ESSENTIAL PRODUCTS OF NONSINGULAR RINGS

K. R. Goodearl

Abstract

By an essential product of two rings is meant a subdirect product which contains an essential right ideal of the direct product. The aim of this paper is to investigate the utility of this concept in the study of nonsingular rings. The first section derives some basic properties of essential products and develops some criteria for recognizing essential products. In the second section, a study of the socles of nonsingular modules leads to a theorem that any nonsingular ring is an essential product of a ring with essential socle and a ring with zero socle. The third section is devoted to a theorem which tells when an essential product can be a splitting ring, i.e., a ring such that the singular submodule of any right module is a direct summand. In the final section, this theorem is used to construct two examples of splitting rings of types previously unknown.

In this paper all rings are associative with identity, and all modules are unital. We also require that a subring of a ring have the same identity as the ring. Unless otherwise noted, all modules are right modules.

Inasmuch as we use singular and nonsingular modules throughout this paper, we recall the relevant definitions here. Given a ring R, we use $\mathscr{S}(R)$ to denote the collection of essential right ideals of R; then the singular submodule of a right R-module A is the set $Z_{R}(A)=$ $\{a \in A \mid a I=0$ for some $I \in \mathscr{S}(R)\}$. The module A is said to be singular [nonsingular] provided $Z_{R}(A)=A\left[Z_{R}(A)=0\right]$. The singular submodule of R_{R} is a two-sided ideal of R, called the right singular ideal of R and denoted $Z_{r}(R) ; R$ is a right nonsingular ring when $Z_{r}(R)=0$.

1. Essential products. Given two right nonsingular rings R_{1} and R_{2}, we define an essential product of R_{1} and R_{2} to be any subdirect product R of R_{1} and R_{2} which contains an essential right ideal of $R_{1} \times R_{2}$. [Recall that for R to be a subdirect product of R_{1} and R_{2}, R must be a subring of $R_{1} \times R_{2}$ such that the projections $R \rightarrow R_{1}$ and $R \rightarrow R_{2}$ are both surjective.] The aim of this section is to consider the relationships among singular and nonsingular modules over R_{1}, R_{2}, and R, and to establish criteria for judging which rings are essential products.
N.B.-For the first three propositions in this section, we assume that R is an essential product of two right nonsingular rings R_{1} and
R_{2}. We define $E_{1} \subset R_{1}$ and $E_{2} \subset R_{2}$ by the conditions $E_{1} \times 0=R \cap$ ($R_{1} \times 0$) and $0 \times E_{2}=R \cap\left(0 \times R_{2}\right)$. Inasmuch as $E_{1} \times 0$ is a twosided ideal of R and R is a subdirect product of R_{1} and R_{2}, E_{1} must be a two-sided ideal of R_{1}. Likewise, E_{2} is a two-sided ideal of R_{2}, hence $E_{1} \times E_{2}$ is a two-sided ideal of $R_{1} \times R_{2}$ as well as a two-sided ideal of R. Note that the induced ring homomorphisms $R /\left(E_{1} \times 0\right) \rightarrow R_{2}$ and $R /\left(0 \times E_{2}\right) \rightarrow R_{1}$ are both isomorphisms, from which we conclude that the induced ring homomorphisms

$$
R /\left(E_{1} \times E_{2}\right) \longrightarrow R_{2} / E_{2} \text { and } R /\left(E_{1} \times E_{2}\right) \longrightarrow R_{1} / E_{1}
$$

are also isomorphisms.
Since R is an essential product, it must contain some essential right ideal I of $R_{1} \times R_{2}$. Noting that $I=I_{1} \times I_{2}$ for some $I_{1} \in \mathscr{P}\left(R_{1}\right)$ and $I_{2} \in \mathscr{S}\left(R_{2}\right)$, we infer from $I_{1} \times 0 \leqq E_{1} \times 0$ that $E_{1} \in \mathscr{S}\left(R_{1}\right)$; likewise $E_{2} \in \mathscr{S}\left(R_{2}\right)$. Consequently $E_{1} \times E_{2} \in \mathscr{S}\left(R_{1} \times R_{2}\right)$.

Proposition 1. Let $T=R_{1} \times R_{2}$ and $E=E_{1} \times E_{2}$.
(a) $\mathscr{S}(T)=\left\{K \leqq T_{T} \mid K \cap R \in \mathscr{S}(R)\right\}$.
(b) $\mathscr{S}(R)=\left\{J \leqq R_{R} \mid J E \in \mathscr{S}(T)\right\}$.
(c) $Z_{T}(A)=Z_{R}(A)$ for all A_{T}.
(d) $Z_{r}(R)=Z_{R}(T)=0$.

Proof. (a) Suppose that $K \in \mathscr{S}(T)$ and $A \leqq R_{R}$ such that $A \cap$ $(K \cap R)=0$. Then $A E \cap K=0$, hence from $K \in \mathscr{S}(T)$ we obtain $A E=0$. Since $E \in \mathscr{S}(T)$ it follows that $A \leqq Z_{r}(T)=0$, and so $K \cap R \in \mathscr{S}(R)$.

Now let $K \leqq T_{T}$ and assume that $K \cap R \in \mathscr{S}(R)$. If $A \leqq T_{T}$ and $A \cap K=0$, then from $(A \cap R) \cap(K \cap R)=0$ we obtain $A \cap R=0$, hence $A \cap E=0$. Thus $A=0$ and so $K \in \mathscr{S}(T)$.
(b) If $J \leqq R_{R}$ and $J E \in \mathscr{S}(T)$, then $J E \in \mathscr{S}(R)$ by (a), whence $J \in \mathscr{S}(R)$.

