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THE MULTIDIMENSIONAL CONTENT OF THE
FRUSTUM OF THE SIMPLEX

GIULIO VARSI

The content of the intersection of a simplex with a semi-
space is computed by means of a dissection technique. An
efficient algorithm, suitable for automatic calculation, is given.
For an ^-dimensional space, the algorithm needs only n — 1
storage location at most, and requires ~ n2 operations.

Introduction* The simplex S considered is the (n — 1)-dimensional
polytope defined as the convex hull of its n vertices V3 in Rn, the
Euclidean space in n dimensions:

Vj = {vjl9vj2, •••,!;,•.} ,

where

fl j = i
Vji = δSi = . j , i = 1, 2, , n .

(0 3 Φ %

This choice of geometry is convenient in certain applications of the
algorithm that arise in statistical mechanics and allocation theory,
but does not result in a loss of generality (see Appendix).

The frustum Fx of S is defined as the nonempty intersection of
S with the semispace σ:

σ = {xl9 x2, ., xn I Σ PiXi ^ G) ,

where the real numbers Pi are the coefficients that characterize the
hyperplane 7, boundary of the semispace.

With a minor loss of generality, that will be removed subsequently,
it will be assumed that

( 1 ) Pi < Vi < ' < Pn

PiΦ G i = 1, 2, , n .

It can then be immediately verified that the condition for S Π σ to be
nonempty is

Pi ^ G ^ pn .

The content C[FJ of the frustum can be represented as

ίi L
where the region X is defined by the following constraints:
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(2) 0 ^ Xi9 ί = 1, 2, •••, n ,

(3) Σ*« = l ,

(4) Σ P Λ ^ G

The last inequality can also be written as:

where:
rrii = Pi — G ,

and the condition for S Π σ to be nonempty is:

The form (4') will be used throughout the paper.
It is often convenient to measure C[Fi] in units of C[S], i.e., to

express Cfi^] as a fraction of C[S]. This latter quantity can be readily
evaluated by projecting S onto the xά = 0 hyperplane and by multiplying
the content of the projection by the secant of the angle formed by
S with that hyperplane. It results [1]:

The symbol pf represents the ratio C[JPI]/C[S].

Properties of the frustum* The hyperplane 7 defined by

v o ) 2-k "ί/i*bi — u

dissects the simplex S into two frusta Fx and F2 so that, for any
xe S, if xe Fί9 then Σ ™iχi ^ 0; if x e F2, then Σ ^iχi ^ 0.

One property of a simplex is that any one of its faces contains
all the vertices but one [1]; φι denotes that (n — 2)-face of S which
does not contain Vu and Ei3 denotes the edge that connects Vι and
V3: If the hyperplane 7 cuts S, it will partition the vertices Vι into
two nonempty sets Z1 and Z2, corresponding to the frusta Fx and F2.
One can distinguish two cases:

(1) Either Z1 or Z2 contains only one vertex. Let Zι contain
only V19 then every face φt (I Φ 1) will have vertices on both sides
of 7 and, therefore, will be cut by 7; F1 will then have a portion of
all the φι (I Φ 1) (n — 2)-faces of S plus the (n — 2)-face lying on 7,
or a total of n (n — 2)-faces. Furthermore, F1 will have as vertices
the intersections of all the edges Eu(l Φ 1) with 7 plus Vι itself.
Therefore, F1 is a simplex and its content C[F^\ can be evaluated
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immediately by means of the well-known determinant. One also has
C[F2] = C[S] -

(2) Both Z, and Z2 contain at least two of the vertices Fz. Then
every face φι will have vertices on both sides of 7: 7 cuts every face.
Both F1 and F2 contain a portion (which shall again be called φt)
of each face of S, plus the common face lying on 7 (which shall again
be called 7) for a total of n + 1 (n — 2)-faces. Neither F1 nor F2 is
a simplex. If Zt and Z2 contain, respectively, z1 and z2 (z1 + z2 = n)
vertices Fz, then 2^ contains all the vertices in Zx plus all the intersec-
tions of 7 with the edges E connecting elements of Zx with elements
of ϋΓ2, for a total of (zt x #2) + zι = (z2 + 1)^ vertices.

