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GENERALIZED SYLOW TOWER GROUPS, II

J. B. DERR AND N. P. MUKHERJEE

A well-known result of P. Hall shows that finite solva-
ble groups may be characterized by a permutability requirement
on Sylow subgroups. The notion of a generalized Sylow tower
group (GSTG) arises when this permutability condition on
Sylow subgroups is replaced by a suitable normalizer condition.
In an earlier papar, one of the authors showed that the nil-
potent length of a GSTG cannot exceed the number of dis-
tinct primes which divide the order of the group. The present
investigation utilizes the ‘type’ of a GSTG to obtain im-
proved bounds for the nilpotent length of a GSTG. It is
also shown that a GSTG with nilpotent length n possesses
a Hall subgroup of nilpotent length # which is a Sylow
tower group.

Let G be a finite group with order p« ... p%, where p, ---, p,
are distinct primes and a, ---, a, are positive integers. For each
integer 7, 1 < i< 7 let G; denote a Sylow p;-subgroup of G. The
collection of subgroups &= {G, ---, G,} is then called a complete
set of Sylow subgroups of G. If the elements of .&° are pairwise
permutable as subgroups (that is, if G.G; = G,G,; holds for all 7 and
j) then ¥ will be called a Sylow basis for G. The notion of a
generalized Sylow tower group arises when the permutability condi-
tion for a Sylow basis is replaced by a normalizer condition. Thus,
we say that a finite group G is a generalized Sylow tower group
(GSTG) if and only if some complete set of Sylow subgroups &7 of
G satisfies the normalizer condition (N): if G, and G, are distinct
elements of .&4 at least one of these subgroups normalizes the other.
It should be noted that not every complete set of Sylow subgroups
of a GSTG need satisfy condition (N).

A well-known result of P. Hall states that a finite group is
solvable if and only if the group possesses a Sylow basis. If a
complete set of Sylow subgroups .&” of a group G satisfies condition
(N) then any two elements of .o are permutable as subgroups and
& is a Sylow Dbasis for G. Consequently every generalized Sylow
tower group must be solvable.

A finite group G is called a Sylow tower group (STG) if every
nontrivial epimorphic image of G possesses a nontrivial normal Sylow
subgroup. Equivalently, the group G is a STG if the prime divisors
Py, +++, p, of the order of G can be labelled in such a way that a
Sylow p;-subgroup of G normalizes a Sylow p;-subgroup of G when-
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ever © > j. It is clear from this definition that a Sylow tower group
is necessarily a generalized Sylow tower group. An example of a
GSTG which is not a Sylow tower group was given in ([1]; p. 638).

In order to handle generalized Sylow tower groups it will be
necessary to introduce the ‘type’ of a GSTG. Suppose G is some
given GSTG and let .7~ be a Sylow basis for G. Since any two
Sylow bases for G are conjugate ([3]; p. 665), .7~ satisfies the nor-
malizer condition (N). Let R be a relation on the set of all primes
with the property that either pRg or gRp (or both) holds for any
primes p and q. If the Sylow p,-subgroup of G in . normalizes
the Sylow p;-subgroup of G in .7~ whenever p;Rp; holds, then G will
be called a GSTG of type R. It follows directly from the conjugacy
of Sylow bases that the type of a GSTG is independent of the choice
of a Sylow basis. It should be noted that a group can be a GSTG
of more than one type.

It was shown in [1] that the class of all generalized Sylow tower
groups of a given type R is a formation. In addition, any subgroup
of a GSTG of type R was shown to be a GSTG of type R. We list
the main results about GSTG’s in [1] for easy reference.

THEOREM 1.7 [1]. If G is a GSTG then the milpotent length
of G does not exceed the number of distinct prime divisors of the
order of G.

THEOREM 1.8 [1]. If G is a GSTG and the nilpotent length of
G s equal to the number of distinct prime divisors of the order of
G then G is a Sylow tower group.

All groups mentioned are assumed to be finite. The following
notations will be used. For a group G

¢(G@) denotes the set of distinct prime divisors of the order of G

7(G) denotes the number of distinet prime divisors of the order of G

/(@) denotes the nilpotent (Fitting) length of G.

If H is a subgroup of G then N (H) means the normalizer of H
in G and C,(H) means the centralizer of H in G.

If p; is a prime, G; will denote a Sylow p;,-subgroup of G.

The following lemma will be used in several of our arguments.

LEmMMA 1. If G is a nontrivial GSTG then at least one of the
following holds:

1) G contains a mnontrivial mormal Sylow subgroup P with
CoP) s P
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@) G contains montrivial mormal subgroups having relatively
prime orders.