Now consider any $J \in \mathscr{S}(R)$. Inasmuch as $E \in \mathscr{S}(T)$ and $Z_{r}(T)=0$, the left annihilator of E in T is zero. In particular, it follows that every nonzero element of J has a nonzero right multiple in $J E$. Thus $J E$ is an essential R-submodule of J, hence $J E \in \mathscr{S}(R)$, and then $J E \in \mathscr{S}(T)$ by (a).
(c) follows directly from (a) and (b).
(d) According to (c), $Z_{R}(T)=0$, and then $Z_{r}(R)=0$ also.

Letting Q_{1} and Q_{2} denote the respective maximal right quotient rings of R_{1} and R_{2}, then $Q_{1} \times Q_{2}$ is the maximal right quotient ring of $R_{1} \times R_{2}$. Inasmuch as $Z_{r}\left(R_{1} \times R_{2}\right)=0$, [4, Theorem $1+2$, p. 69] says that $Q_{1} \times Q_{2}$ is a right self-injective ring.

Proposition 2. $Q_{1} \times Q_{2}$ is also the maximal right quotient ring of R.

Proof. Set $T=R_{1} \times R_{2}, E=E_{1} \times E_{2}$, and $Q=Q_{1} \times Q_{2}$. Note that $T \cap Z_{T}(Q)=Z_{r}(T)=0$, from which we obtain $Z_{T}(Q)=0$.

We first show that Q is a right quotient ring of R, i.e., that Q_{R} is a rational extension of R_{R}. (See [4, pp. 58, 64].) Inasmuch as $Z_{r}(R)=0$, [4, Proposition 5, p. 59] says that it suffices to prove that Q_{R} is an essential extension of R_{R}. Thus consider any $A \leqq Q_{R}$ such that $A \cap R=0$. Then $A E \cap E=0$. Since E is an essential right ideal of T it must be an essential T-submodule of Q, so that we obtain $A E=0$ and $A \leqq Z_{T}(Q)=0$. Therefore Q is a right quotient ring of R, hence we many assume that Q is a subring of the maximal right quotient ring P of R. The injectivity of Q_{Q} implies that $P_{Q}=$ $Q \oplus B$ for some B. Then from $R \cap B=0$ we infer that $B=0$ and $P=Q$.

In view of Proposition 2, we may refer again to [4, Theorem $1+2, \mathrm{p} .69$] and conclude that $\left(Q_{1} \times Q_{2}\right)_{R}$ is an injective hull for R_{R}. Now we obtain from [7, Proposition 1, p. 427] the following alternate description of the singular submodule of a right R-module $A: Z_{R}(A)=$ $\cap\left\{\operatorname{ker} f \mid f \in \operatorname{Hom}_{R}\left(A, Q_{1} \times Q_{2}\right)\right\}$. In particular, A is singular if and only if $\operatorname{Hom}_{R}\left(A, Q_{1} \times Q_{2}\right)=0$, from which we conclude that any extension of a singular module by a singular module is singular. The corresponding property for nonsingular modules is a consequence of the observation that A is nonsingular if and only if $\operatorname{Hom}_{R}(R / I, A)=0$ for all $I \in \mathscr{S}(R)$.

According to Proposition 1, any nonsingular right $R_{1} \times R_{2}$-module is also a nonsingular right R-module. We can view this as saying that the direct sum of a nonsingular right R_{1}-module with a nonsingular right R_{2}-module gives a nonsingular right R-module. The converse is false unless R is actually the direct product of R_{1} and R_{2}, but according to the next proposition we can at least realize any nonsingular right R-module as an extension of a nonsingular right R_{1}-module by a nonsingular right R_{2}-module.

Proposition 3. (a) A right R-module A is nonsingular if and only if it has a submodule A^{\prime} such that A^{\prime} is a nonsingular right R_{1}-module and A / A^{\prime} is a nonsingular right R_{2}-module.
(b) A right R-module C is singular if and only if it has a submodule C^{\prime} such that C^{\prime} is a singular right R_{1}-module and C / C^{\prime} is a singular right R_{2}-module.

Proof. (a) If A has such a submodule A^{\prime}, then according to Proposition 1, A^{\prime} and A / A^{\prime} are both nonsingular R-modules, hence A must be nonsingular.

Now assume that A is nonsingular. In view of the discussion above, the intersection of the kernels of the homomorphisms from A into $Q_{1} \times Q_{2}$ must be zero. Thus we may assume that A is a submodule of some direct product B of copies of $Q_{1} \times Q_{2}$. Note that $B=B_{1} \oplus B_{2}$, where B_{i} is a direct product of copies of Q_{i}; since Q_{i} is the maximal right quotient ring of R_{i}, B_{i} is a nonsingular right R_{i}-module. Consequently, $A^{\prime}=A \cap B_{1}$ is a nonsingular right $R_{1}-$ module, and A / A^{\prime} is a nonsingular right R_{2}-module.
(b) If C has such a submodule C^{\prime}, then according to Proposition 1, C^{\prime} and C / C^{\prime} are both singular R-modules, whence C must be singular.

