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MATRIX REPRESENTATIONS FOR LINEAR
TRANSFORMATIONS ON ANALYTIC
SEQUENCES

PuaiLip C. TONNE

Let .&7 be the space of all analytic sequences, those complex
sequences a for which there is a positive number r such
that > a,r" converges. Those linear transformations from %7
to .97 which have matrix representations are characterized in
terms of various spaces and topologies associated with &, An
example is given of a linear transformation from & to &
which has no matrix representation.

Louise Raphael [8] characterizes the matrix transformations
from .o~ to .o She makes use of the following: if ¢ >0, A, is the
subspace of .o~ to which « belongs only in case {| &, | 4"}~ is a bounded
sequence, and || a||, denotes the least number less than no term of
that bounded sequence. If ¢ >0, {4, 1| |} is a complete normed
linear space. (See also, I. Heller [5], I. M. Sheffer [10, Th. 6, p. 177],
and the more fundamental work of Karl Zeller [12].)

Following M. G. Haplanov [4] and V. Ganapathy Iyer [3], S,
denotes the subset of .o~ to which a belongs provided that 3 «,z”
converges for |z]| < g, and, if 0 < p < ¢, N,{«) denotes >\, |a,]| p*
for each « in S,. If ¢ >p >0, {S,, N,} is a normed linear space
(not complete).

In [11] the author characterizes those linear transformations
from S; to S, which have matrix representations. We continue here
in much the same spirit. If ¢ > 0 and a = {a.}-, is a sequence of
sequences in & and f is a sequence of analytic functions such that if
7% is a nonnegative integer and |z| < ¢ then

i) = 3wt

and f converges uniformly with limit 0 on each closed subset of the
(open) disc with center 0 and radius ¢, then « is said to have limit
0 analytically relative to q. A sequence has limit 0 analytically if
it has limit 0 analytically relative to some positive number.

We recall some fundamental notions from G. Kothe and O.
Toeplitz [7] about sequence spaces:

Suppose that N\ is a linear sequence space. M\* (sometimes called
the dual or a-dual of A) is the collection of all complex sequences ¥
such that > |y.x,.| converges for each « in A. If x is in A and y is
in A%,
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Q,y) = Z,ownyn .

A sequence z = {®,});-, of sequences in A is said to converge in )

provided that, for each y in A*, the complex sequence {Q(x,, ¥)}:=.

converges. The transformation F' is sequentially continuous from X

to )\ provided that {F(x,)}-, converges in ) if {x,}; converges in \.
Theorems A and B are due to Kothe and Toeplitz.

THEOREM A. If \ = \** and the matric M transforms \ to N
(f 2 18 in N and Y, = DipeoMup2y, n = 0,1, ««+, then y is in \), then
the transformation 1is sequentially continuous from ) to N [7, Satz
6, p. 206].

THEOREM B. Foach linear sequentially-continuous transformation
from N to ) has a matrix representation. [7, Satz 7, p. 207].

A subset X of the sequence space \ is bounded in N\ if for each
% in \* there is a number m such that if x is in X then |Q(z, )| =<
m. If F is a transformation from )\ to X\, the adjoint F* of F is
the relation to which the ordered pair {x, 4y} belongs only in the case
that

R, F(2)) = Qy, 2)

for each z in \.

Let & Dbe the space of all entire sequences, those complex
sequences which are coefficient sequences for power-series expansions
of entire functions. & = .&* and &* = .o The matrix trans-
formations from £ to & have been characterized by H. I. Brown
[1] and, in another manner, by K. Chandrasekhara Rao [2].

THEOREM. Let L be a linear transformation from . to 7
These statements are equivalent:

(1) L has a matriz representation.

(2) L s sequentially continuous from .7 to o7

(38) If p>0 there is a positive number q such that L maps
{A,, || ||} continuously into {4, || ||} (with respect to the morms).

(8) If p>0 there is a positive number q such that L maps A,
mto A,.

(4) If X is a set bounded in & then L(X) is also.

(5) If 0 < p<r there is a positive number R such that, if
0 < P< R, then L maps {S,, N,} into {Sz, Ny} continuously.

(6) L* is a sequentially continuous tramsformations from &
to &.

(7) If a has limit 0 analytically, so does {L(a,)}i—,.
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S = o7 and £** = &. This and the following lemmas are
useful in the proof of our theorem.

LEMMA 0. Suppose that ) is a sequence space and N** =\ and
T is a linear sequentially continuous tramsformation from \ to \.
Then T* is a sequentially continuous transformation from \* into N*.

Via [7, Satz 6, p. 200], a characterization of linear functionals,
Lemma 0 is easy to prove. (See also [9, p. 158].)

LEemMMA 1. If B is a set bounded in .57, then there is a member
« of 7 such that if B is in B then |G| = ay, k=0,1, ...

Proof. Otherwise, there is a sequence S of sequences in B and
an increasing sequence n of nonnegative integers such that, if % is
a positive integer, |8, | > k'*"*. Let us indicate how to define such
a sequence. Let B, be a member of B and 7, be a positive integer
such that |p,,, | > 1"". Let ¢t be a number such that if b is in B
then [, | <¢, k£ =0,1,---,n. Let 3, be a member of B and n, be
a positive integer such that | 8;,,, | > t-2""". n, > n,. Please continue.

Let e be a sequence such that if k is a nonnegative integer then
e,, = k™ and e, = 0 if there is no positive integer j such that
n; = k. e is in &.

