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THE AMALGAMATION PROPERTY IN EQUATIONAL
CLASSES OF MODULAR LATTICES

G. GRATZER, B. JONSSON, AND H. LAKSER*

It is known that the class of all distributive lattices
satisfies the Amalgamation Property. It will be shown that
this is the only nontrivial equational class of modular lattices
for which the Amalgamation Property holds. A second
theorem gives further information about the Amalgamation
Class of the class of all modular lattices, and of certain
other equational classes.

1* Introduction* A class K of algebras (or in general, struc-
tures) is said to have the Amalgamation Property if for A, Bo, Bλ in
K and for embeddings f{: A—+B{, i — 0, 1, there exist a C in K and
embeddings g{: B{ —> C, i = 1, 2, such that fogo — f1g1 (see Figure 1).
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FIGURE 1.

For the history and importance of the Amalgamation Property
we refer the reader to B. Jonsson [8] (see also G. Gratzer [5]).

The class of all lattices and the class of all distributive lattices
both have the Amalgamation Property. The problem whether the
class M of all modular lattices has the Amalgamation Property has
been around for more than a decade.

In January of 1971 B. Jonsson announced [11] that M does not
have the Amalgamation Property, in fact, any equational class K of
modular lattices having the Amalgamation Property must satisfy
the arguesian identity. This was followed by an announcement by
G. Gratzer and H. Lakser [7] stating that every member of K can
be embedded into the subspace lattice of an infinite dimensional
protective geometry. Combining and extending these results, we
can now prove the following:

THEOREM 1. // an equational class K of modular lattices con-
tains a nondistributive lattice, then K does not have the Amalgama-
tion Property.

If K does not have the Amalgamation Property, then we can use
the concept of the Amalgamation Class of K (G. Gratzer and H. Lakser
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[6]) to measure to what extent the Amalgamation Property holds.
We define A to be in the Amalgamation Class of K (A e Amal (K))
if and only if for any Bo, BteK and embeddings /<: A —>Bi9 i = 0, 1,
there exist a CeK and embeddings g{: Bi —• C, i = 0, 1, such that
/o#o = /i#i If if is an equational class of lattices, then it is easily
seen that the one-element lattice is always in Amal (K).

THEOREM 2. No distributive lattice with more than one element
belongs to Amal (M). In fact, if K is any nontrivial equational class
of modular lattices and Amal (K) contains a distributive lattice with
more than one element, then K satisfies the arguesian identity.

Some steps in the proofs of Theorems 1 and 2 rely on ideas of
R. P. Dilworth and M. Hall [1] even though no result of [1] could
be applied directly. The proof of Theorem 1 makes heavy use of
some deep results on protective geometries. The proof of Theorem 2
is patterned after the proof of Desargues' theorem for protective
geometries of dimension 3 or more.

Theorems 1 and 2 are proved in Sections 2 and 3, respectively. The
fourth and final section contains some comments and problems and
a result to the effect that a variety generated by a finite non-
distributive lattice never has the Amalgamation Property.

2 Proof of Theorem 1. In this section let K be an equational
class of modular lattices that contains a nondistributive lattice and
has the Amalgamation Property. We are going to prove a series of
statements about K that will lead to a contradiction, and thus to a
proof of Theorem 1.

A diamond is the five element modular nondistributive lattice of
Figure 2. That the diamond belongs to K follows from the assump-
tions.

Statement 1. Every member of K can be embedded in a simple
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complemented lattice that also belongs to K.

Proof. Let L be a lattice in K. We can assume that L has 0
and 1 because if a lattice belongs to K then that lattice with 0 and
1 adjoined also belongs to K. Consider a fixed diamond labelled as
in Figure 2. Given xeL, x Φ 0, 1, we can take the embeddings

/o: o —> 0, a —> α, i -> 1

fi'.o—*o, a —-» α, i —> i

of {0, α, i} into L and into the diamond, respectively. By the Amal-
gamation Property there is a lattice Lx in K containing L as a
sublattice having the same 0 and 1 as L, such that {0, x, 1} is con-
tained in a diamond sublattice of L. Iterating this process, possibly
a transfinite number of times (this is possible because K is closed
under direct limits), we obtain a lattice N that contains L as a
sublattice, has the same 0 and 1 as L, and has the property that
for every element xeL, x Φ 0, 1, there exist y, zeN such that
{0, x, y, z, 1} is a diamond.