LEMMA. The frustum Fγ has the following property: any one of
its vertices W belongs to all the (n — 2)-faces except two.

Proof. If W coincides with one of the F, say Vl9 then W belongs to
all the φ except φt and does not belong to 7. If W does not coincide with
any V then it belongs to 7, and it must belong to the edge connecting
two of the F; let it be Ejk. Since V3-eφh(h Φ j) and Vk e Φh(h Φ k),
then Ejk e φh(h Φ j , k) and, since W e Ejk, then Weφh(h Φ j , k).

Therefore, Fx can be dissected in (z2 + 1)^ different ways into
two pyramids,1 which are characterized by selecting a vertex W and
the two faces that do not contain it.

Dissection technique* In this section, the algorithm is described
in detail. In essence, the frustum is dissected into two polytopes,
which are shown to be pyramids; the bases of these pyramids have
the same property as the frustum: namely, each basis can be dissected
into two pyramids of one dimension less than the previous ones. The
two-fold dissection can be repeated on the new bases until a simplex
is obtained. It may appear that the number of two-dimensional
pyramids (or triangles) required should be of the order of 2n~2 and
therefore exceed the present computing capabilities for even relatively
modest values of n. In fact, very substantial simplifications are
possible so that the number of operations required is of the order of n2.

With no further loss of generality, it will be assumed that

m< < 0 i = 1, •••, J .
( b )

m ^ > 0 ί = J + 1, •••, w .
1 A g-dimensional pyramid is defined as a poly tope with nonnull g-dimensional content,
such that all its vertices but one belong t o a ( g - l)-flat, called the basis of the pyramid.
A (q - D-flat is the set of all points in (q + k) space that can be represented as linear
combinations of q linearly independent points (k ^ 0).
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The hyperplane defined by equation (3) and the faces of S and of Fx

that belong to it are designated as η; the hyperplane defined by
equation (5) and the faces belonging to it are designated as 7 as in the
previous section. Furthermore, et indicates the coordinate hyperplane
defined by xi — 0. The intersection of two or more hyperplanes is
indicated as a list; τjctc7y indicates the (n — 4)-flat obtained by inter-
secting the two coordinate hyperplanes c1 and c7 with η and 7.

From the sign of δ = {Σ ™Λ} it will be noted that all Vif for
which 1 <* i <^ J", lie on one side of 7, and all those Vi for which J <
i <L n lie on the other side [2].

A vertex of F1 is indicated as Wι if it coincides with the vertex
Vi of the simplex S, or as Wιk if it is the intersection of 7 with the
edge Eιk. (Since Wϊk =Wkl9 the convention will be followed that I <
k.) It will be noted that, for any vertex Wik, the following inequalities
obtain:

because Fz and Vk have to be on opposite sides of 7 for Eιk to intersect 7.
The coordinates of Wtk can be found immediately by noting that

a point x describes the segment [Vh Vk] if

x = XV\ + (1 - X)Vk ,

where 0 ^ λ ^ 1. If (I, k/i) indicates the ith coordinate of Wik, then

(I, k/l) = (mk)/(mk - m,) ,

(I, k/k) = (-mz)/(mΛ - mι) ,

(I, k/ί) = 0 for i Φ I, k ,

and it is immediately possible to verify that Wlk{= {{I, k/l), (I, k/2),
• , (I, k/n)}) belongs to Eιk and to 7:

m z ) + mk(— mj)l{mk — rrtj) — 0 .

The total number of vertices of F1 is N = J + J(n — J) = J(n — J + 1),
as shown in Table I. The n (n — 2)-faces of simplex S can now be
expressed as the intersections of hyperplane η with the coordinate
hyperplanes: ψly ψ2, , ψn.

