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ON SOME MEAN VALUES ASSOCIATED WITH A RAN-
DOMLY SELECTED SIMPLEX IN A CONVEX SET

H. GROEMER

For any convex body K in euclidean %-space denote by
m(K) the mean value of the volume of a simplex with vertices
at n + 1 randomly selected points from K. It is shown that
among all convex bodies of given volume the mean value m(K)
is minimal if and only if K is an ellipsoid. Actually, a more
general result is obtained which shows that the higher order
moments of the volume of a randomly selected simplex in a con-
vex set have similar minimal properties.

Throughout this paper Rn denotes euclidean w-space, where n is
a given fixed positive integer. A compact convex subset of Rn which
has interior points will be called a convex body. The volume of a
convex body X will be denoted by v{X). If plf p2, , pn+1 are n + 1
points of Rn we write C(plf p2, •• ,j>n+i) to denote the convex hull
of the points pl9 p2y •• 9pn+1 Including various forms of degener-
acy, C(pu p2, , pn+i) will be called a simplex with vertices at

Pi, Pa • " > 2>*+i

Let K be a given convex body. If xu x2, , xn+1 are n + 1
points from K the volume of the simplex with vertices at xu x2} , xn+1

is given by v(C(xl9 x29 , xn+d) a n d , assuming that the points
Xi, %2, *", #«+i are variable, the mean value of this volume is defined by

( 1 ) m{K) = (l/v(K)y+1 ( . . . ί v(C(xlf , xn+1)) dx, dxn+ι .

Since v(C(xlf x2, •• ,xn+J) is a continuous function in the space Rn^n+ί)

and since the set defined by the n + 1 conditions xt e K (i = 1,2, , n+1)
is a compact convex set in Rn(^n+1) it is obvious that m{K) exists for
every convex body K.

Blaschke [1], [2] has proved that for convex bodies in R2 of given
volume (i.e., area) the mean value m{K) is minimal if and only if K
is an ellipse. See also Klee [11] for the history of this problem.
Kingman [10] has conjectured that for any dimension n and fixed
volume v(K) the minimum of m{K) is reached if K is a (solid) sphere
in Rn. In addition, he pointed out that the higher order moments of
the expected volume, i.e., the expressions

Ύ* 1 1 \ r ff Ύ* . . . rJΎ( 2 ) mr{K) = (l/v(Kψ+1 \ '••[ {v{C{xu

are of interest. The definitions (1) and (2) show that mx(K) = m(K).
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Just as before, it is seen that mr(K) exists for every convex body K
and every r ^ 0. It is also clear that mr{K) is invariant under
volume preserving affine transformation.

The main purpose of this paper is to provide a proof of Kingman's
conjecture and of a similar but more general statement for the higher
order moments. The following theorem contains the precise formula-
tion of our result.

THEOREM. For any convex body K in Rn and any real number
r with r ^ 1 the moments mr(K) satisfy the inequality

mr(S) ^ mr{K)

where S is a solid sphere in Rn which has the same volume as K.
Equality holds if and only if K is an ellipsoid.

Because of m^K) = m(K) this theorem has the following corollary
as an obvious consequence.

COROLLARY 1. Among all convex bodies of given volume the mean
value m{K) of the volume of a simplex with vertices at n + 1 randomly
selected points from the convex body K is minimal if and only if K
is an ellipsoid.

Kingman [10] has been able to find an explicit formula for m(K)
in the case when K is an ellipsoid of Rn, namely

Corollary 1 is related to a problem which, in two dimensional
space, is frequently referred to as Sylvester's problem (cf. Kendall
and Moran [9]). If n + 2 points of Rn are selected at random from
a convex body K the problem consists of finding the probability, say
P(K), that none of these n + 2 points is in the interior of their convex
hull. A simple calculation shows that (see Kingman [10])

It follows that Corollary 1 is equivalent with the following statement.

COROLLARY 2. For any convex body K of R% the probability P{K)
that the convex hull of n + 2 randomly selected points from K con-
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tains none of these points in its interior is maximal if and only if
K is an ellipsoid.