The set D to which d belongs only in case |d,| < |e.|, k =
0,1, ---, is bounded in &. Since B is bounded, it is strongly bounded
(see [7, Satz 1, p. 201] or [6, p. 418 (5)], so that there is a number
¢ such that if b is in B and d is in D then |Q(b,d)| = ¢. Let k be
a positive integer. Let uw be a complex sequence such that if j is a
nonnegative integer then |u;| =1 and B,;u; = 0. u-e is in D.

c = | QB ue)| = 'gﬁ’wuﬂj = gﬁkjujej

g Bk,nkunkenk = |Bk,nk l enk > kl_'Lnkk_nk = k .

So there is a member a of .©~ such that if b is in B then
[ Eap, E=0,1, «--.

LeMMA 2. If «a is a sequence of sequences in .57, them these are
equivalent:

(1) « has limit 0 analytically.

(2) «a has limit 0 in 7%

Proof. Suppose that a has limit 0 analytically (relative to g).
Then « has limit 0 in S, (see [11, Lemma 1]). « is a sequence
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bounded in S,. .o7* is a subset of S*, so a is a sequence bounded
in .o/ and there is a member g of .o such that if each of j and %
is a nonnegative integer then |a;,| < B;. Let ¢ be a positive number
such that g, < ¢**', k=0,1, ... Let e bein &. (& = .*.) Let
¢ be a positive number. Let m be a positive integer such that
23w . le | t*T <e. Let J be a positive interger such that if j is
an integer exceeding J then 2 >.72!|a;,|le.| <e&. Then, if 7> J,

Qs 0| = |3 e = 3ol e
= Slanlle ]+ 3 et <e.

So a has limit 0 in .o~

Now, suppose that « has limit 0 in .9 « is a sequence bounded
in .o There is a positive number ¢ such that |a;, | < t*, 7,k =
0,1, .--. Let ¢ be a number between 0 and 1/t. Let ¢ be a posi-
tive number. Let m be a positive integer such that 2 >\, ¢¥t*™ <
e. Let J be a positive integer such that if j is an integer exceeding
J then 237 |a;, | g* < e. Now, if 7 > J and |z| = g,

|§0%~k2"| églamq’”‘ <e.
So a has limit 0 analytically relative to 1/t.

LEMMA 3. Suppose that r > p >0 and R>P >0 and L is a
continuous linear transformation from {S,, N,} to {Sp, Np}. Then L
has a matriz representation.

Proof. By [11, Theorem 1] this is true if »r = R = 1.

Suppose that, for each positive number o, t(0) is the function
from .&7 to & such that if « is in & and = is a nonnegative
integer then t(p)(a), = a,0", so that, if 0 < ¢ < o, t{0) maps {S,, N,}
continuously onto {S,, N,}.

Let L’ be the continuous linear transformation from {S,, N,;.}
into {S,, Ny} such that if ¢ is in S, then

L'(x) = (R)Lt1/r){x) .

L’ has a matrix representation, so L has a matrix representation.

LEMMA 4. Suppose that 0 < p <r. If a is in A,, then &« 1is
m S, and

Ny@) = [[e|l./d — p/r) .
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If a is in S,, then @ is in A, and
llall, = Ny(e) .

The proof is straight-forward and omitted.

Proof of Theorem. 1 — 2. That statements (1) and (2) are
equivalent is seen from Theorems A and B.

1—3. Mrs. Raphael has shown that statement (3) follows from
(1) [8, Theorem 4, p. 124].

2 —4. That statement (4) follows from (2) is a consequence of
[7, Satz 5, p. 207].

4 —3'. Suppose that if X is a set bounded in .o then L(X)
is too. Let p be a positive number. Let X be the set of all points
x of A, such that ||z, £ 1. Let ¢ be in E. Let x be in X.

1QM, o] = | 3, e

so X is bounded in A.

L(X) is bounded in A. By Lemma 1 there is a positive number
g such that if y is in L(X) then |y,|Z¢"", n=0,1,.... So, if &
is in A,, L(z) is in A,. Therefore statement (3’) follows from state-
ment (4).

3’—1. That statement 3’ implies that statement (1) is true is
evident from part 4 of Karl Zeller’s theorem in [12].

2— 6. That statements (2) and (6) are equivalent is a con-
sequence of Lemma 0. One might also use Theorems A and B (of
[7]) and [7, Satz 4, p. 206].

2 7. That statements (2) and (7) are equivalent is evident
from Lemma 2.

3 —5. Suppose that 0 < p <r. Let ¢ be a positive number
such that L maps {4,, | ||,} continuously into {4, || [|}. Let K be
a positive number such that if x is in A4, then |[|[L(x)||, < K||z|l,.
Let P be a number between 0 and q. Then, by Lemma 4, if x is
in S,,  is in 4,, L(z) in A,, L(») is in S,, and

<Slallnl=Xlalr

N,(L(z)) < || L) ||, < K || @

iorg ~1o7g P ET R P/ T

So statement (5) follows from statement (3).

5—1. Since each point of A belongs to S, for some positive
number », it follows from Lemma 3 that L has a matrix represen-
tation (statement (1)) if statement (5) is true.

One can add to the seven statements in the theorem by taking
other combinations of these spaces and notions. I have presented
those which seem most interesting.
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ExaMPLE. Let S be a maximal linearly independent subset of
A which contains the unit vectors (1,0, 0, ---), ete., and the constant
sequence k= (1,1, ..-). We define a function ! from S to the plane
such that if s is in S and s# k then I{(s) =0 and (k) =1. Let I’
be the linear extension of [ to A. Let L be the linear transfor-
mation from A to A such that if 2 is in A and » is a nonnegative
integer then

L(z), = U'(z) .

L is a linear transformation from A to A (indeed to the constant
sequences) and, since I’ cannot be represented by a sequence, L has
no matrix representation.

The author is indebted to Albert Wilansky for his encouragement
on this project.
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