THEOREM. The frustum F1 can be dissected into two pyramids
and, furthermore, the basis of each pyramid can also be dissected into
two pyramids; the process can be iterated until the dissection yields
simplices.

Proof. The proof will be given by construction and the conditions
under which the dissection yields simplices will also be shown. In
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the nontrivial case (2) of the preceding section, 1 < J < n — 1, Fι has
the appropriate portions of ΎJCU ηc2, , ?]cn and the appropriate portion
of 7. It is convenient to dissect F1 into two pyramids by selecting
the apex on 7 according to the previous Lemma. Let it be Whkl

Since a vertex Wtk belongs to Ύjd if its ith coordinate is zero, then
Whkl belongs to all the faces of F1 except ψh and ψkl. These will
be the bases of the two pyramids πn~\lύ and πn~\ky, the bases will
be designated βn~2(k) and βn~2(k1). In order to proceed with the
dissection, the (n — 3)-faces of the two bases have to be identified.
Consider βn~2(lλ). Its faces are the intersections of ψh with the other
faces of F,: ψhch, where l2 = 1, 2, , lx — 1, lx + 1, , n. Is the
intersection ψhch a proper intersection, in the sense that it belongs
to FJ Yes, because Wih e ψhch, if i, h Φ ll9 Z2. Analogously, ψh7
is a proper intersection, and since l2 can take any one of n — 1 values,
then β*~~\lύ has n - 1 + 1 = n (n - 3)-faces. Again, β*-2^) has one
face more that the simplex of the same (n — 2) number of dimensions.

Any one of the vertices of βn~2{l^ can be selected to serve as
the apex of the pyramidal dissection, for example, Whk2, where 1 ^
h ^ J < h ^ n and l2 Φ lim (The last condition is necessary because
WhK{h = J + 1, , n) does not belong to βn-2(k).)

Vertex

J(

J<

'Wi

.Wr

n—J <

WUJ+I

Wun

n — j{

TTΓ

Wj,n

1

1

0

0

Wlj + l

πij+ι — mi

Win

π

u

TABLE I.

2

0

1

0

u

0

mj+i

m,/ + l — Wl2

U

VERTICES OF FI

3 ..

0 ..

0 ..

0 ..

A

0 ..

u ..

Coordinate

J

0

0

. . 1

0

. . . u

Win

Win — Wlj

J +

0

0

0

mi

Wlj + l -

0

Wlj + l -

0

0

0

1

m i

2

m2

n

0

0

0

A

u

— mi

Win — Wll

A

u

— wij

Win — Wlj

The two new bases are those faces of βn~2(k) that do not contain
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Whh. These faces are ψhch and ψhk2 The shorter notation βn"3(lί9 l2)
and βn~3(ll9 k2) will be employed.

In general, the /^-dimensional base of a (μ + l)-dimensional pyramid
will be indicated by βμ(hl9 h2, , hn_μ_γ). Its μ + 2 (μ - l)-dimensional
faces are:

and

w h e r e ί Φ huh2, •••, hn^μ_γ.
The argument Ax, , An-̂ -i is a combination without repetition

oί n — μ — 1 among the n numbers 1,2, , n .
The next dissection is accomplished by selecting a vertex Wtk

with the usual conditions on I and & with the further limitation

l,kΦ hi ί = 1, , n - μ - 1 .

The new bases are βμ~ι{hu •••, hn-μ_u I) and βμ~ι{K, •••, / i ^ ^ , k).
It is convenient to represent the pyramidal dissection geometrically

with a tree. Each node of the tree represents a pyramid and two
branches issue from it.