Repeating this process we obtain an infinite sequence

i ^ C o g ^ g gC^g cΛ+1 s

of lattices in K, all having the same 0 and 1 as L, and having the
property that, for all n<ω, every element x of C,Λ, xφQ, 1, belongs
to a diamond {0, #, y, z, 1} in C%+1.

The union CL of the Cn belongs to K and it is obviously com-
plemented. To show that CL is simple, recall that in a complemented
modular lattice every congruence Θ is determined by the ideal [0]Θ
of elements congruent to 0 modulo Θ. If Θ Φ ω (the trivial con-
gruence), then there exists an xeCω, x Φ 0, such that x == 0(<9). If
x — 1, then θ = £ (the largest congruence). If x < 1, then for some
n < ω, we have xeC, and so there exists a diamond {0, x, y, z, 1}
in C%+1. Since a diamond is a simple lattice, it follows that 0 = 1(Θ),
so that θ — ί in CL. This shows that C^ is a simple lattice, com-
pleting the proof of Statement 1.

If P is a projective geometry, let J2?(P) denote the lattice of all
subspaces of P. We say that P is degenerate if some line contains
only two points; otherwise P is called nondegenerate.

Statement 2. For every member L of K there exists an infinite
dimensional nondegenerate projective geometry P such that L can be
embedded in Sf{P) and J*f(P) belongs to K.

Proof. We may assume that L has 0 and 1 and that it contains
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an infinite chain, because if it does not, adjoin an infinite chain to
"the top of" L and the resulting lattice is still in K. By Statement 1,
L can be embedded in a simple complemented lattice C of K. By
O Frink [4] C can embedded into some Sf{P) where P is a pro-
jective geometry; crucial for our argument is the result of B. Jόnsson
[9] according to which P can be chosen so that Jzf{F) e K. The
lattice ^f(P) has a representation

where the Pif ίel, are nondegenerate projective geometries. Let φ{

denote the embedding of C into ^f(P) followed by the ith projection.
Since φ{ preserves 0 and 1, it cannot be a constant homomorphism.
Thus, since C is simple, φκ is an embedding of C into Sf{P^. Since
C contains an infinite chain, Pt is infinite dimensional, completing the
proof of Statement 2.

Let D be a division ring and let V be a vector space over
D. Let <Sf(V> D) denote the lattice of all subspaces of V. We
define a projective space P as follows: the points of P are the one-
dimensional subspaces of V; if A and B are distinct one-dimensional
subspaces of V, then the line A + B through A and B consists of
all one-dimensional subspaces C that are contained in the subspace
spanned by A and B. Then P is a nondegenerate projective space
and

The celebrated coordinatization theorem of projective geometry
asserts that if P is a nondegenerate projective geometry and if
J5f(F) contains a five element chain, then there exist a division
ring D and a vector space V over D such that

This division ring, called the coordinate ring of P, is unique up to
isomorphism. All the lines of P have the same number of points:
this number is \D\ if D is infinite and | D | + 1 if D is finite.

Statement 3. There exists a projective plane Q such that £f(Q)
belongs to K and Q has at least six points on each line.

Proof. By Statement 2, there exist an infinite dimensional non-
degenerate projective geometry P such that J*f(P) belongs to K. If
P has the property that every line has at least six points, then
choose as Q any plane in P. Since J*?(Q) is a sublattice of J*f(F),
we conclude that ^f(Q) e K and, obviously, every line of Q has at
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least six points. If the lines in P have less than six points, then
the coordinate ring of P must be a field F of order 2, 3, or 4.
Therefore,

for some infinite dimensional vector space V over F. Let us choose
a finite field extension K of F of order k ^ 5, and let If be a
three-dimensional vector space over K. Then ^f{W, K) determines
a projective plane Q (in the sense that Sf{Wy K) ^ JZ?(Q)).

