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MATRIX REPRESENTATIONS FOR LINEAR
TRANSFORMATIONS ON ANALYTIC

SEQUENCES

PHILIP C. TONNE

Let *S^f be the space of all analytic sequences, those complex
sequences a for which there is a positive number r such
that 2 anVn converges. Those linear transformations from Sf
to Suf which have matrix representations are characterized in
terms of various spaces and topologies associated with *Ssf. An
example is given of a linear transformation from J&f to Sf
which has no matrix representation.

Louise Raphael [8] characterizes the matrix transformations
from s^ to sf. She makes use of the following: if q > 0, Aq is the
subspace of s/ to which a belongs only in case {\an\ ί *}*=<> is a bounded
sequence, and | | α | | g denotes the least number less than no term of
that bounded sequence. If q > 0, {Aq, \\ | |J is a complete normed
linear space. (See also, I. Heller [5], I. M. Sheffer [10, Th. 6, p. 177],
and the more fundamental work of Karl Zeller [12].)

Following Mβ G. Haplanov [4] and V. Ganapathy Iyer [3], Sq

denotes the subset of s*f to which a belongs provided that Σ anz
n

converges for | z \ < q, and, if 0 < p < q, Np(a) denotes XΓ=o I ock \ pk

for each a in Sq. If q > p > 0, {Sq, Np} is a normed linear space
(not complete).

In [11] the author characterizes those linear transformations
from S1 to Si which have matrix representations. We continue here
in much the same spirit. If q > 0 and a = {an}ζ=Q is a sequence of
sequences in Szf and / is a sequence of analytic functions such that if
n is a nonnegative integer and | z \ < q then

/•(«) = Σ

and / converges uniformly with limit 0 on each closed subset of the
(open) disc with center 0 and radius q, then a is said to have limit
0 analytically relative to q. A sequence has limit 0 analytically if
it has limit 0 analytically relative to some positive number.

We recall some fundamental notions from G. Kothe and 0.
Toeplitz [7] about sequence spaces:

Suppose that λ is a linear sequence space, λ* (sometimes called
the dual or α-dual of λ) is the collection of all complex sequences y
such that Σ I Vn%n I converges for each x in λ. If x is in λ and y is
in λ*,
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CO

Q(&, v) = Σ »»!/»

A sequence a? — {α?p}~=o of sequences in λ is said to converge in X
provided that, for each ί/ in λ*, the complex sequence {Q(xp, y)}~=0

converges. The transformation F is sequentially continuous from X
ίo λ provided that {F(xp)}~=0 converges in λ if {xp}~ converges in λ.

Theorems A and B are due to Kothe and Toeplitz.

THEOREM A. If X = λ** and the matrix M transforms X to X
(if x is in X and yn = Σk=0Mnkxk9 n — 0,1, , then y is in λ), then
the transformation is sequentially continuous from X to X [7, Satz
6, p. 206].

THEOREM B. Each linear sequentially-continuous transformation
from X to X has a matrix representation. [7, Satz 7, p. 207].

A subset X of the sequence space λ is bounded in X if for each
u in λ* there is a number m such that if x is in X then | Q(x, u) \ S
m. If F is a transformation from X to λ, the adjoint i*7* of F is
the relation to which the ordered pair {x, y) belongs only in the case
that

Q(x, F(z)) = Q(y, z)

for each z in λ.
Let i? be the space of all entire sequences, those complex

sequences which are coefficient sequences for power-series expansions
of entire functions, i? = J ^ * and ^ * = Jϊf. The matrix trans-
formations from g7 to ^ have been characterized by H. I. Brown
[1] and, in another manner, by K. Chandrasekhara Rao [2].

THEOREM. Let L be a linear transformation from s/ to sf.
These statements are equivalent.