It has been noted that one of the pyramids may in fact be a simplex;
therefore, the dissection process ends on that branch. This occurs
where one of the intersections of the base of the pyramid with the
remaining coordinate hyperplanes or with 7 is improper. A generic
intersection / = Ύ]chι chι chu (where hu = 0 indicates 7) is improper
if it does not contain any one of the Wϊh or Wi This happens in
either of the following two cases:

(1) If for each i <̂  J there exists an hiBhi = i. Since all the
vertices of F1 have a nonzero coordinate, the cardinal number i of
which is less than or equal to /, no vertex can have zero coordinate
for all i <£ J, and therefore no vertex can belong to /.

(2) If hi — 0 for some I and for each i Ξ> J + 1 there exists an
hi 3 hi = ί. Since all the vertices that belong to 7 have a nonzero
coordinate the cardinal number i of which is greater than J + 1, no
vertex can belong to I.

A base β*-"-1 that forms an improper intersection has only n — v
(n — v — 2)-faces, rather than n — v + 1 and is, therefore, a simplex.
This occurs if the argument list of β*-"-1 contains J — 1 indices smaller
than or equal to J (one of the intersections of βn-υ~ι will fall under
Case 1) or if it contains all the n — J indices greater than J (Case 2).

The conditions stated above can be verified also by considering
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the number of vertices of a base βn"if"1(hl9 h2, , K). Since the order
of the arguments in the list is irrelevant, we may assume that they
are ordered as follows:

(7 ) h, < h2 < hz < < hq ^ J < < K

By inspection of Table I one can verify that from the total number
N — J(n — J + 1) of vertices of F19 (n — J + 1) are excluded for each
of the hi ^ J and (J — q) are excluded for each one of the hi^zj+l.
The number Nβ of vertices belonging to that base is

J + l ) - ( n - J + l ) q - ( J - q)(v - q)

= (J - Q)(n + l - J - v + q).

Since the base βn~u-1 is of dimension n — v — 1, it is a simplex if it
has Nβ = (n — v — 1) + 1 = n — v. This condition, a second-degree
equation in q, has two solutions: q1 = J — 1 and q2 = J + v — n. The
first condition is clearly equivalent to the one enunciated previously
that led to case (1); the second can be rewritten as v — q2 = n — J
and can be shown to coincide with the second condition given above.
The proof of the statement of the theorem is thus complete.

Now, the distance of the apex of the pyramid from its base has
to be evaluated. In general, this is the distance of Wϊk from βμ(h19

h2, •••, AM_Λ_2, k). This quantity has a somewhat cumbersome expres-
sion because it is the distance between a point and a μ-flat in Rμ+2.
(The vertex Wlk and the vertices belonging to βμ collectively have
n — (n — μ — 2 + 1) + l = μ + 2 coordinates different from zero.) The
equivalent case in R3 is the determination of the distance of a point
from a straight line lying on one of the coordinate planes. The
expression, however, becomes very simple if, as previously suggested,
F1 is projected onto one of the coordinate hyperplanes.

Since the cosines of η are all equal, the relationship CfFJ =
C[$i](w)1/2 holds for Φλ, the projection of Fλ on any one of the coordinate
hyperplanes. The only condition is that neither cz nor ck be used in
connection with Wik As will be shown subsequently, it is quite
convenient to use Cj as the projection hyperplane for all the pyramids.
In the projection plane, the distance between the projections of Wxk

and βμ(hl9 h2, , nn_μ_2, k) is simply the &th coordinate of Wιk: {I, k/k) =
(— m,ι)/(mk — mi). This statement can be verified by minimizing the
square of the distance d between the projections of a generic point x
on βμ and Wιk as follows:

d2 = Σ [*< ~ (I, k/i)Y

= (i, k/ky + Σ * ^ + [χι - (i, k/i)]2,
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where Σ * indicates the sum for iΦhlf h2, , K_μ_2, k, I, J, and where
the following constraints apply:

Σ+Xi ^ 1, 0 ^ %t ^ 1 for ί Φ J.

Here, Σ+ indicates the sum for i Φ J". It can be verified that d2 is
minimum when all its terms but the first are zero:

d2 = (I, k/k)2 ,

x. — 0 for i Φ I ,

ẑ = (Z, k/l) .