Proof. Let G be a GSTG and suppose that &= {G,, ---, G,} is
a Sylow basis for G. Since a GSTG is necessarily solvable, G pos-
sesses a nontrivial minimal normal subgroup M with order a power
of some prime ¢q. Let @ denote the maximum normal g-subgroup
of G and suppose that G, is the Sylow g¢-subgroup of G belonging
to &% Since .&¥ satisfies the normalizer condition (N), either

GL & N(Gy) or G S Ni(G)

must hold for each integer %, 1 < k < n. We distinguish two cases.

First suppose that G, & N,(G,) holds for some k, 1 <k < n.
Since @ is normal in G and has order prime to the order of G,, G,
centralizes Q. Hence C = C,(Q) is not a g-group. Set Q, = QN Cyx(Q)
and consider the factor group C/Q,. Since C/Q, is a nontrivial solva-
ble group, C/Q, contains a nontrivial minimal normal subgroup L/Q,
with order a power of some prime p. Let T/Q, be the maximum
normal p-subgroup of C/Q,. Since @ is the maximum normal g¢-sub-
group of G it follows that p = ¢q. If N is a Sylow p-subgroup of T
then T is the direct product of N and Q,. The normality of T in
G then implies the normality of N in G. Therefore G has nontrivial
normal subgroups with relatively prime orders.

Now suppose that G, £ N, (G,) holds for all integers k, 1 < k < n.
Since .5 satisfies the normalizer condition (N), G, & G4(G)) must
then hold for all integers k. Thus G, is a normal Sylow g¢-subgroup
of G. Then G,N Cy(@G,) is a normal Sylow g-subgroup of C,(G, and
C.,(G,)) has a normal g-complement W. If W is nontrivial then W is
a normal subgroup of G having ¢’-order and (2) holds. If W is
trivial then G, N Cy(G,) = Cy(G). In this case C,(G,) S G, and (1)
holds.

THEOREM S. Let G be a GSTG. If H, ---, H, are pairwise
permutable Hall subgroups of G with G = H, - -+ H,, then the nilpotent
length of G does mot exceed the sum of the nilpotent lengths of
H,---, H,

Proof. (By induction on the order of G.) Since the product
H,..- H, is a Hall subgroup of G permutable with H, we may as-
sume that » = 2. First suppose that G possesses nontrivial normal
subgroups A and B with AN B=1. Then G is isomorphic to a
subgroup of the direct of G/A and G/B. Hence

7(G) = max {#(G/A), (G/B)}
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and it suffices to show that
2(GIA) < 7/(H) +7(H;) and ~(G/B)<7/(H)+ 7(H,).

Since G/A is the product of the permutable Hall subgroups H,A/A
and H,A/A of G/A, the induction hypothesis gives

/(GlA) < <(HAJA) + <(HA/A) .

Since H,A/A and H,A/A are epimorphic images of H, and H, (respec-
tively), we know that < (H,A/A) < s(H;) for ¢+ =1,2. Therefore
/(G/A) < #(H) + #(H,). The same argument applied to G/B will
show 7/(G/B) < 7(H,)) + #(H,). This verifies the theorem in this
case.

Now suppose that G possesses a unique minimal normal subgroup.
Then Lemma 1 shows that G contains a nontrivial normal Sylow
subgroup P with C,(P) & P. Since the theorem is trivially true if
G = P we may assume this is not the case. Set

G = G/P, H, = H.P/P, H, = H,P/|P

and consider the nontrivial GSTG G. The induction hypothesis
applied to G = H.H, gives /(G) < #(H) + #(H,). We first observe
that #(G) = #(G) + 1. Since P is a nilpotent normal subgroup of
G, P must lie in the Fitting subgroup F of G. If P+ F then F
contains a nonidentity element of order prime to the order of P which
belongs to the centralizer in G of P. This contradicts C,(P) & P.
Therefore P = F and #(G) = #(G) + 1.

Since H, and H, are Hall subgroups of G satisfying G = H,H,,
the Sylow subgroup P must lie in H, or H,, We may suppose that
H, contains P. If P = H, then G = H, and so #(G) = #(H,) < 7(H,).
Then #(G) = #(G) + 1 < #(H,) + #(H,), which is what we wanted to
show. If P = H, then the argument used in the preceding paragraph
can be repeated to show </ (H,) = <{H,) + 1. It follows from this that

/(@) =sG) +1<7H)+1+ 7(H) < s(H) + 7(H) .

This completes the argument.

It seems interesting to ask if this theorem has a converse, in
the following sense. Does a GSTG G necessarily possess pairwise
permutable proper Hall subgroups H,, ---, H, satisfying G = H, --- H,
so that #(G) = 2(H,)) + --- + 7(H,) holds? The answer is obviously
no, since any nilpotent group is a GSTG. If we insist that the
group G not be nilpotent, the answer to the question is still no.
This can easily be verified using the example of an N-group which
is not a Sylow tower group (see [1]; p. 638). We now mention some
consequences of the theorem.
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Let G be a GSTG and suppose that &= {G,, ---, G,} is a Sylow
basis for G. Sinece G, ---, G, are pairwise permutable Sylow sub-
groups of G satisfying G = G, --- G,, Theorem S gives

/(@) < 2(G) + +++ + 2(Gu) = 7(G) -

Consequently Theorem 1.7 [1] follows from Theorem 8.