£?{W,K) is a sublattice of £?(W, F), and ^(W, F) is iso-
morphic to a sublattice of J*f(V, F), proving that J*f(Q) is in K.
Since every line in Q has at least k + 1 Ξ> 6 points, this completes
the proof of Statement 3.

The next two statements contain known facts that apply to
any class that has the Amalgamation Property.

Statement 4. Let C, D eK. Let D be an extension of C and let
φ:C—>D be a one-to-one homomorphism. Then there exists an
extension E of D (E e K) and a one-to-one homomorphism β: D —• E
extending φ.

Proof. C S D and <p: C —> D; hence we can apply the Amalga-
mation Property to get an extension E of D and a one-to-one homo-
morphism β: D—>E such that for ceC we have cφ — cβ, complet-
ing the proof.

Statement 5. Let A, B e K. Let B be an extension of A and
let oί be an automorphism of A. Then there exists an extension
B e K of B and an automorphism α of B extending a.

Proof. We define (see Figure 3) a sequence of extensions of A:

A-

B =

B

a

B

o *>̂ h

! - '<-

A4 h
—k-
FIGURE 3.

yB6 i

Γ 6

^ ^ 1

i

ά

3

i Bn+1 sg ΰ w i Bn+1 s

and a sequence of one-to-one homomorphisms α:Λ: I?TO —> Bn+1 such that
α0 = a and αw + 1 extends α" 1 (on Im (an)) for all n. Indeed, if
we have Bn, Bn+1 and an, we apply Statement 4 to C = Im (an),
D = BΛ+1, ̂  = a"1 and we get Bn+2 an extension of Bn+1 and αw + 1:
J5Λ+1 —> JB% ;-2 extending α"1: Im (an) —> βΛ + 1 . We then define
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B=\J(Bn\n<ω), a = \J{a2n\n < ω) .

Obviously a is a one-to-one homomorphism. Let y eB. Then there
is an n such that yeB2n+1. Let x — yoc2n+1; since a2n+2 is an exten-
sion of ας Vu %& = a*W2 = y Hence ά is an automorphism of B
extending a, completing the proof of Statement 5

We are now ready to start the final argument leading to the
desired contradiction.

By Statement 3 there exists a protective plane Q with at least
six points on each line that J*f(Q) e K. By Statement 2 there exists
an infinite dimensional nondegenerate protective geometry P such
that £?(F)eK and £f(Q) is isomorphic to a sublattice of £f(F).
By the coordinatization theorem, there exists a vector space V over
a division ring D such that £f{P) = £f(V, D). Consequently there
exists a one-to-one homomorphism of ^f(Q) into J*f(V, D).

The fact that J*f(Q) is isomorphic to a sublattice of the lattice
of all subgroups of an abelian group,—the group V,—implies that
the arguesian identity holds in Q. Therefore coordinates can be
introduced in Q in the usual manner, and we shall actually have to
make use of part of that construction. Choose a line m in Q and
two distinct points α0 and α^ on m, and let K = m — {α }̂. Choose
two distinct points p and q of Q that are collinear with α0 but are
not on m. Given x, y e K, let

(1) u = (x V p) A (q V aj), v = (y V g) Λ (p V αM) ,

(2) ίϊ; + i/ = (%Vv)Λm.

i ί is of course an abelian group under this operation, and the
operation is independent of the points p and q.

Any permutation of the points of m induces an automorphism of
the interval [0, m]. Using the fact that m has at least six points,
we can choose x, y e K — {a0} so that x + y Φ a0, and we can then
find an automorphism a of the interval [0, m] that keeps α0, αM, x
and y fixed but maps x + y onto a point 2 ̂  x + 2/. By Statement
5 there exists an extension L of J*f(Q) such that a extends to an
automorphism β of L and, as above, by Statement 2 there exists an
embedding F of L into the lattice of all subgroups of an abelian
group A. We claim that F(x + y) is the set of all elements ae A such
that, for some b, c e A

( 3) be F(x), c e F(y), a - be F(aJ)9 a - c e F{a^), a - b - c e F(a0) .