The content of the pyramid of base βμ and apex Wik is then computed
from the content of its projection β as [2, 3]:

(Φ2) [II{μ + 1)] I (I, k/k) I C[β(K h, , hn_μ_2, k)\ .

Description of the algorithm* The rules for the construction of
the tree representing the dissection can be obtained from the rules
given in the previous section. These rules are summarized as follows:

(1) Start with node Φim

(2) From Φt go to the two nodes labeled lx and k19 where

l^k^J; J + 1 ^ h ^ n .

( 3) From each node draw two branches to two further nodes and
label them lμ and kμ, where 1 ̂  lμ ^ J and J + 1 ̂  kμ ^ n and where both
lμ and kμ are different from all the labels affixed to the previous nodes
in the path leading from Φ1 to the nodes labeled, respectively, lμ or kμ,
and so on.

(4) A path is terminated:
(a) If J — 1 of its nodes, including the terminal one, have labels

of numerical value ^ J or
(b) if n — J of its nodes, including the terminal one, have labels

of numerical value ^ / + 1.
The construction can be systematized by the addition of the following
rule:

(5) The label assigned to each node is the lowest possible, pro-
vided that rule 3 also is observed.

Two symbols are associated with each node: One is the label
discussed previously, the other is an element of matrix A — | |α r , s | | ,
where r = J — hq and s = n + 1 — hu, hq and hv being defined as in
equation (7).

The value of the matrix element is the content of the projection
of the base of the pyramid represented by the node. It should be
noted that if two nodes are reached by paths containing the same
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labels, they have the same value; furthermore, the paths exiting
from them are identical.

An obvious consequence of rules 4 and 5 is that label J never
appears and that the label of a terminal node is either J — 1 or n.
The computation starts from the pyramid whose matrix element has
the lowest indices (to the end of this section: (I, k/i) = \(l,k/i)\):

α2>2 - C[β(l, 2, , J - 3, J - 2, J + 1, . . , n - 2, n - 1)]

- (1/2){(J- 1, n/J-l)C[β(l, 2, , J - 2, J + l , . . . , n - 1, J - 1)]

+ (J - 1, n/n)C[β(l, 2, . . , J - 2, J + 1, . , n - 1, n)]}

- (1/2){(J - 1, n/J - l)α12 + (J - 1, w/rcKJ .

Next:

α2,3 = (1/3){(J - 1, n - 1/J - l)α1>3 + (J - 1, n - 1/n - l)α2f2} ,

α2>4 = (1/4){(J - 1, w - 21J - l)α1>4 + (J - 1, w - 2/n - 2)α2j3}, etc.

The last element evaluated in this phase of the calculation is

a2,n-J+1 = (n- J+ 1 Γ W - 1, J+ 1/J ~ l)ai,n-j+i

The next phase requires the evaluation of

CL8(1,2, •-., J - 3)] = αsf1l_J+1

= (n - J + 2)-1{(J - 2, J + 1/J - 2)α2,%_/+1

+ (J-2,J+1/J+ l)a,,n_j} .

While the element α2,%_J+1 has just been calculated, α3>%_<7 is determined
as follows:

, 2, . . . , J - 3 , J + l )

- (n - J + ^ { ( J - 2, J + 2/J-2)C[β(l, 2, , J - 3 , J + 1, J-2)]

+ (J - 2, J + 2/J + 2)C[/3(1, 2, , J - 3 , J + 1, J + 2)]} .

