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GENERALIZED SYLOW TOWER GROUPS, II

J. B. DERR AND N. P. MUKHERJEE

A well-known result of P. Hall shows that finite solva-
ble groups may be characterized by a permutability requirement
on Sylow subgroups. The notion of a generalized Sylow tower
group (GSTG) arises when this permutability condition on
Sylow subgroups is replaced by a suitable normalizer condition.
In an earlier papar, one of the authors showed that the nil-
potent length of a GSTG cannot exceed the number of dis-
tinct primes which divide the order of the group. The present
investigation utilizes the 'type' of a GSTG to obtain im-
proved bounds for the nilpotent length of a GSTG. It is
also shown that a GSTG with nilpotent length n possesses
a Hall subgroup of nilpotent length n which is a Sylow
tower group.

Let G be a finite group with order pi1 ••• py, where pu •••, pr

are distinct primes and al9 « , α r are positive integers. For each
integer i, 1 < i < r, let Gt denote a Sylow p rsubgroup of G. The
collection of subgroups ^—{G^ •••,£!>} is then called a complete
set of Sylow subgroups of G. If the elements of S^ are pairwise
permutable as subgroups (that is, if GiGj = G3Gi holds for all i and
j) then Sf will be called a Sylow basis for G. The notion of a
generalized Sylow tower group arises when the permutability condi-
tion for a Sylow basis is replaced by a normalizer condition. Thus,
we say that a finite group G is a generalized Sylow tower group
(GSTG) if and only if some complete set of Sylow subgroups £/* of
G satisfies the normalizer condition (N): if Gi and Gj are distinct
elements of £f, at least one of these subgroups normalizes the other.
It should be noted that not every complete set of Sylow subgroups
of a GSTG need satisfy condition (N).

A well-known result of P. Hall states that a finite group is
solvable if and only if the group possesses a Sylow basis. If a
complete set of Sylow subgroups £f of a group G satisfies condition
(N) then any two elements of Sf are permutable as subgroups and
y is a Sylow basis for G. Consequently every generalized Sylow
tower group must be solvable.

A finite group G is called a Sylow tower group (STG) if every
nontrivial epimorphic image of G possesses a nontrivial normal Sylow
subgroup. Equivalently, the group G is a STG if the prime divisors
Pi, " , Pr of the order of G can be labelled in such a way that a
Sylow p rsubgroup of G normalizes a Sylow ^-subgroup of G when-
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ever i > j . It is clear from this definition that a Sylow tower group
is necessarily a generalized Sylow tower group. An example of a
GSTG which is not a Sylow tower group was given in ([1]; p. 638).

In order to handle generalized Sylow tower groups it will be
necessary to introduce the 'type' of a GSTG. Suppose G is some
given GSTG and let Jf be a Sylow basis for G. Since any two
Sylow bases for G are conjugate ([3]; p. 665), J7~ satisfies the nor-
malizer condition (N). Let R be a relation on the set of all primes
with the property that either pRq or qRp (or both) holds for any
primes p and q. If the Sylow prsubgroup of G in ^7~ normalizes
the Sylow prsubgroup of G in J7~ whenever PiRp, holds, then G will
be called a GSTG of type R. It follows directly from the conjugacy
of Sylow bases that the type of a GSTG is independent of the choice
of a Sylow basis. It should be noted that a group can be a GSTG
of more than one type.

It was shown in [1] that the class of all generalized Sylow tower
groups of a given type R is a formation. In addition, any subgroup
of a GSTG of type R was shown to be a GSTG of type R. We list
the main results about GSTG's in [1] for easy reference.

THEOREM 1.7 [1]. If G is a GSTG then the nίlpotent length
of G does not exceed the number of distinct prime divisors of the
order of G.

THEOREM 1.8 [1]. If G is a GSTG and the nilpotent length of
G is equal to the number of distinct prime divisors of the order of
G then G is a Sylow tower group.

All groups mentioned are assumed to be finite. The following
notations will be used. For a group G

c(G) denotes the set of distinct prime divisors of the order of G
π(G) denotes the number of distinct prime divisors of the order of G
/(G) denotes the nilpotent (Fitting) length of G.
If H is a subgroup of G then NG{H) means the normalizer of H

in G and CG{H) means the centralizer of H in G.
If Pi is a prime, G{ will denote a Sylow prsubgroup of G.

The following lemma will be used in several of our arguments.

LEMMA 1. If G is a nontrivial GSTG then at least one of the
following holds:

(1) G contains a nontrivial normal Sylow subgroup P with
Co(P) £ P
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(2) G contains nontrivial normal subgroups having relatively
prime orders.