Conversely, assume that C is singular. Clearly $C^{\prime}=C\left(E_{1} \times 0\right)$ is a right R_{1}-module [because $C^{\prime}\left(0 \times E_{2}\right)=0$] and C / C^{\prime} is a right R_{2}-module. Inasmuch as C^{\prime} and C / C^{\prime} are singular R-modules, Proposition 1 says that C^{\prime} is a singular R_{1}-module and C / C^{\prime} is a singular R_{2}-module.
N. B.-We now drop the a priori assumption that R is an essential product of R_{1} and R_{2}, in order to find conditions under which R can be such an essential product.

Theorem 4. Let R_{1} and R_{2} be right nonsingular rings, R any subring of $R_{1} \times R_{2}$. Then the following conditions are equivalent:
(a) R is an essential product of R_{1} and R_{2}.
(b) There exist two-sided ideals $E_{1} \in \mathscr{S}\left(R_{1}\right)$ and $E_{2} \in \mathscr{S}\left(R_{2}\right)$, and a ring isomorphism $\phi: R_{1} / E_{1} \rightarrow R_{2} / E_{2}$, such that

$$
R=\left\{(x, y) \in R_{1} \times R_{2} \mid \phi\left(x+E_{1}\right)=y+E_{2}\right\}
$$

(c) $\quad R$ is a subdirect product of R_{1} and $R_{2}, R /\left[R \cap\left(R_{1} \times 0\right)\right]$ and $R /\left[R \cap\left(0 \times R_{2}\right)\right]$ are both nonsingular right R-modules, and

$$
\left[R \cap\left(R_{1} \times 0\right)\right]+\left[R \cap\left(0 \times R_{2}\right)\right] \in \mathscr{S}(R)
$$

Proof. Set $H_{1}=R \cap\left(R_{1} \times 0\right)$ and $H_{2}=R \cap\left(0 \times R_{2}\right)$, both of which are two-sided ideals of R.
(a) \Rightarrow (c): By definition, R is a subdirect product of R_{1} and R_{2}. Set $E_{1} \times 0=H_{1}$ and $0 \times E_{2}=H_{2}$: then $H_{1}+H_{2}=E_{1} \times E_{2}$, which in the discussion prior to Proposition 1 is shown to belong to $\mathscr{S}\left(R_{1} \times R_{2}\right)$. Quoting part (a) of Proposition 1, we see that $H_{1}+H_{2} \in \mathscr{S}(R)$. As for the modules $\left(R / H_{1}\right)_{R}$ and $\left(R / H_{2}\right)_{R}$, they are both isomorphic to submodules of $\left(R_{1} \times R_{2}\right)_{R}$, which is nonsingular by Proposition 1.
(c) $\Rightarrow(\mathrm{b})$: Since R is a subdirect product of R_{1} and R_{2}, it follows as in the discussion before Proposition 1 that there exist two-sided ideals E_{1} in R_{1} and E_{2} in R_{2} such that $E_{1} \times 0=H_{1}$ and $0 \times E_{2}=H_{2}$,
and that the induced maps $f: R /\left(E_{1} \times E_{2}\right) \rightarrow R_{1} / E_{1}$ and $g: R /\left(E_{1} \times E_{2}\right) \rightarrow$ R_{2} / E_{2} are ring isomorphisms. Setting $\phi=g f^{-1}$, we check that

$$
R=\left\{(x, y) \in R_{1} \times R_{2} \mid \dot{\phi}\left(x+E_{1}\right)=y+E_{2}\right\} .
$$

Inasmuch as $\left(R / H_{1}\right)_{R}$ is nonsingular and $H_{1}+H_{2} \in \mathscr{S}(R)$, no nonzero element of R / H_{1} is annihilated on the right by $H_{1}+H_{2}$. Noting that the isomorphism $R / H_{1} \rightarrow R_{2}$ [induced by the projection $R \rightarrow R_{2}$] carries $\left(H_{1}+H_{2}\right) / H_{1}$ onto E_{2}, we infer that the left annihilator of E_{2} in R_{2} is zero. Since E_{2} is a two-sided ideal of R_{2}, it follows that every nonzero element of R_{2} has a nonzero right multiple in E_{2}, whence $E_{2} \in \mathscr{S}\left(R_{2}\right)$. Likewise, $E_{1} \in \mathscr{S}\left(R_{1}\right)$.
(b) \Rightarrow (a): It is easy to check that under these hypotheses, R is a subdirect product of R_{1} and R_{2}. Also, R contains $E_{1} \times E_{2}$, which is an essential right ideal of $R_{1} \times R_{2}$, hence R is an essential product.

Theorem 4 may be thought of as characterizing "external" essential products. As an immediate consequence of the equivalence of (a) and (c), we also get the following characterization of "internal" essential products.

Corollary 5. Let R_{1} and R_{2} be right nonsingular rings. Then a ring R is isomorphic to an essential product of R_{1} and R_{2} if and only if there exist two-sided ideals H_{1} and H_{2} in R such that
(a) $H_{1} \cap H_{2}=0$.
(b) $R / H_{1} \cong R_{2}$ and $R / H_{2} \cong R_{1}$.
(c) $\left(R / H_{1}\right)_{R}$ and $\left(R / H_{2}\right)_{R}$ are both nonsingular.
(d) $H_{1}+H_{2} \in \mathscr{S}(R)$.
2. Socles and antisocles. The purpose of this section is to prove that any right nonsingular ring is isomorphic to an essential product of a ring with essential socle and a ring with zero socle. To this end we first develop some results about socles of nonsingular modules over an arbitrary ring R.

