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MAXIMAL SUBFIELDS OF TENSOR PRODUCTS

BURTON FEIN AND MURRAY SCHACHER

Let Ό\ and D2 be finite-dimensional division rings with
center K such that A %κ A is a division ring. If Li and L2

are maximal subfields of A and A, respectively, then clearly
Li ®κ Lo is a maximal subfield of A ®ir A . In this note
the converse question is considered: does there exist a
maximal subfield L of A ®κ A which is not isomorphic to
Li 0 ^ 1/2 for maximal subfields A and L2 of A and A?
Examples are given to show that such noncomposite L may
fail to exist even when K is a local field. For K an algebraic
number field, however, it is shown that infinitely many non-
composite L always exist.

We say that a division algebra with center a field K is a
K-division ring if it is finite-dimensional over K. Throughout this
note A and D2 will denote iΓ-division rings such that A ®^ A is
a l£-division ring. We say that a maximal subfield L of A ®ir A
is a composite if L ~ L1 {§ξ)κ L2 where A and L2 are maximal sub-
fields of A and D2, respectively.

A sufficient condition for A (&κ A to be a division ring is for
([A: K], [A: #]) = 1 [2, Theorem 10, p. 52]. This condition is
necessary if K is either an algebraic number field or a local field
since for these K the exponent of a ^-division ring equals its index
[2, Theorem 25, p. 144, and Theorem 32, p. 149]. This condition is
not, however, necessary for K arbitrary, as is shown in [1]. We
begin by determining, for the case when ([A K], [D2: K\) — 1
necessary and sufficient conditions for a maximal subfield of A ®κ A
to be a composite.

THEOREM 1. Let A and D2 be K-division rings such that
([A K]9 [A K]) — 1> αwd ϊeί L be a maximal subfield of A ®* A
TT̂ ew L is a composite if and only if L has subfields Lι and L2

with [Lx: Kf = [A: K] and [L2: Kf = [D2: K].

Proof. Let % = [A K]iμ, i = 1, 2. If I^ is a maximal sub-
field of A then [L,: iΓ] = ni9 i = 1, 2. It follows that if L = A (g)* L2

is a composite with A a maximal subfield of Di9 then [L :̂ K] = %,
i = 1, 2. This establishes one direction of the Theorem.

Suppose now that L has subfields Lγ and L2 with [L :̂ K] = %4,
i = 1,2. Since L is a maximal subfield of A ®# A we have
[L: K] — nxn2. As (wx, π2) = 1, it follows that L = L1 ®^ L2. Thus
to conclude L is a composite we need only show that Li splits Di9
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i = l,2 [2, Theorem 27, p. 61]. We have ( A ® * A ) ® #
[ ( A ® * ^ ) ® ^ ] ® ^ ^ ® * ^ ) ® ^ ] . Since L splits A ® * A
(A ®*: A) 0 ^ £ = 4L is in the class of the opposite algebra of
A2 = (A ®# A) ®L l L in the Brauer group of L. In particular, these
algebras have the same exponent. Since (nu n2) — 1 and the exponent
of Ai divides ni9 it follows that A1 and A2 are complete matrix algebras.
Thus L splits Dι®κL1. Since nx is prime to [L: LJ = w2, Lx splits
A Similarly, L2 splits A, proving the proposition.

COROLLARY 2. Z/££ A αwώ A δβ K-division rings such that
([A -K̂ ], [A ^]) = 1 αwd let L be a maximal subfield of A ® J Γ A
// L is Galois over K with solvable Galois group, then L is a com-
posite. In particular, if K is a local field and L is Galois over K,
then L is a composite.

Proof. Take G* to be a Hall subgroup of order [A: Kf12 of the
Galois group of L over K. Let A and L2 be the fixed fields of G2

and G19 respectively. Then L ~ Lλ ®# L2, and L is composite by
Theorem 1. The final assertion of the corollary follows from the
result that Galois groups over local fields are solvable [6, Proposi-
tion 3.6.6, p. 101].

Corollary 2 is false without the restriction that L have a
solvable Galois group. By [5, Theorem 9.1, p. 472] there is a field
K, a if-division ring D, and a maximal subfield L of D such that
L is a Galois extension of K with group A5. By [2, Theorem 18,
p. 77], D~ A ® * A where A and A are if-di vision rings with
A of index 20 and A of index 3. However, L clearly has no sub-
field L2 with [L2: K] — 3, since A5 has no subgroup of order 20.

Theorem 1 is false without the assumption that ([A " K], [D2: K]) =
1. In [1] an example is presented of two quaternion algebras A
and A central over a field K such that A ®# A is a cyclic division
algebra. If L is a maximal subfield of A ®# A with L | K cyclic,
then L contains a subfield of degree two over K but is not a com-
posite as composites would have Galois group Z2xZ2.

While one might expect that there should always exist maximal
subfields of A ®* A which are not composites, this is not the case
even when if is a local field. Our next result treats the case when
K is local and [A ®* A K]112 is a product of two primes. The
general case may be expected to be much more complicated.

THEOREM 3. Let p and r be distinct primes, p < r, and let K
be a local field with residue class field GF(q) where p \ q, r \ q. Let
A and A be K-division rings of indices p and r respectively. If
either p\r — \ or g Ξ 1 (mod pr), then every maximal subfield of



MAXIMAL SUBFIELDS OF TENSOR PRODUCTS 481

A ®κ A is a composite. If p \ r — 1 there are infinitely many
primes q and Qq-division rings A and A (where Qq is the q-adic
field) of indices p and r, respectively, having maximal subfields
which are not composites.