Proof. Let G be a GSTG and suppose that S^= {Gl9 •••, Gn} is
a Sylow basis for G. Since a GSTG is necessarily solvable, G pos-
sesses a nontrivial minimal normal subgroup M with order a power
of some prime g Let Q denote the maximum normal g-subgroup
of G and suppose that Gt is the Sylow g-subgroup of G belonging
to SK Since £f satisfies the normalizer condition (N), either

or Gk^

must hold for each integer h, 1 < k < n. We distinguish two cases.
First suppose that Gx £ NG(Gk) holds for some k, 1 < & < n.

Since Q is normal in G and has order prime to the order of Gk, Gk

centralizes Q. Hence C = CG(Q) is not a g-group. Set Qo = Q Π Cσ(Q)
and consider the factor group C/Qo Since C/Qo is a nontrivial solva-
ble group, C/Qo contains a nontrivial minimal normal subgroup L/Qo

with order a power of some prime p. Let Γ/Qo be the maximum
normal p-subgroup of C/QQ. Since Q is the maximum normal g-sub-
group of G it follows that p Φ q. If N is a Sylow p-subgroup of Γ
then T is the direct product of N and Qo. The normality of Γ in
G then implies the normality of N in G. Therefore G has nontrivial
normal subgroups with relatively prime orders.

Now suppose that Gx §£ NG{Gk) holds for all integers k, 1 < A: < n.
Since .5^ satisfies the normalizer condition (JV), G& £ GG(Gι) must
then hold for all integers &. Thus Gx is a normal Sylow g-subgroup
of G. Then Gt Π CQ{G^ is a normal Sylow g-subgroup of CG{G^) and
CG{G^ has a normal g-complement T .̂ If W is nontrivial then W is
a normal subgroup of G having g'-order and (2) holds. If W is
trivial then G, Π CG{Gd = C^G,). In this case CG{G^ £ (?! and (1)
holds.

THEOREM S. Let G be a GSTG. If Hl9 , Hn are pairwise
permutable Hall subgroups of G with G = Hλ Hn, then the nilpotent
length of G does not exceed the sum of the nilpotent lengths of
Hίy , Hn.

Proof. (By induction on the order of G.) Since the product
H2 Hn is a Hall subgroup of G permutable with Hx we may as-
sume that n = 2. First suppose that G possesses nontrivial normal
subgroups A and B with A Π B = 1. Then G is isomorphic to a
subgroup of the direct of G/A and G/B. Hence

s{G) = max {s(G/A)9 s(G/B)}
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and it suffices to show that

s(G/A) < s(Hύ + s(H2) and s(G/B) < • (££) + s(H2)

Since G/A is the product of the permutable Hall subgroups HλA/A
and H2A/A of G/A, the induction hypothesis gives

• (G/A) < s&A/A) + • (fliA/A) .

Since iJxA/A and ίί2A/A are epimorphic images of Hγ and H2 (respec-
tively), we know that s(HiAjA) < • (#*) for i = 1, 2. Therefore
/(G/A) < •(fl'1) + • (££>)• The same argument applied to G/B will
show /{GIB) < • (!£) + •(fζ) This verifies the theorem in this
case.

Now suppose that G possesses a unique minimal normal subgroup.
Then Lemma 1 shows that G contains a nontrivial normal Sylow
subgroup P with CG{P) S -P. Since the theorem is trivially true if
G — P we may assume this is not the case. Set

G - G/P, Hx = fliP/P, iϊ2 = iϊ2P/P

and consider the nontrivial GSTG G. The induction hypothesis
applied to G = H ^ gives s(G) < /(J?!) + s{H2). We first observe
that s(G) = /(G) + 1. Since P is a nilpotent normal subgroup of
G, P must lie in the Fitting subgroup F of G. lί P Φ F then ί7

contains a nonidentity element of order prime to the order of P which
belongs to the centralizer in G of P. This contradicts CG(P) S P.
Therefore P = F and /(G) - •((?) + 1.

Since Hγ and iί2 are Hall subgroups of G satisfying G — -HiIΓ2,
the Sylow subgroup P must lie in Hx or Jϊ2. We may suppose that
H, contains P. If P = H, then G = S2 and so /(G) = s.(Ht) < /(ίί2).
Then /(G) = •(G) + 1 < •(-Hi) + •(#!)> which is what we wanted to
show. If P Φ Hι then the argument used in the preceding paragraph
can be repeated to show /{H^ — s{Hx) + 1. It follows from this that

s(G) = •(G) + 1 < •(#!) + 1 + •(fla) < •(fl1) + •(J3i) .