Similarly as the proof given by Blaschke for n = 2, r = 1 our
proof of the above theorem depends on a property of the Steiner
symmetrization of a convex body and on a certain characterization of
ellipsoids. Since this characterization, which is of independent interest,
appears to have been investigated only in the cases n = 2 and n — 3
(see Bonnesen and Fenchel [4], p. 143) we supply a new proof which
imposes no restriction on the dimension or regularity of the convex
body (Lemma 2).

First, we prove a lemma which shows that there exist convex
bodies which have the desired minimal property with respect to mr{K).

LEMMA 1. If r is a given positive number there exists a convex
body Ko in Rn such that v(K0) = 1 and

(3) mr(Ko) ^mr(K)

for every convex body K with v(K) = 1.

Proof. For every convex body K there exist, according to a
theorem of John [8], two ellipsoids E, Er such that E'aKaE and
v(E) ^ nnv{E'). Because of v{E') ^ v{K) this implies v{E) <, nnv(K).
It follows that to any K with v{K) — 1 there is a volume preserving
affine transformation σ such that σK c B, where B is a sphere of
volume nn and center at the origin of the coordinate system. Because
of this fact and because of the invariance of mr under volume preserv-
ing affine transformations it is evident that it suffices to prove (3)
under the additional assumptions that v(K) — 1 and Ka B. Let us
denote by J%Γ the class of all convex bodies for which these two con-
ditions are satisfied. If a number μ is defined by

μ = inΐmr(K)

then μ has obviously the property that for every

(4) μ^

and that there exists a sequence Ku K2, of convex bodies in 3ίί
such that

( 5) lim mr(Ki) = μ .

Because of iΓ, c B the selection theorem of Blaschke can be applied
to the class of convex bodies iΓ;. This justifies the assumption that
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the sequence Ku K2y converges (in the Hausdorff-Blaschke metric)
to some convex set Ko Note that Kt e 3ίΓ implies Ko e JtΓ.

The functional mr is obviously translation invariant, monotone
and homogeneous in the sense that mr(sK) — sn'rmr(K) for any s ^ 0.
It is known that such a functional is also continuous (cf. Hadwiger
[7], p. 204 and the proof of the continuity of the volume in Blaschke
[3], p. 61 or Eggleston [6], p. 72). Therefore, the convergence of K{

to Ko implies

(6) limmr(ί: i) = mr(ίΓo).

Since (3) is an immediate consequence of (4), (5), and (6) the proof of
the Lemma is finished.

Ko will be referred to as a minimum body for mr. Actually, Ko

does not depend on r if r ^ 1; but this cannot be concluded from our
proof of Lemma 1.

For the formulation of our next lemma it is convenient to call
a subset of Rn flat if it is contained in some plane. It should be
noted that in this paper a plane is always understood to be a hyper-
plane. As a further notational simplification the following concept
will be used. If K is a convex body and if G is a line in Rn we
denote by έ^(K, G) the set of midpoints of all line segments of the
form X Π K where X ranges over all lines that are parallel to G and
meet K. ^{K, G) will be called a midpoint set of K.

LEMMA 2. A convex body K is an ellipsoid if and only if the
midpoint set .^(K, G) is flat for every line G of Rn.

Proof. If K is a sphere the midpoint set ^(K, G) is obviously
flat for every line G. Applying an affine transformation the same
result is seen to be true for ellipsoids.

Assume now that for a given convex body K the midpoint set
^(K, G) is flat for every line G. Let H be any plane, and choose
a coordinate system in Rn which has the property that H is given by
H — {(&1, x2, , xn) I xn = 0}. Then, if G is a line that is orthogonal
to H, the equation of the plane which contains έ^(K, G) can be
written in the form

xn = a0 + axx
ι + + α^-i^1"1 .

The symmetrization of K with respect to the plane H is achieved by
mapping each point (p\ p2, , pn) of K onto the point

(p\ p\ , pn~\ pn - (a0 + a,pι + + α^p- 1 ) ) .