Proof. Suppose p\r ~ 1 or q = 1 (mod pr). Let L be a maximal
subfield of A ®κ D2. Then [L: K] = pr. Since p Jf q, r \ q, L is
tamely ramified over K. L will have subfields of degrees p and r
over K if L is either unramified or totally ramified over K. From
Corollary 2 we also see that L will be a composite if L is Galois
over K. Let e and / be, respectively, the ramification and residue
class degrees of L over K. Thus ef — pr and we may assume that
e > 1 and / > 1. If q = 1 (mod e) then L is normal over K [3, Theorem
6, p. 680]. Thus L is a composite if q == 1 (modpr), so we assume
that p\r — \ and e\q — 1. By [3, Theorem 2, p. 678], we may
assume that L = i£(ζ, α'), where ζ is a primitive (gJ — l)th root of
unity, cce ~ ζ%, i is an integer, and π is a prime element of ϋΓ.
Let qf — 1 = (q — 1)£. If β divided £, then g7 = 1 (mode). But
(/, e — 1) = 1 since p | r — 1 and p < r. Thus g = 1 (mod e), against
our assumption. Thus (e, ί) = 1 so there is an integer j with jt = i
(mod e). Let β be any root of xe — ζ^π in an algebraic closure of K.
Then K(ζ, β) is isomorphic to L by [3, Theorem 3, p. 679]. But
ζι eK since K contains all (q — l)th roots of unity, so [K(β): K] = e.
Thus L has a subfield isomorphic to K(β) which is of degree e over
K. Since L also contains an unramified extension of degree / over
K, Theorem 1 shows L is a composite.

Now suppose p \ r — 1. Let b be an integer, 6 =έ 1 (mod r),
δp = 1 (modr). Take q a prime, q = 6 (modr). There are infinitely
many such g by Dirichlet's theorem. If qp — 1 = (g — l)ί, then r
divides ί. Let A and D2 be Qg-division rings of indices p and r
respectively. Let ζ be a primitive (qp — l)th root of unity and let
ar = ζq. Since [Qq(ζ, α): Qg] = pr, Qq(ζ, a) is a maximal subfield of
D1 ®κ A [2, Theorem 23, p. 144]. If Qq(ζ, a) were a composite, it
would have a subfield J57 with [J57: Qq] = r. E would be totally and
tamely ramified over Qq, and so £ = QQ(β) where βr = ζίyg for some
integer j . Thus Qg(ζ, a) = Qq{ζ, β) so 1 = jί (mod d) where d =
(r, gp — 1) by [3, Theorem 3, p. 678]. Since d = r, we have ,/£ = 1
(mod r). But r | ί, a contradiction.

We remark that there are other examples where every maximal
subfield of A ®* A is a composite. In [4] an example is constructed
of a field K and two quaternions A and A over if such that every
maximal subfield of A ®κ A (which is a division ring) is a com-
posite.

Our final result shows that over number fields it is never the
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case that every maximal subfield of a tensor product is a composite.
We use freely the classification of rational division algebras by
means of Hasse invariants [2, Chapter 9].

2THEOREM 4. Let K be an algebraic number field, A and D.
K-division rings such that A ®^ A is a division ring. Then there
are infinitely many maximal subfields of A <ξξ)κ A which are not
composites.

Proof. Suppose that [A: K] = n2, [D2: K] — m2 and m < n. Let
[^i, " , ^m} be the set of finite primes of K for which the Hasse
invariants of A ® i r A are nonzero. Let & be a finite prime of
K, & $ {M, , ^ U Let Ki be the completion of K at ^ , K& the
completion of K at &>. Let K^a-) have degree mn over Ki and
K&(c£) have degree n over K&. We write /<(&) for the monic minimal
polynomial of ai over Kκ and f(x) for the monic minimal polynomial
of a over K&. Let g(x) be monic in K[x] of degree ^m "sufficiently
close" to fi(x) in the ^-topology, i = 1, « ,m, and "sufficiently
close" to (x — l)nm~nf{x) in the ^-topology. If nm is even, take
g(x) also "sufficiently close" to (x2 + ϊ)mni2 at all infinite primes of K.
Here "sufficiently close" means close enough to guarantee

(1) g(x) is irreducible over K
(2) For any root β of g(x)9 the field L — K{β) has local degree

wm at ^ , i = 1, , m, and ^ splits into ^(m — 1) primes of degree
one and one prime of degree n in L.

(3) If nm is even, L is totally imaginary.
This is possible by [6, Ex. 3.2, p. 116].

It follows from the theory of Hasse invariants that L splits
A ®κ A Since [L: K] = nm, L is a maximal subfield of A ®κ A
Suppose there were a field E, LZD EID K, [E: K] = n. If TΓ is a prime of
E dividing & of degree greater than one, then π must remain irre-
ducible in L since otherwise L would have two primes of degree > 1
dividing &. But then if y is the prime of L extending π, the
local degree of 7 over & is divisible by [L: E] = m. Thus m would
divide n which is not the case since A ®* A is a division ring.
This shows that & splits completely in E. But then the local
degree of any prime of L dividing & is at most [L: E] — m < n.
This proves that E can not exist and so L is not a composite.
Since there are infinitely many choices for ^ , there are infinitely
many such L.
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