Let u and v be as in (1). First assume that a e F(x + y). Since
x + y <̂  u V v, we have ί7^ + #) S i^(u V t>) = F(u) + -P(i;), and so
there exists a, de A satisfying
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(4) deF(u), a - deF(v) .

Since u ^ x V p a n d v ^ y V q, i t follows t h a t t h e r e e x i s t b,ce A
s u c h t h a t

( 5 ) be F(x), d - be F(p), c e F{y), a - d~ ce F{q) .

The element a — b belongs to each of the groups F(x + y) + F(x)
and F{v) + F(p). Since

((x + y) V x) A (v V p) ^ m Λ 0 V p) ^ α^ ,

it follows that α — 6 e F(aoo). Similarly, a — ce F(aJ) and a — b — ce
F(a0), verifying (3).

Conversely, assume that (3) holds. Since α0 ^ p\y q, there exists
an ne A such that

ne F(p), a - b — c — ne F{q) .

Using (1) we infer that

b + ce F(u) and a — b — ce F(v) ,

and so (2) implies that a e F(x + y).

In this argument we can replace F(t) by

F\t) = F(tβ) .

Since F and F' agree on α0, α^, α;, and T/, it follows from the descrip-
tion (3) that

F(x + y) = F'(x + y) .

This, however, is impossible since F\x + y) = F(z) and z Φ x + y.
This contradiction proves the theorem.

It should be observed that if we only want to show that M
fails to have the Amalgamation Property, then it suffices to combine
Statement 1 with the example of R. P. Dilworth and M. Hall [1] of
a modular lattice that cannot be embedded in a complemented
modular lattice.

A naive first approach to Theorem 1 would be to find three
lattices A, Bo, Bl9 A a sublattice of Bo and BL, in the equational
class generated by the diamond that cannot be amalgamated in the
class of all modular lattices. However, it follows from results in
[3] that such an amalgamation can always be effected.

3* Proof of Theorem 2. In preparation for the proof of Theorem 2,
we establish three lemmas that are of some independent interest.
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We define a triangle in a lattice L to be an ordered triple of
elements of L. We shall have frequent occasions to consider two
triangles in L, a = <α0, al9 α2> and δ = <δ0, bly δ2>, and the following
associated elements:

p = (α0 V 60) Λ (αx V 61) Λ (a2 V δ2) ,

Co = («i V α2) Λ (&! V &2) , c1 = (α2 V a0) A (δ2Vδ0) ,

e2 = (α0 V αx) Λ (b0 V δx) , m = c2 A (c0 V <?i) .

The symbols p, c0, cx, c2 and m will always be used in this sense.
Two triangles a and 6 in L are said to be centrally perspective

provided p = (α0 V &0) Λ (αx V &0 or, equivalently,

(α0 V 60) Λ (αx V 60 g α2 V δ2 ,

and p is then called the center of perspectivity of a and δ. The
triangles a and δ are said to be axially perspective provided m = c2,
or, equivalently,

c2 ^ c0 V cι .

The lattice L is said to be arguesian provided, for any triangles a
and δ in L,

p ^ (α0 Λ (tti V m)) V δ0 .

We could have followed more closely the geometric theory and
called a lattice arguesian provided it satisfies the condition D(L):
Any two triangles in L that are centrally perspective are also axially
perspective. However, unlike this implication, the above definition
is obviously equivalent to an identity. In any case, the two are
known to be equivalent in the case of protective spaces, and in B.
Jόnsson and G. S. Monk [12], Theorem 3.4, it is shown that every
arguesian lattice satisfies the condition D(L). We shall now further
justify the terminology by proving the converse of that assertion.