This mapping is obviously an aίδne transformation. Hence, one can



ON SOME MEAN VALUES 529

conclude that every symmetrization is a volume preserving affine
transformation, provided that the midpoint set &{K, G) is flat for
every line G of Rn.

The convex body obtained from K by symmetrization with respect
to a plane H will be denoted by K{H).

It is known (see Danzer, Laugwitz, and Lenz [5]) that there is an
ellipsoid, say L, which contains K and has smallest possible volume.
It is also known (see Hadwiger [7], p 170) that there is a sequence
of planes, say Hl9 H2, * ,in Rn such that the sequence of convex
bodies which is defined by Kt — K, Ki+ι — K^Hi) (i — 1, 2, •) contains
a subsequence that converges to a sphere S. It follows that there
are volume preserving affine transformations σu σ2, such that the
sequence σλK, σ2K, converges to S. If K = L the proof of the
lemma is obviously finished. Let us assume that Kφ L. In this
case we have

(7) v(K) = v(S) < v(L) .

Since the sequence atK, σ2K, converges to S there exists for any
positive ε an index h such that

(8) σhK(zS£.

Here, Sζ denotes the parallel domain of S> which, in this case is
a sphere of radius r + ε if S has radius r. Because of (7) ε can be
taken so small that

(9) v(Sή<v(L).

(8) implies that the ellipsoid σ^S* contains K, and (9) shows that
viσ^S') < v(L). However, according to the definition of L it is im-
possible that an ellipsoid which contains K has smaller volume than
L. It follows that the trivial case K — L is the only possibility.

LEMMA 3. Let Gu G2, , Gn+1 be n + 1 distinct lines in Rn which
are of the form Gk — {{c\, c|, , cfc~~\ zk) \ — oo < zk < oo}. Assume
that to each Gk there corresponds an interval Ik of the form
Ik = {(4, c\, , cΓ\ zk) I I zk - pk I ^ lk} where lk > 0. Write z =
(Si, *2- , zn+1), p = (pl9 p2, , pn+ι), e = (1,1, , 1), cj - (cf, c|, , c{+])
and

D(z) = — det (e, c\ c\ , cn~\ z) .
n

Finally, if r is a given real number with r ^ 1 write

(10) Λf(2>) = ( \D{z)\*dz.
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Then, if the numbers c{ and the interval lengths lk are fixed, M(p)
attains its absolute minimum value exactly for those vectors p for
which all the midpoints (ck, c£, β ,c*~*SP*) of the intervals Ik (k =
1, 2, , n + 1) are contained in some plane of Rn.

Proof. Since D(z) is a linear function of z (10) can be written in
the form

(11) M(p) = ( I D{u) + D(p) \r du
J\uk\£lk

where u = (ul9 u^, , ww+1) and u = z — p. If p varies over the total
Rn+1 the linear function D(p) takes on any value between — oo and oo.
Therefore, a comparison of (11) with the function

(12) F(i/) = ί \D(u) + y\'du

shows that M(p) and F(y) have the same greatest lower bound. If
all ^/-values for which F(y) is (absolutely) minimal are known, the
set of all vectors p for which M(p) is minimal are found by solving
the linear equation

(13) y = D(p)

for each such known y-value.

Now, to investigate the minimum value of F{y) we note that
D(u) = —D(—u) implies

( I D(u) + y Γ du = \ I D(u) - y\r du .
hnk\ύlk huk\ύlk

This, together with the definition (12), shows that

F{y) - F(0)

(\D(u) + y\* + \D{u) - y\* - 2\D(u)\*)du .

Since for a fixed value of r (r ̂  1) the function | ζ \r is convex it
follows that the integrand in (14), say T(u, y), has the property that
for all values of u and y

(15) T(u, y)^0.

(The convexity of the function | ζ | r , i.e., the relation | (ζt + ζ2)/2|r ^
(I Ci Γ + I ζ2 l

r)/2, is a special case of Holder's inequality \oca -\- βb\^
\\OL\P +\β\pylP(\ a\q + I b\q)ίίq, namely the case a = /3 = 1/2, α = ζ ly 6 =
ζ2) p = r/r — 1, <7 = r). In addition to (15) it is clear that for y Φ 0
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(16) T(0,y) = 2\y\'>0.