For any simple right R-module R / M, there are only two choices for the submodule $Z_{R}(R / M)$, hence R / M must be either singular or nonsingular. In case it is nonsingular, then $M \notin \mathscr{S}(R)$, whence $M \cap$ $I=0$ for some nonzero right ideal I of R. By the maximality of $M, R=M \oplus I$. Thus we see that every simple right R-module is either singular or projective. Consequently, every nonsingular semisimple right R-module is projective.

Proposition 6. Let $J=\operatorname{soc}\left(R_{R}\right)$. Then $\operatorname{soc}(A)=A J$ for any nonsingular right R-module A.

Proof. The module $A J$ is clearly semisimple, hence $A J \leqq \operatorname{soc}(A)$.

On the other hand, any simple submodule B of A is projective and thus is isomorphic to $e R$ for some idempotent $e \in R$, whence $B=$ $B e R \leqq A J$.

Proposition 7. Let A be any nonsingular right R-module, $J=$ $\operatorname{soc}\left(R_{R}\right)$.
(a) $B=\{a \in A \mid a J=0\}$ is the largest submodule of A with zero socle.
(b) A / B has essential socle.
(c) A / B is nonsingular.

Proof. (a) is immediate from Proposition 6.
(b) If N / B is any nonzero submodule of A / B, then since $N \not \equiv B$ we must have $N J \neq 0$. We infer from the semisimplicity of $N J$ that $N J \cap B=0$, whence $(N J+B) / B \neq 0$ and thus $[N / B] \cap[(A J+B) / B] \neq 0$. Therefore $(A J+B) / B$ is an essential submodule of A / B. Inasmuch as $(A J+B) / B$ is semisimple, we conclude that A / B has essential socle.
(c) Noting that $A J \cap B=0$, we see that $(A J+B) / B \cong A J$, which is a nonsingular module. Thus A / B is an essential extension of a nonsingular module, hence A / B must be nonsingular.

According to Proposition 7, a nonsingular right R-module A always has a largest submodule with zero socle; Professor Kaplansky has suggested the name antisocle for this submodule of A. We now proceed in a similar manner to show that A also has a largest submodule with essential socle. We refrain from introducing a name for this submodule, since in the presence of a suitable notion of closure it is describable simply as the closure of $\operatorname{soc}(A)$.

Proposition 8. Let A be any nonsingular right R-module. Set $J=\operatorname{soc}\left(R_{R}\right)$, and let H be the left annihilator of J in R.
(a) $C=\{a \in A \mid a H=0\}$ is the largest submodule of A with essential socle.
(b) A / C is nonsingular.
(c) A / C has zero socle.

Proof. Inasmuch as J is a two-sided ideal of R, H is a two-sided ideal also. Note that $J+H \in \mathscr{S}(R)$: For if $x \in R \backslash H$, then $x J \neq 0$ and thus x has a nonzero right multiple in $J+H$.
(a) will follow immediately from the following claim: A nonsingular right R-module B has essential socle if and only if $B H=0$.

First suppose that B has essential socle, i.e., that $B J$ is essential in B. Inasmuch as $B H \cap B J$ is semisimple, we obtain $B H \cap B J=$ $(B H \cap B J) J \leqq B H J=0$, from which $B H=0$ follows. Conversely, if
$B H=0$, then since $J+H \in \mathscr{S}(R)$ we must have $x J \neq 0$ for all nonzero $x \in B$, from which we infer that $B J$ is essential in B.
(b) Inasmuch as $A H J=0$, we see that $A H$ has zero socle, whence $A H \cap \operatorname{soc}(C)=0$ and thus $A H \cap C=0$. In particular, we find that $(A H+C) / C \cong A H$, which is a nonsingular module.

If N / C is any nonzero submodule of A / C, then since $N \nsubseteq C$ we must have $N H \neq 0$. Since $N H \cap C \leqq A H \cap C=0$, it follows that $(N H+C) / C \neq 0$, whence $[N / C] \cap[(A H+C) / C] \neq 0$. Thus A / C is an essential extension of the nonsingular module $(A H+C) / C$, so A / C must be nonsingular.
(c) According to (a), soc $(A) \leqq C$. Inasmuch as the nonsingularity of A / C implies that $\operatorname{soc}(A / C)$ is projective, we conclude that $\operatorname{soc}(A / C)=0$.

When R is presented as an essential product of rings R_{1} and R_{2}, both R_{1} and R_{2} are factor rings of R. Thus we need to know that certain factor rings of R are nonsingular, for which reason we introduce the next proposition. The proof is routine, and may be found in [8, Proposition 1.11].

Proposition 9. Let H be a two-sided ideal of R such that $(R / H)_{R}$ is nonsingular.
(a) $\mathscr{S}(R / H)=\{I / H \mid H \leqq I$ and $I \in \mathscr{S}(R)\}$.
(b) $Z_{R / H}(A)=Z_{R}(A)$ for all $A_{R / I}$.
(c) $\quad Z_{r}(R / H)=0$.

Theorem 10. Let R be any right nonsingular ring. Then R is isomorphic to an essential product of two right nonsingular rings R_{1} and R_{2} such that R_{1} has essential right socle and R_{2} has zero right socle.