LEMMA 1. For any modular lattice L, the following conditions
are equivalent:

( i ) L is arguesian.
(ii) Any two triangles in L that are centrally perspective are

also axially perspective.
(iii) For any triangles a = <α0, aί9 α2) and b — <δ0, bu δ2) in L

that are centrally perspective, if α0 Λ ax ^ a2 and δ0 Λ δx ^ δ2, and if
the center of perspectivity, p, satisfies the conditions

diV p= hv p = diV b{ for i = 0, 1, 2 ,

then a and b are axially perspective.



AMALGAMATION OF MODULAR LATTICES 515

Proof. Since (i) is known to imply (ii), and (iii) is but a special
case of (ii), we need only show that (iii) implies (i). Thus, assuming
(iii), we consider two triangle a and δ in L, and using the notation
introduced earlier we wish to prove that

( 1 ) p ^ (α0 Λ (a, V m)) V δ0 .

We first reduce the problem to the special case in which

( 2 ) p V α< = p V h = a{ V b, for i = 0, 1, 2 .

Assuming that (1) holds under this additional hypothesis, we con-
sider two arbitrary triangles a and b in L, and we let

a\ — α< Λ (δi V 2>) , δ — δ; Λ (α* V p) for i = 0,1, 2 .

Then

pVa- = pVbl = a V δ< for ΐ = 0, 1, 2 ,

whence it readily follows that

p = (αj V δί) Λ (a[ V δj) Λ (αj V b'2) .

Defining ĉ  and m' in the same manner as cζ and m were defined,
we therefore have

p £ (a'o A (a[ V m')) V b[ .

Inasmuch as α ^ α<, δ ^ δ4, and m' ^ m, it follows that (1) holds.
We henceforth assume that (2) holds, and we shall prove that in

this case a0 <̂  aλ V m, whence (1) certainly follows. Let

g = (α0 v δ0) Λ (a, V δx) .

Then

α0 V 9 = (α0 V δ0) Λ (α0 V ^ V δj .

Since p ^ α : V δx and, by (2), δ0 ^ α0 V p, this yields

α0 V ? = α0 V δ0 .

Similarly,

δ0 V q = α0 V δ0, a, V q = b, V q = a, V b, .

Furthermore

g = ( α o V p ) Λ (αL v δx) = p V (α0 Λ (^ V δj) ,

g = (δ0 V p) Λ (α, V W = p V (δ0 Λ (a, V δx)) .

Therefore, if we let
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at = α2 V (α0 Λ α j , δ2* = 62 V (δ0 Λ (a, V 60) ,

then

α* V 62* = a? V q = b$ V q ,

a0 A aι ^ α2* , 60 Λ δL ̂  δ2* ,

and we can therefore apply (iii) to the tr iangles <α0, al9 α2*> and
<δ0, K 62*>. Let t ing

c0* = (αL V α2*) Λ (b, V δ*) , c? = (at V α0) Λ (62* V 60) ,

we t h u s have

c2 ^ c0* V c* .

We now compute

c0* = (a, V α2) Λ (δ: V δ2 V (δ0 Λ (a, V 60))

= (a, V α2) Λ (δ2 V ((60 V 60 V (αx V 60))

= (a, V α2) Λ (δL V δ2 V (a, A (δ0 V 60))

= ((<*! V α2) Λ (b, V 62)) V (a, A (δ0 V 60)

= e0 V (αx Λ (δ0 V 60) .

On the other hand it is easy to see t h a t c? = c l β Thus

c2 ^ c0 V cx V (αx Λ (δ0 V 60) ,

c2 = (o2 A (Co V cθ) V (αx Λ (60 V 60) = m V (a, A (60 V 60) ,

αL v m = at V c2 = α0 V αx ^ α0 ,

and the proof of Lemma 1 is complete.

LEMMA 2. Suppose L is a modular lattice, u, veL, and v^u.
If there exist elements s, te L such that

uAs = uAt~sAt — v , u\/s = u\/t = s\/t,

then the interval [v, u] is an arguesian lattice.