Because of the continuity of T(u, y) as a function in u (16) implies
that for a given value of y with y Φ 0 the inequality

(17) T(u, y)>0

holds not only for u = 0 but for a whole interval with center at
u = 0. From (14), (15), and (17) it follows that for any y Φ 0

F(y) > F(0) .

Hence, F(y) attains an absolute minimum value at y — 0 and nowhere
else. This result in conjunction with (13) shows that M(p) is minimal
if and only if D(p) = 0. Since D(p) is the volume of a simplex with
vertices at the points (cι

k9ck9 , cj""1, pk) we find finally that these
points are contained in a plane if and only if M(p) is minimal.

Proof of the Theorem. Since it has already been pointed out that
mr{K) is a homogeneous function of K it suffices to prove the
Theorem under the assumption v(K) = 1.

As before, let H be the plane {(a;1, x2, •••, xn) \ xn — 0}. Assume
that G1? G2, , Gn+1 are n + 1 given lines which are orthogonal to H
and have the property that each Gk intersects K in a line segment
Ik of positive length lk. The midpoint of Ik will again be denoted
by (ci, 4, , cl~\ pk). Under these assumptions the number M(p)
can be defined by (11). However, since in this case the vector p is
completely determined if K and Gu G2, •••, Gn+ι are given we write
now M(K; Gl9 Gi9 •••, Gn+1) instead of M(p). Let K= K{H) be t h e
convex body which is obtained from K by symmetrization with respect
to the plane H. Since all the segments K Π Gk have midpoints that
are contained in a plane, namely H, Lemma (3) shows that

(18) M(K; Gl9 G2, , Gn+1) ^ M(K; Gl9 G2, . . , GΛ + 1)

where equality holds if and only if the midpoints of the segments
K Π Gk are already contained in some plane. Assume now that K is
a minimum body for mr and that K is not an ellipsoid. Then Lemma
2 shows that there is a line G such that the midpoint set &{K9 G)
is not flat. This implies obviously that ^{K, G) contains n + 1 points
which are not contained in a plane of Rn. A simple continuity argu-
ment shows further that one may assume that the line segments
corresponding to these n + 1 midpoints have positive lengths. A
suitable selection of the coordinate system permits us to assume that
the plane H = {(x\ x\ , xn) | xn = 0} is orthogonal to G. Hence, if
Gi, G2, •••, Gw+i is any system of n + 1 lines that are parallel to G
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and meet K in intervals of positive lengths one obtains (18) and the
additional information that strict inequality holds for at least one
such system of n + 1 lines

Denote now by KH the projection of K onto the plane H.
Further, if wk is a point of KH denote by G(wk) the line which is
orthogonal to H and contains wk. Using the definitions (2) and (10)
an obvious rearrangement of the order of integration shows that

mr(K)

= f ( M(K; G(wJ, G(w2), , G(wn+J)dwx- - dwn+1.

(Since the integrand has been defined only if the intervals K Π G(wk)
have positive lengths and if the points wk are distinct, a set of measure
0 has been neglected.) Because of (18) with strict inequality for at
least one system wl9 w2, , wn+1 and because of the continuity of the
integrand in (19) (considered as a function of wly w29 , wn+ί) the
equation (19) implies that

mr(K(H)) < mr(K) .

This contradicts the assumption that K be a minimum body for mr.
Therefore, only ellipsoids can be minimal bodies. Because of Lemma
1 and since mr is invariant under volume preserving afϊine transforma-
tions it follows that any sphere S of unit volume is a minimal body,
that

mr(S) < mr(K)

if K is not an ellipsoid, and that

mr(S) = mr(K)

if K is an ellipsoid. Hence, the Theorem is proved.
It might be worth noting that essentially the same method of

proof can be used to establish a similar theorem with the higher
order moments replaced by more general types of functions.
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