This completes the argument.
It seems interesting to ask if this theorem has a converse, in

the following sense. Does a GSTG G necessarily possess pair wise
permutable proper Hall subgroups Hl9 , Hn satisfying G = J3Ί Hn

so that •(G) = /(HO + ••• + •(-Hw) holds? The answer is obviously
no, since any nilpotent group is a GSTG. If we insist that the
group G not be nilpotent, the answer to the question is still no.
This can easily be verified using the example of an iV-group which
is not a Sylow tower group (see [1]; p. 638). We now mention some
consequences of the theorem.
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Let G be a GSTG and suppose that S^- {Gl9 , Gn) is a Sylow
basis for G. Since G1? , Gn are pairwise permutable Sylow sub-
groups of G satisfying G = Gx GΛ, Theorem S gives

/{G) < s(Gd + + •(<?.) = r(G) .

Consequently Theorem 1.7 [1] follows from Theorem S.
Now we show how the type of a GSTG can be used to improve

the bound on the nilpotent length of a GSTG given by Theorem 1.7
[1]. It will be helpful to first introduce some terminology. Let R
be a relation on the set of all primes and let σ denote some given
set of primes. Then σ will be called a complete iϋ-symmetric set
provided both pRq and qRp hold for all primes p and q belonging
to (7. If σ contains a single prime then σ is (trivially) a complete R-
symmetric set. It is clear from this that any set of primes can be
written as a union of complete i?-symmetric subsets. The set σ will
be called an ϋ?-cyclic set if σ contains distinct primes p, q, and w
such that pRq, qRw, and wRp hold.

COROLLARY 1. Let G be a GSTG of type R. If σu •••, σd are
complete R-symmetric subsets of c(G) such that the union of the Oi
is c(G) then /{G) < d.

Proof. Let ̂ — {Gly •••, Gn} be a Sylow basis for G. For each
ί, 1 < i < d, define the subgroup Hi of G to be the product of all
Sylow ^-subgroups Gk for which pk e σ{. Since pRq and qRp hold
for all distinct primes p and q from σiy each Hi is seen to be a nil-
potent Hall oysubgroup of G. Since the union of the σ/s is c(G),
clearly G = Hx Hd. The theorem then shows that

/{G) < /(H,) + + s(Hd) = d .

COROLLARY 2. Let G be a GSTG of type R. If σu , σd are
disjoint R-cyclic subsets of c(G) then s(G) < π(G) — d.

Proof. Let ̂ = {Gί9 •••, Gn} be a Sylow basis for G. For each
integer i, 1 < i < d, define the subgroup H{ of G to be the product
of all Sylow ^-subgroups Gk for which pk e σ^ It is clear from the
definition that the Hi are pairwise permutable Hall oysubgroups of
G. Since the product H = fZi Hd has a Hall complement in G, it
suffices to show that s{H) < π(H) — d. Since the σ/s are disjoint
sets, this will follow if /{Hi) < π(Hi) — 1 holds for each i, 1 < i < d.
Let >̂, g, and w be distinct primes in Oi satisfying pRq, qRp and
wRp. Consider a Hall {ί), q, w}-subgroup T of ί^ . If T has a normal
Sylow p-subgroup then pRq shows that T has a nilpotent Hall
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{p, g}-subgroup. Then Corollary 1 shows s{T) < π{T) — 1. It now
follows from Theorem S that s(Hi) < π(Hi) — 1. Consequently we
may assume T has no nontrivial normal Sylow subgroup. By Lemma 1,
T then has nontrivial normal subgroups A and B with A Π B = 1.
Since T/A and T/B are GSTG's of type R, induction shows that
/(T/A) < 2 and /(T/B) < 2. Using the fact that Γ is isomorphic to
a subgroup of the direct product of T/A and T/B we obtain

•(Γ) < 2 = τr(Γ) - 1 .

Theorem S applied to Hi now gives /(#;) < π(Hi) — 1. Therefore we
have shown that /(Hi) < π(Hi) — 1 holds for arbitrary i and the as-
sertion follows.

The next consequence of the theorem is Theorem 1.8 [1].

COROLLARY 3. Let G be GSTG with /(G) = π(G). Then G is a
Sylow tower group of exactly one type R, in the sense that the rela-
tion R is uniquely determined for pairs of primes p, q in c(G).

Proof. Let 5^= {Gl9 •••, Gn} be Sylow basis for G. Define the
relation R on the set of all primes as follows: R is reflexive and
for distinct primes p and q, pRq holds if and only if either p or q
does not divide the order of G or both p and q do divide the order
of G and the Sylow ^-subgroup of G belonging to S? normalizes the
Sylow g-subgroup of G belonging to £f. Clearly G is of type R.
Since /(G) — π(G), Corollary 1 shows that both pRq and qRp hold
for no distinct primes p, qec(G). In addition, Corollary 2 shows that
pRq, qRw, and wRp hold for no distinct primes p, g, and w from
c(G). Since either pRq or qRp holds for any primes p, qec(G), the
restriction of R to c(G) must be a linear order. Therefore G is a
Sylow tower group of type R. Suppose that G is also a STG of
type S and the restriction of S to c(G) differs from the restriction of
R to c(G). Then G would necessarily have a nilpotent Hall {p, q}-
subgroup for some distinct p, qec(G). The conjugacy of Hall {p, g}-
subgroups in G then implies that /{G) < π(G) — 1, a contradiction.
Therefore G is a STG of exactly one type, in the sense mentioned.