Proof. Suppose the triangles a — <α0, al9 α2) and 6 = <δ0, δx, δ2)
in [v, u] satisfy the conditions of (iii) in Lemma 1. Let p, c0, c19 and
c2 be defined as usual, and let

q = s A (p V t) , r = t A (p V s) ,

dt = (α4 V g ) Λ (bi V r) for i = 0, 1, 2 .

(See Figure 4.) Then
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FIGURE 4.

pΛq=qΛr=rΛp=v,

α, V di = (α, V q) A (α< V 6< V r) = a, V g ,

because p ^ a{ V δ€ and q ^L p \J r. Also,

d* V g = (αt v g) Λ (6* V g V r) = a* v g ,

because p ^ q V r and α4 ^ δ4 V p.
Observe that for any elements #, τ/G [T;, U], the sets {x, y, q) and

{x, y, r} generate a distributive lattice, because
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and similarly with q replaced by r. In particular, it follows from
this that

(xVq)Λy = x Λ y , (x V q) A (y V q) = (x A y) V q.

These observations will be used several times below. We could use
them at this point to prove that the triangle d = <d0, dl9 d2} is centrally
perspective with each of the triangles a and δ, but no use will be
made of that fact.

We shall presently need the formula

( 3) a0 A (b0 V bt) £ d0 V d, .

To verify this inequality we compute

do V dx ^ ((α0 V q) A (δ0 V r)) V ( g Λ (δx V r))

= (α0 V g) Λ (&o V r V (« Λ (&! V r)))

- (Oo V ?) Λ (60 V ((g V f ) Λ (δi V r)))

= (α0 Vg) Λ (&o V r V ( ^ Λ ( g V r)))

^ α 0 Λ (60 V (&i Λ p)) = α 0 Λ (60 V (&i Λ (a0 V 60)))

= α 0 Λ (60 V δi) .

We now wish to prove the inequalities

( 4) c2 <; dQ V dι ,

( 5) rfi^CoV^) rfo^^V^

For the proof of (4) we first note that

( 6 ) (α0 V q) A (δ0 V b, V r) ^ d0 V d, .

In fact,

(α0 V g ) Λ (δ0 V δ i V ^ f α o V p V ^ Λ (δ0 V b, V r)

- ((α0 V p V g) Λ (δ0 V 60) V r

- ((α0 V δ0) Λ (δ0 V 60) V r

= (α0 Λ (60 V 60) V δ0 V r ,

(α0 V g ) Λ (60 V b, V r) ^ (α0 V g ) Λ ((α0 Λ (60 V 60) V δ0 V r)

- (do Λ (δ0 V 60) V ((α0 V g ) Λ (δ0 V r))

- (α0 Λ (δ0 V 60) V di .

In view of (3), this implies (6). Using (6) we compute

d0 V di ^ ((α0 V g ) Λ (60 V 6X V r)) V di

- ( α 0 V g V d,) A (60 V ί>! V r)

= (α0 V «! V g) Λ (δ0 V b, V r) ^ c2 .
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To prove the first inequality in (5) we first show that

(7) (a, V a2 V q) A (δ2 V r ) ^ f l V d 2 .

In fact,

(a, V a2 V q) A (δ2 V r) ^ (αx V α2 V q) A (δ2 V p V r)

^ g V ((αx V <k) A (δ2 V p V r))

= ? V ((αx V α2) Λ (α2 V δ2))

= q V α2 V (δ2 Λ (αx V α2)) ,

(αx V α 2 V g ) Λ (δ2 V r) ^ (g V a2 V (δ2 Λ (αx V α2))) Λ (δ2 V r)

= {(<h V q) A (δ2 V r)) V (δ2 Λ (a, V α2))

= d2 V (δ2 Λ (a, V α2)) ̂  c0 V rf2 .

With the aid of (7) we find that

Co V d2 ^ ((αx V α2 V g) Λ (δ2 V r)) V c0

= (a, V α 2 V g ) Λ (δ2 V cQ V r)

= (αx V α2 V «) Λ (b, V & 2 V r ) ^ C

The first formula in (5) therefore holds, and the second follows by
symmetry.