Proof. Let $J=\operatorname{soc}\left(R_{R}\right), H$ the left annihilator of J in R, K the left annihilator of H in R. Since J is a two-sided ideal, so are H and K. The modules $(R / H)_{R}$ and $(R / K)_{R}$ are nonsingular according to Propositions 7 and 8 , hence by Proposition $9, R_{1}=R / H$ and $R_{2}=$ R / K are both right nonsingular rings.

Referring to Propositions 7 and 8 again, we see that H_{R} has zero socle while K_{R} has essential socle, hence $H \cap K=0$. We must also note that $H+K \in \mathscr{S}(R)$: For if $X \in R \backslash K$, then $x H \neq 0$ and so x has a nonzero right multiple in $H+K$. According to Corollary 5, we obtain that R is isomorphic to an essential product of R_{1} and R_{2}.

Inasmuch as $(R / H)_{R}$ has essential socle by Proposition $7,(R / H)_{R / H}$ must have essential socle. Similarly, $(R / K)_{R}$ has zero socle by Proposition 8 , whence $(R / K)_{R / K}$ has zero socle.
3. Splitting rings. This section is concerned with the question
of when an essential product can be a splitting ring, by which we mean a ring R such that for every right R-module $A, Z_{R}(A)$ is a direct summand of A. As is noted in [2, Proposition 1.12], R is a splitting ring if and only if $\operatorname{Ext}_{R}^{1}(A, C)=0$ for all nonsingular A_{R} and all singular C_{R}.
N.B.-Throughout this section, we assume that R is an essential product of two right nonsingular rings R_{1} and R_{2}. Setting $E_{1} \times 0=$ $R \cap\left(R_{1} \times 0\right)$ and $0 \times E_{2}=R \cap\left(0 \times R_{2}\right)$, we recall from $\S 1$ that each E_{i} is a two-sided ideal in $\mathscr{S}\left(R_{i}\right)$. According to Proposition 1, we also have $E_{1} \times E_{2} \in \mathscr{S}(R)$. Setting $H_{1}=E_{1} \times 0$ and $H_{2}=0 \times E_{2}$, we recall that $R / H_{1} \cong R_{2}$ and $R / H_{2} \cong R_{1}$, while from Theorem 4 we obtain that R / H_{1} and R / H_{2} are nonsingular right R-modules.

Lemma 11. Let T be a splitting ring, H a two-sided ideal in $\mathscr{S}(T), A$ any nonsingular right T-module.
(a) $\operatorname{Tor}_{1}^{T}(A, T / H)=0$.
(b) $A / A H$ is a projective right (T / H)-module.

Proof. (a) Choosing a divisible abelian group D which contains $\operatorname{Tor}_{1}^{T}(A, T / H)$, we note that $\operatorname{Hom}_{z}(T / H, D)$ is a two-sided T-module. As a right T-module, $\operatorname{Hom}_{z}(T / H, D)$ is singular because $H \in \mathscr{S}(T)$, whence $\operatorname{Ext}_{T}^{1}\left(A, \operatorname{Hom}_{z}(T / H, D)\right)=0$. According to [1, Proposition 5.1, p. 120], we obtain $\operatorname{Hom}_{z}\left(\operatorname{Tor}_{1}^{T}(A, T / H), D\right)=0$, and thus

$$
\operatorname{Tor}_{1}^{T}(A, T / H)=0
$$

(b) Choose an exact sequence $S: 0 \rightarrow K \rightarrow F \rightarrow A / A H \rightarrow 0$, where F is a free right (T / H)-module. Inasmuch as $K H=0$ and $H \in \mathscr{S}(T)$, K is a singular right T-module. Thus $\operatorname{Ext}_{T}^{1}(A, K)=0$, hence the natural map $p: A \rightarrow A / A H$ lifts to a map $f: A \rightarrow F$. Since $F H=0, f$ induces a map $g: A / A H \rightarrow F$ which splits S.

Theorem 12. R is a splitting ring if and only if
(a) R_{1} and R_{2} are splitting rings.
(b) If L_{i} is any essential right R_{i}-submodule of E_{i}, then E_{i} / L_{i} is a direct summand of R_{i} / L_{i}.

Proof. Assume that R is a splitting ring. If $H=H_{1}$ or $H=H_{2}$, and A is any right (R / H)-module, then $Z_{R / H}(A)=Z_{R}(A)$ by Proposition 9 , hence $Z_{R / H}(A)$ is a summand of A. Therefore R / H_{1} and R / H_{2} are splitting rings; i.e., R_{2} and R_{1} are splitting rings.

Next consider any essential right R_{1}-submodule $L_{1} \leqq E_{1}$. Noting that $L_{1} \times 0$ is an essential right R-submodule of H_{1}, we see that $H_{1} /\left(L_{1} \times 0\right)$ is a singular right R-module. Inasmuch as $\left(R / H_{1}\right)_{R}$ is
nonsingular, the exact sequence

$$
0 \longrightarrow H_{1} /\left(L_{1} \times 0\right) \longrightarrow R /\left(L_{1} \times 0\right) \longrightarrow R / H_{1} \longrightarrow 0
$$

must split. Tensoring with R / H_{2}, we obtain another split exact sequence

$$
0 \longrightarrow\left(E_{1} \times 0\right) /\left(L_{1} \times 0\right) \longrightarrow R /\left(L_{1} \times E_{2}\right) \longrightarrow R /\left(E_{1} \times E_{2}\right) \longrightarrow 0,
$$

from which we infer that E_{1} / L_{1} is a summand of R_{1} / L_{1}. By symmetry, E_{2} / L_{2} is also a summand of R_{2} / L_{2} whenever L_{2} is an essential right R_{2}-submodule of E_{2}.