Now we show how the type of a GSTG can be used to improve
the bound on the nilpotent length of a GSTG given by Theorem 1.7
[1]. It will be helpful to first introduce some terminology. Let R
be a relation on the set of all primes and let ¢ denote some given
set of primes. Then ¢ will be called a complete R-symmetric set
provided both pRq and ¢gRp hold for all primes p and ¢ belonging
to 0. If o contains a single prime then ¢ is (trivially) a complete R-
symmetric set. It is clear from this that any set of primes can be
written as a union of complete R-symmetric subsets. The set o will
be called an R-cyclic set if ¢ contains distinct primes p, ¢, and w
such that pRg, ¢Rw, and wRp hold.

COROLLARY 1. Let G be a GSTG of type R. If o0, +--+,0, are
complete R-symmetric subsets of ¢(G) such that the union of the o;
s ¢(G) then <(G) < d.

Proof. Let 9 ={G, ---, G,} be a Sylow basis for G. For each
1, 1 <1< d, define the subgroup H; of G to be the product of all
Sylow p,-subgroups G, for which p,€0;,. Since pRqg and ¢qRp hold
for all distinet primes p and ¢ from o;, each H, is seen to be a nil-
potent Hall o;-subgroup of G. Since the union of the o¢,’s is ¢(G),
clearly G = H, --- H;. The theorem then shows that

/(G < /7(H) + - +27(H) =d.

COROLLARY 2. Let G be a GSTG of type R. If o, ---,0, are
disjoint R-cyclic subsets of ¢(G) then < (G) < 7{(G) — d.

Proof. Let &= {G,, -+, G,} be a Sylow basis for G. For each
integer 4, 1 < 7 < d, define the subgroup H; of G to be the product
of all Sylow p,-subgroups G, for which p,co;. It is clear from the
definition that the H,; are pairwise permutable Hall o;-subgroups of
G. Since the product H = H, --- H, has a Hall complement in G, it
suffices to show that ~(H) < n(H) — d. Since the o,’s are disjoint
sets, this will follow if ~(H;) < n(H;) — 1 holds for each 7, 1 <1< d.
Let p, q, and w be distinct primes in o; satisfying pRg, gRp and
wRp. Consider a Hall {p, ¢, w}-subgroup T of H;. If T has a normal
Sylow p-subgroup then pRq shows that T has a nilpotent Hall
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{p, q}-subgroup. Then Corollary 1 shows #(7T) < n(T) — 1. It now
follows from Theorem S that <(H;) < n(H;) — 1. Consequently we
may assume 7T has no nontrivial normal Sylow subgroup. By Lemma 1,
T then has nontrivial normal subgroups A and B with AN B = 1.
Since T/A and T/B are GSTG’s of type R, induction shows that
/(T/A) < 2 and #(T/B) < 2. Using the fact that T is isomorphic to
a subgroup of the direct product of T/A and T/B we obtain

/(T)<2=n(T) - 1.

Theorem S applied to H; now gives < (H;) < w(H;) — 1. Therefore we
have shown that ~(H;) < n(H;) — 1 holds for arbitrary ¢ and the as-
sertion follows.

The next consequence of the theorem is Theorem 1.8 [1].

COROLLARY 3. Let G be GSTG with #(G) = n(G). Then G is a
Sylow tower group of exactly one type R, in the semse that the rela-
tion R is uniquely determined for pairs of primes p, q in ¢(G).

Proof. Let &= {G,, -+, G,} be Sylow basis for G. Define the
relation R on the set of all primes as follows: R is reflexive and
for distinct primes p and ¢, pRq holds if and only if either p or ¢
does not divide the order of G or both p and ¢ do divide the order
of G and the Sylow p-subgroup of G belonging to . normalizes the
Sylow ¢-subgroup of G belonging to .4 Clearly G is of type R.
Since 7(G) = n{G), Corollary 1 shows that both pRg and ¢Rp hold
for no distinet primes p, ¢ € ¢{(G). In addition, Corollary 2 shows that
pRq, qRw, and wRp hold for no distinet primes p, ¢, and w from
c(G). Since either pRq or gRp holds for any primes p, g€ c¢(G), the
restriction of R to ¢(G) must be a linear order. Therefore G is a
Sylow tower group of type R. Suppose that G is also a STG of
type S and the restriction of S to ¢(G) differs from the restriction of
R to ¢(G). Then G would necessarily have a nilpotent Hall {p, ¢}-
subgroup for some distinct p, ¢ € ¢(G). The conjugacy of Hall {p, q}-
subgroups in G then implies that «(G) < 7(G) — 1, a contradiction.
Therefore G is a STG of exactly one type, in the sense mentioned.

