
T(G) - G and G is called a radical group. If T(G) = (0) we say
that G is Wrsemi-simple.

In [8] it is shown that in a locally compact group G, T(G) is a
fully warrented hereditary radical [6]. Specifically it is shown that
T(T(G)) = T(G), T(G/T(G)) = (0) and if HS G is a closed subgroup,
T(H) = Hn T(G).

In general the TF-radical of G contains the radical N of Iwasawa
which is defined as the maximal compact connected subgroup of a
locally compact group G [4]. In the special case that G is con-
nected, both radicals coincide.
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2* Locally compact rings* The following result is of major
consequence in this paper and establishes a justification for studying
the PΓ-radical in topological rings. Furthermore, in view of the
remarks in the last section and the fact that T(R) is an ideal of R,
the term ring radical associated with T(R) is fully justified [6].

THEOREM 2.1. In any topological ring R, T(R) is an ideal of
R. In particular, T(R) is closed under left and right quasi-inverses.

Proof. We show that if φ: R—>R is any continuous group
homomorphism, then Φ(T(R)) £ T(R).

Suppose xεψ(T(R)) so that x = φ(t) for some te T(R). Assume
there exists a maximal 0-proper open semigroup M in R with
xeM. Then φ~\M) is a 0-proper open semigroup in R containing
t. An application of Zorn's lemma yields a maximal 0-proper open
semigroup M* 2 <Γ\M). Thus t e M* contradicting that t e T(R)
since R is a disjoint union of {M*9 — M*> b(M*)} It follows that
x 6 T(R) and the assertion is established.

To see that T(R) is an ideal of R, let xe R be fixed, but
arbitrary, are consider the continuous group homomorphism φ: R —>
R:r-+rx. It follows that rxeT(R); similarly xreT(R) and there-
fore T(R) is a (two-sided) ideal of R.

The notion of topological nilpotence has a natural generalization
to its algebraic analogue. In a sequel to this paper we shall see
how topological nilpotence of elements plays a vital role in the
characterization of the prime radical of T(R) in a certain subclass
of locally compact commutative rings. Here we develop some
elementary properties relating topological nilpotence to the TF-radical
of a locally compact ring.

DEFINITION 2.2. [5; p. 162]. Let R be a topological ring. An
element xeR is called topologically nilpotent in case lim xn — 0.

Our first result along these lines shows that in locally compact
rings with compact component of 0, powers of topologically nilpotent
elements are eventually in the TF-radical. We begin by establishing
the following lemma:

LEMMA 2.3. Let R be locally compact totally disconnected ring.
If xeR is topologically nilpotent, there exists NeZ+ such that
n^N implies xne T{R).

Proof. Assume lim xn = 0. Since R is locally compact and
totally disconnected, find a compact open neighborhood U of 0.
Choose NeZ+ so that n^N implies nne U. (For yeR denote by
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(y) the additive subgroup generated by y.) Now {xn} £ U and
hence Cl (x%s) £ U. The compactness of U implies that Cl (xn} is
compact, whence Cl <α*> £ T(R) [8; Th. 8.10]. We conclude that
xne T{R).

Throughout the remainder of this paper the symbol K will be
used to denote the connected component of 0.

THEOREM 2.4. Let R be a locally compact ring with K compact.
If xe R is topologically nilpotent, xn e T(R) for all n sufficiently
large.

Proof. Since K is closed, RjK is locally compact and totally
disconnected. If limίcn = 0 for x e R it is easy to see that lim (x + K)n =
K. Applying 2.3 we have that (x + K)n = xn + Ke T(R/K) for all
n sufficiently large. Since K is compact, K £ T(R). From [8; Th. 4.7]
we have T(R/K) = T(R)/K whence, (x + K)n e T(R)/K. This shows
that xn G T(R).

We remark that the condition K £ T(R), which is insured by
compactness of K, is emphatic in 2.4. The real numbers as a to-
pological ring shows that the compactness of K cannot be dropped
from our assumptions. (For example, 1/2 is topologically nilpotent,
but (1/2)n Φ 0 for any n ^ 1.) Locally compact W semi-simple rings
with compact K are necessarily totally disconnected. In such rings
topological nilpotence is reduced (in fact is equivalent) to algebraic
nilpotence. This comment is generalized in § 3.

For the next few results we digress slightly to the study of
the radical structure of locally compact abelian groups.

Wright [8] shows that in every topological abelian group G there
is a unique (closed) maximal radical subgroup which we denote by
H. The symbol φ Σ « e y 6 « will denote the weak direct product of
groups Ga, a e J^, where sz? is an arbitrary index set.

LEMMA 2.5. Let G = φΣ«e./ Ga where each Ga is a topological
abelian group, and let Ha be the maximal radical subgroup of Ga.
Then φΣαej^-BΓα is the maximal radical subgroup of G.