(1) L has a matrix representation.
(2) L is sequentially continuous from Szf to Ssf.
(3) If p > 0 there is a positive number q such that L maps

{Ap, || Up} continuously into {Ag, || | |J (with respect to the norms).
(3') If p > 0 there is a positive number q such that L maps Ap

into Ag.
(4) If X is a set bounded in s^f then L(X) is also.
(5) If 0 < p < r there is a positive number R such that, if

0 < P < R, then L maps {Sr, Np} into {SB, NP} continuously.
(6) L* is a sequentially continuous transformations from if

to gf.
( 7 ) If a has limit 0 analytically, so does {L(an)}n=0.
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and i?** = if. This and the following lemmas are
useful in the proof of our theorem.

LEMMA 0. Suppose that X is a sequence space and λ** = X and
T is a linear sequentially continuous transformation from X to X.
Then T* is a sequentially continuous transformation from λ* into λ*.

Via [7, Satz 6, p. 200], a characterization of linear functionals,
Lemma 0 is easy to prove. (See also [9, p. 158].)

LEMMA 1. If B is a set bounded in Stf, then there is a member
a of Jzf such that if β is in B then \ βk | ^ ak, k = 0, 1, .

Proof. Otherwise, there is a sequence β of sequences in B and
an increasing sequence n of nonnegative integers such that, if k is
a positive integer, | βk,nk | > k1+nk. Let us indicate how to define such
a sequence. Let βx be a member of B and nγ be a positive integer
such that I βu%1 \ > l1Jrnκ Let ί be a number such that if b is in B
then I δ J <* ί, k = 0,1, , nx. Let β2 be a member of B and n2 be
a positive integer such that | β2)%2| > t-2ι+n2. n2 > nx. Please continue.

Let e be a sequence such that if k is a nonnegative integer then
enk = k~nk and ek = 0 if there is no positive integer j such that
%j = k. e is in if.

The set D to which d belongs only in case \dk\ ^ \ek\, k =
0,1, , is bounded in g7. Since B is bounded, it is strongly bounded
(see [7, Satz 1, p. 201] or [6, p. 413 (5)], so that there is a number
c such that if b is in B and d is in D then | Q(δ, d) | ^ c. Let k be
a positive integer. Let u be a complex sequence such that if j is a
nonnegative integer then \uj\ = 1 and β&Λ 2̂  0. w e is in Zλ

Q03*, ^
3=0

-n* = A; .

So there is a member α of j ^ such that if 6 is in £ then
\bk\^ak, k = 0,1, . . . .

LEMMA 2. If a is a sequence of sequences in jzf, then these are
equivalent:

( 1 ) a has limit 0 analytically.
( 2 ) a has limit 0 m

Proof. Suppose that a has limit 0 analytically (relative to q).
Then a has limit 0 in Sq (see [11, Lemma 1]). a is a sequence



272 PHILIP C. TONNE

bounded in Sq. sf* is a subset of S*, so a is a sequence bounded
in J^; and there is a member β of s^/ such that if each of j and k
is a nonnegative integer then | ajk | ^ βk. Let ί be a positive number
such that βk ^ tk+1, k = 0,1, . Let e be in gf. (gf = j ^ * . ) Let
ε be a positive number. Let m be a positive integer such that
2 ΣΓ=m I e& I tk+1 < ε. Let J be a positive interger such that if j is
an integer exceeding J then 2 ΣΓ^o11 ctjk I I βfc | < ε. Then, if j > J,

e) I = ^Σ
k = 0Σ

k=Q

m—l oo

fc=0 k—m

So a has limit 0 in jzf.
Now, suppose that a has limit 0 in Szf. a is a sequence bounded

in J ^ There is a positive number t such that | ajk | ^ ί*+1, i , k =
0,1, •••. Let g be a number between 0 and 1/t. Let ε be a posi-
tive number. Let m be a positive integer such that 2 Σ~=» tf^^ <
ε. Let J be a positive integer such that if j is an integer exceeding
J then 2 ΣΓ^o11 ajk \qk < s. Now, if j > J and | z \ ̂  g,

Σ α i ^ Σ I OLik \qkS e .