We next give an example to show that the nilpotent length of a
GSTG cannot be found from the type alone. Let A be the holomorph
of a cyclic group of order 7 and let B donote the Hall {7, 8}-subgroup
of A. Define the group G, as the direct product of A and a sym-
metric group of degree 3 and define G, as the wreath product of B
by a cyclic group of order 2. Both G, and G, are Sylow tower
groups of type 7 < 3 < 2 and no distinet Sylow subgroups of G, or
G, centralize one another. Hence, for a given relation R on the set
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of all primes, G, is a GSTG of type R if and only if G, is a GSTG
of type R. Yet the nilpotent length of G, is 2 and the nilpotent
length of G, is 3.

THEOREM T. Let G be a GSTG with nilpotent length k. Then
G contains a Hall subgroup which is a Sylow tower group and has
nilpotent length k.

Proof. By Theorem 1.8 [1] it is sufficient to show that G con-
tains a Hall subgroup L with «(L) = n(L) = k. We proceed by in-
duction on the order of G.

Suppose G contains a proper subgroup W with ~(W) = k. The
induction hypothesis then shows that W contains a Hall subgroup T
with #(T) = n(T) = k. Choose a Hall subgroup L of G with TS L
and ¢(T) = c¢(L). Then #(G) =k =/(T)< 7(L) < 7(G) shows that
/(L) = w(L) = k. This proves the theorem in the case where G con-
tains a proper subgroup with nilpotent length k.. Now suppose that
every proper subgroup of G has nilpotent length strictly less than
k.

Since G is a GSTG, either G possesses nontrivial normal subgroups
A and B with AN B =1 or G contains a nontrivial normal Sylow sub-
group P with C,(P) & P. We consider these possibilities separately.
First suppose that A and B are distinct minimal normal subgroups
of G. If the Frattini subgroup ¢ of G is trivial then G contains a
maximal subgroup M, not containing A and a maximal subgroup M,
not containing B. Then M, complements A in G and M, complements
B in G. Since we have assumed that all proper subgroups of G
have nilpotent length less than %, the isomorphism of G/A and M,
gives 7/(G/A) < k. Similarly one sees that ~(G/B) < k. Since G is
isomorphic to a subgroup of the direct product of G/A and G/B, it
follows that ~/(G) = max {#(G/A), ~(G/B)} is less than k, a contradic-
tion. Therefore G has nontrivial Frattini subgroup. Since /(G/¢) =
/(G) = k, the induction hypothesis shows that G contains a Hall
subgroup L satisfying < (L¢/¢) = n(Lo/¢) = k. Now

k=<(Lglp) < <(L) < 2(G) =k

shows ~(L) = k. Hence L = G. Since the Frattini subgroup of G
contains no Sylow subgroup of G, 7(G) = n(L) = n(L¢/$) = k. There-
fore #(G) = n(G) = k, which completes the argument in this case.
Now suppose G contains a nontrivial normal Sylow subgroup P
with Cy(P) & P. It follows that P must be the Fitting subgroup of
G. Therefore #(G) = #(G/P) +1 or G = P. In the latter case the
theorem is trivially true. If #(G) = #(G/P) + 1, the induction
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hypothesis shows that G/P contains a nontrivial Hall subgroup L/P
satisfying #(L/P) = n(L/P) = k — 1 = #(G/P). Clearly L is then a
Hall subgroup of G with n(L) = k. Since C,(P) & P, P must be the
Fitting subgroup of L. Hence ~(L) = #(L/P) + 1. Therefore

/(L) =k =n(L).

This completes the proof of the theorem.

Let G be a given GSTG and suppose .&¥ is a Sylow basis for G.
Define the relation R on the set of all primes as follows: for any
primes p and ¢ (possibly equal), pRq holds if and only if p¢¢(G) or
g¢c(G) or both »p and ¢ belong to ¢(G) and the Sylow p-subgroup
of G in .&° normalizes the Sylow ¢-subgroup of G in &4 Clearly G
is a GSTG of type R. If H is a Hall subgroup of G which is a
Sylow tower group and H satisfies #(H) = n(H) = 7(G), then the
restriction of R to c¢(H) is a transitive relation (see the proof of
Corollary 3). This leads to the following bound for the nilpotent
length of G in terms of the relation R defined above. The nilpotent
length of the GSTG G cannot exceed n, where n is the largest integer
such that the restriction of R to some subset of ¢(G) having n elements
is a transitive relation.
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