Proof. Define S? = {S £ G \ S £ © Σ«e^ Ha and S is a radical
subgroup}. Partially order 6^ by inclusion. If {Sβ} is a chain in
<&*> by [8; p. 483] it can be shown that \JSβeS, whence {Sβ} is
bounded above. Let i l ί e y be a maximal element. We show that
M = ®Σ«er.,Ha. To see this, let - f f = φ Σ « e J / f l β and assume
M Φ H. Then there exists a e A with M Φ M + Ha. Now M + Ha

is ΐ7-radical since both Mand Ha are so; thus we have MΦ M-\- Haξ^
.v-Eϊα contradicting the maximality of M. Therefore M — H.
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In every locally compact group the TF-radical is the maximal
radical subgroup of G [8; Th. 8 10]. As a useful consequence to 2.5
we recite the following result whose proof is immediate.

THEOREM 2,6. Let G — (BΈjae^Ga be a locally compact abelίan
group. Then T(G) - 0 Σ « β ^ T(Ga).

We are now in a position to prove the most general result
involving topologically nilpotent elements in a topological ring R
and the TF-radical of R. In particular this result shows that in
PP-semisimple rings, topologically nilpotent elements approach their
limit via points in Euclidean %-space. We designate by || || the
Euclidean norm in Euclidean w-space.

THEOREM 2.7. Let R be a locally compact ring and assume
xeR is topologically nilpotent. Then given MeZ+ there is an
ne Z+ such that for K ^ n, xk = ek + gk where gk e T(R) and
\\ek\\<llM.

Proof. As topological groups, R — En 0 G where G is a group
having compact component of 0 [3; Th. 24.30] Assume limα;fe =
lim (ek + gk) = 0, where ek e En and gk e G for k ^ 1. It follows that
lim ee = lim gk — 0. Abiding by the argument of 2.3 and 2.4 it is
plain that gkeT(G) and ||efc || < 1/Λf for large k. By 2.6 T(R) =
T{En) 0 T(G), and since T{En) = (0), T(G) is topologically isomor-
phic to T(R) in which case the theorem obtains.

3* Locally compact rings with connected TF-radicaL This
section constitutes the central theme of this paper. Here we formulate
a sufficient condition to insure the algebraic nilpotence of the
W-radical. Then by example we show the condition is not necessary.
In conjunction with [8; Th. 8.3] our main theorem establishes up to
topological isomorphism the group structure of connected locally
compact Jacobson semisimple rings. This consequence may be
compared to the following two results, the first of which follows
trivially from 3.2 and [8; Th. 8.10]; the second of which is proved
in [5; Th. 16].

Every compact connected Jacobson semisimple ring is (0).
A compact Jacobson semi simple ring in homeomorphic to a

direct sum of finite simple rings.
We begin by reciting a well known result whose proof follows

directly from the definition of a topological ring and the notion of
a compact set.

LEMMA 3.1. Let R be a topological ring, and let C £ R be a
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compact subset. Then given an open neighborhood U of 0 there
exists an open neighborhood V of 0 such that V C £ U

THEOREM 3.2- Let R be a locally compact ring with T(R) con-
nected. Then T(R) is a nilpotent ideal of index at most two. In
particular T(R) £ J(R).

Proof. By [3] it will suffice to show that if T(R) is viewed as
a topological abelian group, and if / is an arbitrary character on
T{R), f{T\R)) = 0.

Assume / is a character on T(R). For each x e T{R) define
Tx = {te T{R) |/(ί Cl (x)) = 0}, where Cl (x) denotes the closure of the
additive subgroup generated by x. Let T' = {ae T(R) \f(a-T(R)) = 0}.
We show Γixeτ(R) Tx = T. If yeT' and x e T(R) is arbitrarily chosen,
then f(y-C\ (x)) — 0; hence y e Tx and therefore yef]Tx where
xeT(R). Conversely, if yef\Tx with xeT(R), let teT(R) be
arbitrary. Then f(y Cl (t)) = 0 since, in particular, yeTt; whence
f(yt) = 0. Thus y e T'. This establishes the claim. Next we show
that for each x e T(R), Tx is an open subgroup of T(R). It is plain
that Tx is a subgroup; we concentrate on the openness of Tx. It
suffices to exhibit an open neighborhood of T(R) which is contained
in Tx. Since /(0) = Z (Z is viewed as a point in R/Z) and since /
is continuous find an open neighborhood U of 0 (open in T(R)) such
that /(IT) £ (-1/4,1/4)+ Z. Since xeT(R), C\(x) is compact by
[8; Th 8.10]. By 3.1 there is an open neighborhood V in T(R) such
that F Cl (x) £ U. Now let y e V be arbitrary. Now since nz e Cl (x)
whenever z e Cl (x), it follows that if neZ+ then nyz e U.

Now suppose that for some y e V and some z e Cl (x), f(yz) — r + Z
with re ( — 1/4,1/4). Then f(nyz) = nf(yz) — nr + j?; hence w e
(-1/4,1/4) for all neZ+. It follows that r = 0 and so /(#s) = Z.
This argument shows that V ^ Tx and thus JΓ, is open in T(R);
since Γ, is a subgroup of Γ(i2), Tx is also closed. By assumption
T(R) is connected and so Tx = T(#) for each a? e T(#). It now
follows that f(T2(R)) = 0 since T = T(R) = Π Tx where xeT(R).
By Pontryagin duality, T\R) = (0). Finally since J(i2) contains all
nilpotent ideals, our theorem is established.