The time-saving technique derives from the observation that, in jthe
above expression,

= C[β(l, 2, , J - 3, J - 2, J + 1)] = α 2 , w ,

which has been computed.
The general term has the form:

ah}k = {(h + k- 2)}-ι{ah,k^{J - h + 1, n - k + 2/n - k + 2)

+ «*-!,*(/ - h + 1, n - k + 2/J - h + 1)} ,

for 2 < Λ ^ J and 2 < λ : < ^ - J + l .
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It can be verified, by evaluation of the appropriate determinant,
that the contents of the projections of the simplices represented by the
first row and first column of matrix A are:

auk = {(k - 1) i r jπ, (J, n-i/n- i)}

= {{k - 1)!ΓW, n/n)(J, n - 1/n - 1) (J, n - k + 2/n - k + 2)},

or, recursively,

a>i,k = a>i,k-i(J, n - k + 2/n - k + 2)(k - I ) " 1 ,

for 2 ^ k ^ n - J + 1, and

αA>1 = {(A - I)!}"1 ,

for 2 <; Λ ̂  J, while the element α l f l is indeterminate.
The content of the projection of î Ί is determined as:

the matrix element evaluated last.

Numerical implementation of the algorithm* It will be noted
that since the calculation of each element ah}k of matrix A requires
knowledge only of the value of the elements immediately above and
to the left of it, the actual machine calculation needs to store only one
row (or one column) of the matrix. Furthermore, since the quantity
pr is expressed as pf = CJ^J/CfS], where a factor nll2{(n — I)!}"1 appears
in the numerator and in the denominator, the calculation can be
simplified if one avoids the carrying of the divisor. If, for example,
one computes and stores by rows, one obtains:

where a computational rather than mathematical notation has been
used and where the result is obtained by the following steps:

(1) a, = 1, a2 = az = . . . = an_J+1 = 0.
( 2 ) Repeat step 3 for h = 1, 2, 3, , J.

( 3 ) ah< ak_λ- 1"W-*1 + α

 | m * + 2 - f e l -,
I mJ+1_h — mn+2_k I I mJ+ί_h — mn+2_k |

for k = 2, 3, •••,% — J + l , where J is defined as in equation (6).
Since an_J+1 as a function of m̂  is defined and continuous in the

region defined by the following inequalities,

m1 ^ m2 ^ g mj ^ 0 < m J + 1 ^ mJ + 2 ^ <̂  mΛ

and since pr is also continuous because of its geometrical interpretation,
the restrictions instituted before can be removed and the region of appli-
cability of the algorithm extended as shown by the above inequalities.
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Except for the first iteration of step 2, the evaluation of the
generic ak involves 6 elementary operations (1 sum, 2 differences, 2
multiplications, and 1 division). Each iteration of step 3, therefore,
requires Q(n — J) operations, but the first iteration requires only
4(n — J) . The complete calculation requires M operations:

M = i(n - J) + [6(n - J)] + 1](J - 1) .

The maximum value MmΆX that M can assume for a given n is

MmΛX = (Sn2 - n)/2 - 1 .

The storage requirement for the vector ai is n — J + 1 locations.

Appendix* A generic r-dimensional frustum Fr given as the
intersection of the semispace σ'(σf = {ξu ζ2, , ζr | Σ<=i 9*£i ^ ô}) and
the simplex S'(S' = convex hull of P ί ? for i = 1, 2, , r + 1, where
Pi = {Qiu Qi2, , Qir}) can be reduced to a frustum F of the specialized
form assumed herein by means of the following change of variables:

where
£0 sv
Si — Qr+U

τij — Qji ~ Qr+lti

The semispace σ' transforms into σf as follows:

G = < Xlf X2j , Xr

Using the notation established herein, setting r + 1 = n, and using
the prime (') to indicate that the sequence of coefficients p' has to be
ordered before applying the algorithm, we obtain

r

P'j = Σ i9i(Qji ~ Qr+ui) , j = 1, 2, , r
1

7"

G = gQ - Σn9iQr+i,i ,

1

P'+l = P» = 0 .

It can be verified that

C[2?"] = C[F]{det|l^.||} = (r !rα B _ J + 1 .det 11 r<y || (r + I)1'2

where ocn_JJrl is computed as shown previously.
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