Now suppose that (a) and (b) hold. Inasmuch as $E_{1} \in \mathscr{S}\left(R_{1}\right)$ and $Z_{r}\left(R_{1}\right)=0$, the left annihilator of E_{1} in R_{1} is zero. In particular, every nonzero element of E_{1} has a nonzero right multiple in E_{1}^{2}, hence E_{1}^{2} is an essential right R_{1}-submodule of E_{1}. According to (b), E_{1} / E_{1}^{2} must be a summand of R_{1} / E_{1}^{2}, from which we infer that $E_{1}=E_{1}^{2}$. Thus $H_{1}=H_{1}^{2}$, and likewise $H_{2}=H_{2}^{2}$.

We must show that $\operatorname{Ext}_{R}^{1}(A, C)=0$ for any nonsingular A_{R} and any singular C_{R}. By Proposition 3, C has a submodule C^{\prime} such that C^{\prime} is a singular right R_{1}-module and C / C^{\prime} is a singular right $R_{2}-$ module. Since it suffices to prove that

$$
\operatorname{Ext}_{R}^{1}\left(A, C^{\prime}\right)=0 \quad \text { and } \quad \operatorname{Ext}_{R}^{1}\left(A, C / C^{\prime}\right)=0
$$

we may thus assume that C is a singular module over either R_{1} or R_{2}. In view of symmetry, we need only consider the case when C is a singular right R_{1}-module.

Proposition 3 also says that A has a submodule A^{\prime} such that A^{\prime} is a nonsingular right R_{1}-module and A / A^{\prime} is a nonsingular right $R_{2^{-}}$ module. Inasmuch as it suffices to show that $\operatorname{Ext}_{R}^{\prime}\left(A^{\prime}, C\right)=0$ and $\operatorname{Ext}_{R}^{1}\left(A / A^{\prime}, C\right)=0$, we may thus assume that A is a nonsingular module over either R_{1} or R_{2}.

Case $I . \quad A$ is a nonsingular right R_{1}-module.
Consider any exact sequence $S: 0 \rightarrow C \rightarrow B \rightarrow A \rightarrow 0$ of right R modules. Since C and A are both R_{1}-modules, we infer from the relation $H_{2}=H_{2}^{2}$ that $B H_{2}=0$ also; i.e., that S is an exact sequence of R_{1}-modules. Thus S must split, because R_{1} is a splitting ring.

Case II. A is a nonsingular right R_{2}-module.
Inasmuch as R_{2} is a splitting ring and $E_{2} \in \mathscr{S}\left(R_{2}\right)$, Lemma 11 implies that $\operatorname{Tor}_{1}^{R_{2}}\left(A, R_{2} / E_{2}\right)=0$. Equivalently,

$$
\operatorname{Tor}_{1}^{R / / H_{1}}\left(A, R /\left(H_{1} \oplus H_{2}\right)\right)=0
$$

from which we infer that $\operatorname{Tor}_{1}^{R}\left(A, R /\left(H_{1} \oplus H_{2}\right)\right)=0$. It follows that
the map $A \boldsymbol{\otimes}_{R} H_{2} \rightarrow A \boldsymbol{\otimes}_{R}\left(H_{1} \oplus H_{2}\right) \rightarrow A$ is a monomorphism, hence $\operatorname{Tor}_{1}^{R}\left(A, R / H_{2}\right)=0$.

Consider any exact sequence $S: 0 \rightarrow C \rightarrow B \rightarrow A \rightarrow 0$ of right R modules. Inasmuch as $C H_{2}=0$ and $\operatorname{Tor}_{1}^{R}\left(A, R / H_{2}\right)=0$, we obtain another exact sequence $S^{*}: 0 \rightarrow C \rightarrow B / B H_{2} \rightarrow A / A H_{2} \rightarrow 0$. An easy diagram chase shows that S will split if S^{*} does, so it suffices to prove that $\operatorname{Ext}_{R}^{1}\left(A / A H_{2}, C\right)=0$. According to Lemma 11, $A / A E_{2}$ is a projective right $\left(R_{2} / E_{2}\right)$-module. Noting that $A H_{1}=0$, it follows that $A / A H_{2}$ is a projective right module over $R /\left(H_{1}+H_{2}\right)$. Therefore to get $\operatorname{Ext}_{R}^{\prime}\left(A / A H_{2}, C\right)=0$, it suffices to prove that

$$
\operatorname{Ext}_{R}^{1}\left(R /\left(H_{1}+H_{2}\right), C\right)=0 .
$$

Thus consider any map $f: H_{1}+H_{2} \rightarrow C$. Noting that $\mathrm{CH}_{2}=0$ and $H_{2}=H_{2}^{2}$, we see that $H_{2} \leqq \operatorname{ker} f$. Inasmuch as f induces an isomorphism of $\left[\left(H_{1}+H_{2}\right) / H_{2}\right] /\left[(\operatorname{ker} f) / H_{2}\right]$ onto a submodule of C, we see that $\left[\left(H_{1}+H_{2}\right) / H_{2}\right] /\left[(\operatorname{ker} f) / H_{2}\right]$ must be a singular right $\left(R / H_{2}\right)$-module. Since also $Z_{r}\left(R / H_{2}\right)=0$, it follows easily that (ker $\left.f\right) / H_{2}$ is an essential submodule of $\left(H_{1}+H_{2}\right) / H_{2}$. Considering that the isomorphism of R / H_{2} onto R_{1} carries $\left(H_{1}+H_{2}\right) / H_{2}$ onto E_{1}, we obtain from (b) that