The next example shows that in locally compact rings, the
connectedness of the TF-radical is mandatory.

EXAMPLE. Let Z[x] be the ring of polynomials over the integers
and let R = Z[x]/(2x). Topologize R with the discrete topology.
Since x 4- x = 0 (mod 2x), x has torsion. Hence T(R) Φ (0). More-
over, T\R) Φ (0) because x2 Ξ£ 0 (mod 2a?). (Recall that T(R) con-
tains the additive torsion subgroup of R.)
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Nonconnected locally compact rings R having the property that
T(R) Φ (0) and T\R) = (0) are plentiful and easy to construct.

The following two results whose contents are undeniably known
follow as corollaries to 3.2. We present them here since they are
derived intrinsically from the TF-radical.

COROLLARY. [Cf. 2.] Every nontrivial compact ring R contain-
ing no divisors of zero is totally disconnected.

Proof. We need only remark that R is either connected or
totally disconnected [5; p. 169], The remainder of the proof follows
directly from 3.2.

COROLLARY. // R is any topological ring with K compact, then
K2 = (0).

Proof. Since K is compact, T{K) = K; by 3.2 T\K) = K2 = (0).
The next result reveals an interesting interplay between algebraic

nilpotence and K.

THEOREM 3.3. Let R be a locally compact ring with T(R) con-
nected. If K is compact, then topological nilpotence is equivalent to
algebraic nilpotence. [Cf. to the remark following 2.4 ]

Proof. Let x e R be topologically nilpotent so that lim xn — 0.
By 2.4 xn e T(R) for all n sufficiently large. By 3.2 (xn)2 = x2n = 0;
hence, x is algebraically nilpotent. The converse implication is trivial.

The pathological behavior relative to the TF-radical and the
Jacobson radical is in general somewhat surprising. We conclude this
section by citing three examples illustrating this peculiar behavior.

EXAMPLE. A topological ring R in which T(R) = (0) and J(R) = R.
Let R' be any ring with torsion subgroup (0), and let R = J{Rf).

Give R the discrete topology. Then J(R) = R and T(R) = (0) [8;
Th. 4.1].

EXAMPLE. A topological ring R in which T(R) = R and J{R) = (0).
Let R be any finite field with the discrete topology. Since R is

compact, T(R) = R; since R is a field J(R) = (0).

EXAMPLE. A topological ring R in which T(R) Φ J(R) Φ R.
Let R be the ring of formal power series over the real numbers

R. Consider ί as a discrete topological ring. It is well known
that J(R) — (x), the set of elements having constant term equal to
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zero. Now define a family of continuous real valued group homo-
morphisms fn:R-+R by / n ( Σ <*>&) = an- If p(x) = Σ M* e Γ(22) and
n ^ 0 is arbitrary, it follows by [9] that fn(p(x)) = bn = 0. Let {/α}
be the collection of all real valued continuous group homomorphisms
on R with Ka = ker/β for each a. Then T(B) = ΠKa^ f\n^Kn

where Kn = ker/% for each n ^ 1. Hence, p(x) = 0 and therefore,

T(#) = (0) £ (α) = J(R) £ Λ.

4* Locally compact simple rings* Locally compact non-discrete
fields are completely characterized in the literature [7]. Using such
a characterization one is easily able to classify those fields which
are TF-radical and those which are TF-radical free. In this section
we generalize this method of classification to locally compact simple
rings containing no divisors of zero; we do this intrinsically without
appealing to the inherent structure of the ring. Our main instru-
ment here is Theorem 3.2. We begin by eliminating the discrete
case.

THEOREM 4.1. For a discrete simple ring R without divisors of
zero, T(R) = (0) if and only if Char 12=0.

Proof. Assume T(R) Φ (0) and pick a nonzero xeT(R). Since
R is simple, T(R) = R. By [8; Th. 4.1] R is an additive torsion
group and therefore has nonzero characteristic. Conversely, if T(R) —
(0) and if xeR is nonzero, then nx Φ 0 for all neZ+ since T(R)
contains the torsion subgroup of R. This shows that Char R = 0.

Every locally compact ring without divisors of zero is either
connected or totally disconnected [5; p. 169]. In view of this result
and Theorem 4.1, our next theorem completely characterizes the
TF-radical of the rings in question.

THEOREM 4.2. Let R be a nondiscrete locally compact simple
ring without divisors of zero. Then

(1) If R is connected, T(R) = (0).
(2) If R is totally disconnected, T(R) — R.

Proof. (1) Since R is connected, so is T(R); by 3.2 T\R) = (0).
Since R has no zero divisors, T(R) — (0) obtains.

(2) If 12 is totally disconnected, then R contains a compact
open subgroup U. Now since U is compact, US T(R) (T(R) con-
tains all compact subgroups). Finally, R is nondiscrete implies
U Φ (0) whence, T(R) = R.

The author wishes to thank the referee for his helpful comments
in the final revision of this paper.
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