Using (4) and (5) we find that

c2 ^ (d0 V dj) A u ^ (c0 V cλ V d2) A u

= c0 V c1 V (d2 Λ t6) .

Since rf2 Λ % = (α2 V g) Λ w Λ (δ2 V r) Λ u = a2 A δ2, we conclude t h a t

C2 S Co V C] t

The proof of Lemma 2 is now complete.

LEMMA 3. If K is any equational class of lattices, and if Amal (K)
contains a distributive lattice with more than one element, then the
two-element chain belongs to Amal (K).

Proof. Let C2 ~ {0, 1} be the two-element chain, let ί be a
distributive lattice, and let CeK. Let /0: C2—>B, f: C2—>C be one-
to-one homomorphisms. We show that this amalgamation can be
effected in K. Since B is distributive there is a retraction p: B-+C2

such that fop = 1C2. Given any x, ye C, xφ y, define gx: C—+C as
the identity and define g0: B—+C by gQ — pf. Then fogo = fgγ and
®9ι ^ V9i For any x, ye B, x Φ y, there is a homomorphism h: B~^C2

such that xh Φ yh since B is distributive. Define hQ: ΰ - ^ C by
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h0 = hfx. If Ofoh = lfji define hx:C->C by zh, = OfohQ. If Ofoh Φ
lfoh define hx: C-+C as the identity. In either case foho = fji^ and
xh0 Φ yh0. It then follows (see Theorem 13.18 of [5]) that there is a
lattice De K and embeddings g0: B —* D, gγ: C —* D such that fogo =

Now suppose B, Ce K, and suppose f0: C2—>B and fι:C2—*C are em-
beddings. By hypothesis there exists a distributive lattice A e Amal(jfiC)
with more than one element. Choosing an embedding φ: C2 —> A,
we effect three amalgamations as indicated in Figure 5, using Lemma 3

FIGURE 5.

twice to obtain the pairs φ0, ψ0 and φu ψ19 and finally using the fact
that A is in the Amalgamation Class of K to obtain h0 and ht. Then
g0 — ̂ ho and gγ — ψjιγ are embeddings of B and C into D with
foOo = frfi. Thus C2 € Amal (JΓ).

Now we are ready to prove Theorem 2. Assume that K is an
equational class of modular lattices and that Amal (K) contains a
distributive lattice with more than one element. We have to prove
that every L e K is arguesian. It is sufficient to prove this for
finitely generated L, and so L has a 0 and a 1. Since every dis-
tributive lattice is arguesian we may assume that K contains a non-
distributive lattice, and hence it contains the diamond. Let C2 —
{0, 1} be the two-element chain, fQ the embedding of C2 into L
defined by

O/o = 0 and l/0 = 1 .

Let Λ embed C2 into the diamond (see Figure 2) by

QΛ = o and If1 = a.

Since C2 e Amal (K), there exist Ce K and embeddings g0, g1 into C of
L and of the diamond respectively, such that fogQ — fγgγ. By Lemma 2,
the interval [og0, ag0] is arguesian. Since L is isomorphic to Lg0
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and Lg0 £ [og^ agx], we conclude that L is arguesian, completing
the proof of the second statement of Theorem 2.

If P is a projective plane that does not satisfy Desargues'
theorem, then J*?(P) is not arguesian, hence the second statement
in Theorem 2 implies the first one.

4* Concluding remarks* Lemma 3 above provides some in-
formation about the amalgamation classes of nonmodular equational
classes. The following simple theorem, essentially obtained by A.
Day by using and extending earlier ideas due to S. Comer and
S. Fajtlowicz, contains further information.

THEOREM 3. Let K be an equational class of lattices generated
by a finite nondistributive lattice. Then K does not have the Amal-
gamation Property. In fact, the two-element chain does not belong
to Amal (K).

Proof. By a result of B. Jόnsson [10] there exists an integer n
such that every subdirectly irreducible lattice in K has not more
than n elements.