$$
\left[\left(H_{1}+H_{2}\right) / H_{2}\right] /\left[(\operatorname{ker} f) / H_{2}\right]
$$

must be a direct summand of $\left[R / H_{2}\right] /\left[(\operatorname{ker} f) / H_{2}\right]$. Thus $\left(H_{1}+H_{2}\right) /$ ($\operatorname{ker} f$) is a summand of $R /(\operatorname{ker} f)$, hence f extends to a map $R \rightarrow C$. Therefore $\operatorname{Ext}_{R}^{1}\left(R /\left(H_{1}+H_{2}\right), C\right)=0$.

The combination of Theorems 12 and 10 reduces the problem of characterizing splitting rings to characterizing those with either zero socle or essential socle. Since the splitting rings with essential socle have already been characterized [8, Corollary 5.4], only the case of zero socle remains.
4. Examples. In this section we indicate the usefulness of Theorem 12 in constructing splitting rings. The first example shows that essential products [as opposed to direct products] are definitely needed in the study of splitting rings, for this example is a splitting ring which cannot be decomposed into a direct product of a ring with essential socle and a ring with zero socle. The second example shows that a splitting ring with zero socle can have global dimension 2.

For both examples, we start with a left and right principal ideal domain C such that C is a simple ring but not a division ring, and such that every simple right C-module is injective. (Examples of such rings are constructed in [3].) In fact, all singular right C modules are injective, which is proved in [8] in the discussion following Theorem 3.9. Thus C is certainly a splitting ring; however, it
cannot be a factor in a nontrivial essential product because it has no nontrivial two-sided ideals. For this reason, we choose some maximal right ideal M of C and turn to the idealizer of M in C, that is, to the ring $I=\{c \in C \mid c M \leqq M\}$. In the following lemma, we establish the properties of I and M which are needed for our constructions.

Lemma 13. (a) I is a right nonsingular right Noetherian ring with zero right socle.
(b) I is a splitting ring.
(c) M is a two-sided ideal in $\mathscr{S}(I)$, and I / M is a division ring.
(d) If L is any essential submodule of M_{I}, then M / L is a direct summand of I / L.

Proof. (a) It is pointed out in [6] that I is a right (and left) Noetherian integral domain in which M is a nontrivial two-sided ideal. Inasmuch as I is a domain it must be nonsingular; since it is not a division ring, we must also have soc $\left(I_{I}\right)=0$.
(b) This is [6, Lemma 2]. (See also [9].)
(c) We observe from the definition of I that I / M is isomorphic to the endomorphism ring of the simple module $(C / M)_{C}$.
(d) Inasmuch as $L M$ is a nonzero right ideal of the right Ore domain C, we infer that $L M \in \mathscr{S}(C)$, and hence that $M / L M$ is a singular right C-module. We have already noted that all singular right C-modules are injective; thus $M / L M$ must be a direct summand of $C / L M$. Two applications of the modular law now show that, first, $M / L M$ is a summand of $I / L M$, and second, that M / L is a summand of I / L.

Example 1. Let R be the "matrix ring" $\left(\begin{array}{ll}I / M & 0 \\ I / M & I\end{array}\right)$. Then
(a) R is a right nonsingular splitting ring.
(b) $\operatorname{soc}\left(R_{R}\right)$ is neither zero nor essential in R.
(c) R is indecomposable as a ring.
(d) R cannot be the direct product of a ring with zero right socle and a ring with essential right socle.

Proof. (a) Set $R_{1}=\left(\begin{array}{cc}I / M & 0 \\ I / M & I / M\end{array}\right), E_{1}=\left(\begin{array}{cc}I / M & 0 \\ I / M & 0\end{array}\right), R_{2}=I, E_{2}=M$. Each E_{i} is a two-sided ideal of R_{i}, and we may identify R_{1} / E_{1} with R_{2} / E_{2} in the obvious manner. Now R is isomorphic to the ring $R^{\prime}=$ $\left\{(x, y) \in R_{1} \times R_{2} \mid x+E_{1}=y+E_{2}\right\}$, hence it suffices to show that R^{\prime} is a right nonsingular splitting ring. We know from Lemma 13 that $Z_{r}\left(R_{2}\right)=0$ and $E_{2} \in \mathscr{S}\left(R_{2}\right)$, and it is easy to check that $E_{1} \in \mathscr{S}\left(R_{1}\right)$. Inasmuch as I / M is a division ring, it follows easily that every ele-
ment of $\mathscr{S}\left(R_{1}\right)$ contains E_{1}, from which we infer that $Z_{r}\left(R_{1}\right)=0$. Now according to Theorem 4, R^{\prime} is an essential product of R_{1} and R_{2}. By Proposition 1, $Z_{r}\left(R^{\prime}\right)=0$.

Since I / M is a division ring, [8, Theorem 2.15] says that all nonsingular right R_{1}-modules are projective, whence R_{1} must be a splitting ring. [Alternatively, it can be shown that all singular right R_{1}-modules are injective. (See [8, Chapter 3].)] By Lemma 13, R_{2} is a splitting ring too.