We next give an example to show that the nilpotent length of a
GSTG cannot be found from the type alone. Let A be the holomorph
of a cyclic group of order 7 and let B donote the Hall {7, 3}-subgroup
of A. Define the group Gx as the direct product of A and a sym-
metric group of degree 3 and define G2 as the wreath product of B
by a cyclic group of order 2. Both d and G2 are Sylow tower
groups of type 7 < 3 < 2 and no distinct Sylow subgroups of G1 or
G2 centralize one another. Hence, for a given relation R on the set
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of all primes, G, is a GSTG of type R if and only if G2 is a GSTG
of type R. Yet the nilpotent length of Gx is 2 and the nilpotent
length of G2 is 3.

THEOREM T. Let G be a GSTG with nilpotent length k. Then
G contains a Hall subgroup which is a Sylow tower group and has
nilpotent length k.

Proof. By Theorem 1.8 [1] it is sufficient to show that G con-
tains a Hall subgroup L with s(L) = π{L) — k. We proceed by in-
duction on the order of G.

Suppose G contains a proper subgroup W with /(W) = k. The
induction hypothesis then shows that W contains a Hall subgroup T
with /(T) = π(T) = k. Choose a Hall subgroup L of G with Γ g L
and c(T) = c(L). Then /(G) = k = /{T) < /{L) <«/((?) shows that
S(L) = τr(L) = k. This proves the theorem in the case where G con-
tains a proper subgroup with nilpotent length k. Now suppose that
every proper subgroup of G has nilpotent length strictly less than
k.

Since G is a GSTG, either G possesses nontrivial normal subgroups
A and B with A Π B = 1 or G contains a nontrivial normal Sylow sub-
group P with CG(P) £ P. We consider these possibilities separately.
First suppose that A and J5 are distinct minimal normal subgroups
of G. If the Frattini subgroup φ of G is trivial then G contains a
maximal subgroup M1 not containing A and a maximal subgroup ikf2
not containing B. Then Λf,. complements A in G and M2 complements
B in G. Since we have assumed that all proper subgroups of G
have nilpotent length less than k, the isomorphism of G/A and M1

gives s(G/A) < k. Similarly one sees that /{GjB) < k. Since G is
isomorphic to a subgroup of the direct product of G/A and G/B, it
follows that /(G) = max {/(G/A), /(G/B)} is less than k, a contradic-
tion. Therefore G has nontrivial Frattini subgroup. Since s(G/φ) —
/(G) = &, the induction hypothesis shows that G contains a Hall
subgroup L satisfying s(Lφjφ) = π(Lφ/φ) — k. Now

k = s(Lφ/φ) < /(L) < •(<?) = A;

shows /(L) — k. Hence L — G. Since the Frattini subgroup of G
contains no Sylow subgroup of G, π(G) = ττ(L) = π(Lφ/φ) — k. There-
fore s(G) — τϋ(G) — k, which completes the argument in this case.

Now suppose G contains a nontrivial normal Sylow subgroup P
with CG(P) S P. It follows that P must be the Fitting subgroup of
G. Therefore /{G) = /(G/P) + 1 or G = P. In the latter case the
theorem is trivially true. If s(G) = s(G/P) + 1, the induction
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hypothesis shows that G/P contains a nontrivial Hall subgroup L/P
satisfying s(L\P) = π(L/P) = k - 1 = /(G\P). Clearly L is then a
Hall subgroup of G with π(L) = k. Since CG(P) S P, P must be the
Fitting subgroup of L. Hence ^(L) = s(L/P) + 1. Therefore

•(£,) = Jfc = τr(L) .

This completes the proof of the theorem.
Let G be a given GSTG and suppose ^ is a Sylow basis for G.

Define the relation R on the set of all primes as follows: for any
primes p and q (possibly equal), pRq holds if and only if pgc(G) or
q g c(G) or both p and # belong to c(G) and the Sylow ^-subgroup
of G in Sf normalizes the Sylow g-subgroup of G in £A Clearly G
is a GSTG of type i2. If if is a Hall subgroup of G which is a
Sylow tower group and H satisfies s{H) = π{H) = ^(G), then the
restriction of R to c{H) is a transitive relation (see the proof of
Corollary 3). This leads to the following bound for the nilpotent
length of G in terms of the relation R defined above. The nilpotent
length of the GSTG G cannot exceed n, where n is the largest integer
such that the restriction of R to some subset of c(G) having n elements
is a transitive relation.
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