Now assume that C2e Amal (If). Since K is nondistributive K
contains either the diamond (Figure 2) or JV5 (Figure 6). In the
first case K has to contain all the lattices Ak of Figure 7. Indeed,
Aι is the diamond, so Aι e K by assumption. If Ak e K, then con-
sider the embedding /0 of C2 into the diamond defined by 0/0 = a,

FIGURE 6.

l/o = i and the embedding / :: C2 -^ Ak given by Q/Ί = %, 1/Ί = i. Let
0o, gu L amalgamate this in K. Then Image (fogo) U Image (/if/O is
a sublattice of L isomorphic to Ak+1. Hence Ake K for all k. This
contradicts the fact that \Ak\>n for some k.

In the second case (i.e., N5eK) let A be any finite subdirectly
irreducible lattice and consider /0: C2 —• A, / t: C2 —> N5 defined by

O/o = 0, l/o = 1 OΛ = α, l/i = &
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FIGURE 7.

Let gQ, g19 B amalgamate these in K. The Image (fogo) U Image (fxg^ =
AN is a sublattice of B; hence the A^ of Figure 8 is in K. Obviously

FIGURE 8.

AN is subdirectly irreducible and | AN \ = | A \ + 3. Repeating this
sufficiently many times we construct a subdirectly irreducible lattice
in K with more than n elements. This contradiction completes the
proof of this theorem.

The results of this paper show that equational classes of lattices
having the Amalgamation Property are hard to find.

We do not know of any lattice with more than one element that
belongs to Amal (M). Is there any?

For a division ring D, let K(D) denote the class of all lattices
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embeddable in some £f{V, D). E. Fried [2[ has shown that all
finite distributive lattices and also the diamond belong to Amal (K(D)).

Theorem 2 is much weaker than Theorem 1 in that it only gives
a necessary condition for C2e Amal (if), where K is an equational
class of modular lattices. We do not know whether such classes exist
excepting of course the class of distributive lattices and the trivial
equational class.

Our information about amalgamation classes in general is still
very limited. The following two observations are valid for any
equational class K of algebras:

Suppose A'e Amal (if), and φ\ A-^ A! is an embedding. If, for
every Be K, and every embedding ψ: A —> B, the amalgam (A, φ,
A', ψ, B) can be amalgamated in if, then Ae Amal (if).

If AeK and A is an absolute retract in if, then A e Amal (if).
A proof of the first observation is essentially contained in the

proof of Lemma 3 in § 3. To prove the second, suppose B, CeK,
and suppose /„: A —> B and ft: A —> C are embeddings. Since A is an
absolute retract in if, there exist onto homomorphisms φ0: B —> A
and φγ\ C —> A such that bφofo = b for all be B and cφ1fί = c for all
ceC. Let D = B x C, and for 6 e B and c e C let

bg0 = <6, bφj,) , eg, = (cφJQ, c) .

Then g0: B-+D and g;.C—>D are embeddings, and fogQ = fxgx.
From these two observations one readily obtains:
If A x A! e Amal (K), and if A! has a one-element subalgebra,

then A G Amal (if).
If some reduced power of A belongs to Amal (if), then Ae

Amal (K).
If A e K, A is subdirectly irreducible and of finite order n, and

K has no subdirectly irreducible member whose order is larger than
n, then A e Amal (if).

For the case when K is an equational class of lattices we also
have:

If the lattice of all ideals of L belongs to Amal (if), then
L e Amal (if).

If an ordered sum of two or more lattices belongs to Amal (if),
then each summand belongs to Amal (if).

If K is generated by a finite, subdirectly irreducible lattice L,
then L e Amal (if).

For certain equational classes K of modular lattices, specifically
those generated by lattices of length two, the finite members of
Amal (if) are determined in E. Fried, G. Gratzer, and H. Lakser [3].
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Remark added in proof. It has been proved by M. Yashuhara
that if K is an equational class, then every member of K can be
extended to a member of Amal(lΓ). This shows in particular that
Amal (M) is very big. However, no lattice with more than one element
is known to belong to Amal(Jf).
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