If L_{1} is any essential right R_{1}-submodule of E_{1}, it is easy to check that $L_{1}=E_{1}$, hence E_{1} / L_{1} is certainly a summand of R_{1} / L_{1}. The corresponding property in R_{2} is proved in Lemma 13, whence from Theorem 12 we see that R^{\prime} is a splitting ring.
(b) Since $\left(\begin{array}{cc}I / M & 0 \\ 0 & 0\end{array}\right)$ is a simple right ideal of $R, \operatorname{soc}\left(R_{R}\right) \neq 0$. By Lemma 13, we have soc $\left(I_{J}\right)=0$, from which we infer that $\left(\begin{array}{cc}0 & 0 \\ 0 & M\end{array}\right)$ is a nonzero right ideal of R which has no simple submodules. Thus $\operatorname{soc}\left(R_{R}\right)$ is not essential in R_{R}.
(c) Noting that I is a domain and I / M is a division ring, we see that neither I nor I / M has any nontrivial idempotents. It follows easily that the only nontrivial idempotents in R are of the form $\left(\begin{array}{ll}1 & 0 \\ x & 0\end{array}\right)$ or $\left(\begin{array}{ll}0 & 0 \\ x & 1\end{array}\right)$, neither of which is central in R. Thus R cannot be the direct product of two nonzero rings.
(d) is immediate from (b) and (c).

According to [2, Theorem 2.1], a commutative splitting ring has global dimension at most one, while [10, Theorem 2.2] shows that the right global dimension of a noncommutative splitting ring is at most 2. Examples have been constructed of splitting rings with right global dimension 2 ([6] and [8, Example 5.11]), but both of these examples have nonzero socle. Our next example shows that even with zero socle, a splitting ring can have right global dimension 2.

This example also disproves a conjecture in [5] concerning the finitely generated splitting property (FGSP). [A ring has FGSP provided the singular submodule of any finitely generated right module is a direct summand.] In the case of a right nonsingular ring with zero right socle, this conjecture reduces to the assertion that such a ring has FGSP if and only if all finitely generated nonsingular right modules are projective. Our example has FGSP because it is a splitting ring, but it has a finitely generated nonsingular right module which is not even flat.

Example 2. Let $R=\{(x, y) \in I \times I \mid x+M=y+M\}$.
(a) R is a right nonsingular splitting ring.
(b) $\operatorname{soc}\left(R_{R}\right)=0$.
(c) r.gl.dim. $(R)=G W D(R)=2$.
(d) Not all finitely generated nonsingular right R-modules are fiat.

Proof. (a) Inasmuch as $Z_{r}(I)=0$ and M is a two-sided ideal in $\mathscr{S}(I)$, Theorem 4 shows that R is an essential product of I with itself. By Proposition 1, $Z_{r}(R)=0$. Using Lemma 13 with Theorem 12, we see that R is a splitting ring.
(b) Observing that any simple submodule of $(M \times M)_{R}$ would have to be contained in $\left[\operatorname{soc}\left(I_{I}\right)\right] \times\left[\operatorname{soc}\left(I_{I}\right)\right]$, which is zero by Lemma 13, we obtain $(M \times M) \cap \operatorname{soc}\left(R_{R}\right)=0$. Recalling from Proposition 1 that $M \times M \in \mathscr{S}(R)$, we see that $\operatorname{soc}\left(R_{R}\right)=0$.
(c) Since R is a splitting ring, [10, Theorem 2.2] says that r.gl.dim. $(R) \leqq 2$. Inasmuch as $G W D(R) \leqq$ r.gl.dim. (R), it thus suffices to show that $G W D(R)>1$.

Choose a nonzero $m \in M$ and set $A=(m, 0) R$. Noting that m is a non-zero-divisor in I, we see that the right annihilator of ($m, 0$) in R is $0 \times M$, whence $A \cong R /(0 \times M)$. According to Lemma 13, M_{I} is finitely generated, hence $(0 \times M)_{R}$ is finitely generated and A_{R} is finitely presented. Observing that $0 \times M$ contains no nonzero idempotents, we see that A is not projective. Inasmuch as A is finitely presented, we conclude that A is a right ideal of R which is not flat, whence $G W D(R)>1$.
(d) Since all right ideals of R are nonsingular, this is immediate from (c).

References

1. H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press (1956).
2. V.C. Cateforis and F. L. Sandomierski, The singular submodule splits off, J. Algebra, 10 (1968), 149-165.
3. J. H. Cozzens, Homological properties of the ring of differential polynomials, Bull. Amer. Math. Soc., 76 (1970), 75-79.
4. C. Faith, Lectures on Injective Modules and Quotient Rings, Springer-Verlag Lecture Notes No. 49.
5. J. D. Fuelberth and M. L. Teply, The singular submodule of a finitely generated module splits off, Pacific J. Math., 40 (1972), 73-82.
6. J. D. Fuelberth and M. L. Teply, A splitting ring of global dimension two, Proc. Amer. Math. Soc., 35 (1972), 317-324.
7. E. R. Gentile, Singular submodule and injective hull, Indag. Math., 24 (1962), 426-433.
8. K. R. Goodearl, Singular torsion and the splitting properties, Amer. Math. Soc. Memoirs No. 124.
9. - Idealizers and nonsingular rings, (to appear).
10. M. L. Teply, Homological dimension and splitting torsion theories, Pacific J. Math.. 34 (1970), 193-205.

Received February 25, 1972.
University of Chicago
Current address: University of Utah.