So α has limit 0 analytically relative to 1/t.

LEMMA 3. Suppose that r > p > 0 αwd i? > P > 0 απd L is a
continuous linear transformation from {Sr, Np} to {SR, NP}. Then L
has a matrix representation.

Proof. By [11, Theorem 1] this is true if r = R — 1.
Suppose that, for each positive number p, t(p) is the function

from «jy to j y such that if a is in s>f and w is a nonnegative
integer then t{ρ)(a)n = α ^ , so that, if 0 < g < <o, t(p) maps {AŜ , iVff}
continuously onto {Si, NqίP}.

Let L' be the continuous linear transformation from {S1? Nvlr)
into {Sx, NP/B} such that if x is in Sx then

L'(x) = t(R)Lt{l/r)(x) .

U has a matrix representation, so L has a matrix representation.

LEMMA 4. Suppose that 0 < p < r. If a is in Ar, then a is
in Sr and

Np{a)^\\a\\r/{l-plr).
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If a is in Sr, then a is in Ap and

\\a\\p^Np(a) .

The proof is straight-forward and omitted.

Proof of Theorem. 1 «-> 2. That statements (1) and (2) are
equivalent is seen from Theorems A and B.

1 —* 3. Mrs. Raphael has shown that statement (3) follows from
(1) [8, Theorem 4, p. 124].

2 —> 4. That statement (4) follows from (2) is a consequence of
[7, Satz 5, p. 207].

4 —* 3'. Suppose that if X is a set bounded in s$f then L{X)
is too. Let p be a positive number. Let X be the set of all points
x of Ap such that ||αj||p ^ 1. Let e be in E. Let x be in X.

I Q(x, e) I - £ Σ
A

I % I ̂  Σ \ek

so X is bounded in A.
L(X) is bounded in A. By Lemma 1 there is a positive number

q such that if y is in L(X) then 12/Λ | ^ gfW+1, n = 0,1, . So, if a?
is in Ap9 L(x) is in Aq. Therefore statement (3') follows from state-
ment (4).

3'—>1. That statement 3' implies that statement (1) is true is
evident from part 4 of Karl Zeller's theorem in [12].

2 «-> 6. That statements (2) and (6) are equivalent is a con-
sequence of Lemma 0. One might also use Theorems A and B (of
[7]) and [7, Satz 4, p. 206].

2 ^ 7 . That statements (2) and (7) are equivalent is evident
from Lemma 2.

3 —> 5. Suppose that 0 < p < r. Let q be a positive number
such that L maps {Ap, \\ \\p} continuously into {Aq, \\ | | J . Let K be
a positive number such that if x is in Ap then || L(x) \\q <: K \\ x | |p.
Let P be a number between 0 and q. Then, by Lemma 4, if x is
in Sr, x is in Ap, L(x) in Aq9 L(x) is in Sg, and

N,iLix)) S
S i, . I , , S 3

So statement (5) follows from statement (3).
5 —> 1. Since each point of A belongs to Sr for some positive

number r, it follows from Lemma 3 that L has a matrix represen-
tation (statement (1)) if statement (5) is true.

One can add to the seven statements in the theorem by taking
other combinations of these spaces and notions. I have presented
those which seem most interesting.
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EXAMPLE. Let S be a maximal linearly independent subset of
A which contains the unit vectors (1, 0, 0, •)> etc., and the constant
sequence k= (1,1, •••)• We define a function I from S to the plane
such that if s is in S and s Φ k then l(s) = 0 and Z(fc) = 1. Let ί'
be the linear extension of I to A. Let L be the linear transfor-
mation from A to A such that if x is in A and w is a nonnegative
integer then

L(x)n = l'{x) .

L is a linear transformation from A to A (indeed to the constant
sequences) and, since V cannot be represented by a sequence, L has
no matrix representation.

The author is indebted to Albert Wilansky for his encouragement
on this project.
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