REAL PARTS OF UNIFORM ALGEBRAS

JOHN M. F. O'CONNELL

This paper is concerned with identifying those uniform algebras B on $\Gamma = \{z : |z| = 1\}$ for which Re B—the space of real parts of the functions in B—equals Re A, where A denotes the disk algebra. It is shown that for any such algebra, there is an absolutely continuous homeomorphism Φ of Γ onto Γ so that $B = A(\Phi) = \{f(\Phi) : f \in A\}$. A partial converse to this theorem also holds: If Φ is a homeomorphism of Γ onto itself which is of class C^2 with nowhere vanishing derivative, then Re $A(\Phi) = \text{Re } A$.

For completeness, we recall that a uniform algebra on Γ is defined as a subalgebra of $C(\Gamma)$ which is closed in the norm $||f|| = \max_{\Gamma} |f|$, contains the constants and separates the points of Γ . The disk algebra is the particular uniform algebra consisting of all functions in $C(\Gamma)$ which extend continuously to $\{z: |z| \leq 1\}$ to be analytic on $D = \{z: |z| < 1\}$. Note that if Φ is a homeomorphism of Γ onto itself, then $A(\Phi)$ is a uniform algebra. In this paper we will frequently use the convention of writing $f(\theta)$ for $f(e^{i\theta})$ when f belongs to $C(\Gamma)$.

The first result along the lines discussed in this paper is due to Hoffman and Wermer [7]. They prove that if B is a uniform algebra on a compact Hausdorff space X such that Re B is closed in the norm of uniform convergence, then B = C(X); in particular, the theorem holds if Re $B = C_r(X)$. A generalization of this fact by Sidney and Stout [10] says that if K is a closed subset of X and Re B_K is uniformly closed, then $B_K = C(K)$. Bernard [1, 2, 3] has provided extensions in a different direction. He shows that a Banach algebra $B \subseteq C(X)$, with any norm, for which Re B is closed under uniform convergence must equal C(X). Further, he gives some sufficient conditions on two Banach algebras $B_1 \subseteq B_2 \subseteq C(X)$, with Re $B_1 = \text{Re } B_2$, to conclude that $B_1 = B_2$.

The theorems in this paper have previously been announced in Abstracts 71T-B10 and 71T-B94 of the *Notices of the American Mathematical Society*, 18 (1971). The author wishes to express his appreciation to Professor John Wermer for his many helpful suggestions and conversations during the research which led to these results.

II. Algebras on Γ with the same real parts.

THEOREM 1. Let B be a uniform algebra on Γ with Re B = Re A. Then there exists a homeomorphism Φ of Γ onto Γ so that $B = A(\Phi)$. **Proof.** (1). Since $\cos(\theta)$ belongs to Re B, there exists $v(\theta)$ so that $\psi(\theta) = \cos(\theta) + iv(\theta)$ belongs to B. Re $\psi(\theta)$ is one-to-one and decreasing on $[0, \pi]$ and one-to-one increasing on $[-\pi, 0]$; hence $C - \psi(\Gamma)$ has a bounded component, or else $\psi(\Gamma)$ defines a single curve traced twice, once in each direction. In the latter case, $\psi(\Gamma)$ is a Jordan arc; it then follows by Mergelyan's theorem that the function Re z is a uniform limit of polynomials on $\psi(\Gamma)$ and we can conclude that Re $\psi(\theta) = \cos(\theta) \in B$. Similarly there exists $u(\theta)$ in Re B so that $\psi_1(\theta) = u(\theta) + i \sin(\theta)$ belongs to B; and either $C - \psi_1(\Gamma)$ has bounded component or else $\sin(\theta) \in B$.

If both $\cos(\theta)$ and $\sin(\theta)$ are in B, then $B = C(\Gamma)$ and $\operatorname{Re} B \neq$ Re A. Thus at least one of $C - \psi(\Gamma)$ and $C - \psi_1(\Gamma)$ has a bounded component. We will assume that $C - \psi(\Gamma)$ has a bounded component, which we call W. The remainder of the proof using ψ_1 involves only minor changes.

(2). The region W is bounded by two arcs on $\psi(\Gamma)$. Precisely, there are values θ_1 and θ_2 with $0 \leq \theta_1 < \theta_2 \leq \pi$ for which $\psi(\theta_i) = \psi(-\theta_i)$, i = 1, 2 and $\partial W = \psi([\theta_1, \theta_2]) \cup \psi([-\theta_2, -\theta_1])$. For θ not contained in $[\theta_1, \theta_2] \cup [-\theta_2, -\theta_1]$, Re $\psi(\theta) < \operatorname{Re} \psi(\theta_2)$ or $\operatorname{Re} \psi(\theta) > \operatorname{Re} \psi(\theta_1)$.

Let τ be the Riemann map of W onto D; τ extends continuously to \overline{W} , mapping ∂W onto Γ in a one-to-one fashion. For convenience we may suppose $(\tau \circ \psi)(\theta_1) = 1$. We further extend τ by setting $\tau(z) =$ $(\tau \circ \psi)(\theta_1)$ for z with Re $z > \text{Re } \psi(\theta_1)$ and $\tau(z) = (\tau \circ \psi)(\theta_2)$ for z with Re $z < \text{Re } \psi(\theta_2)$. Then, letting K denote $\psi(\Gamma)$ together with all its bounded complementary components, τ is continuous on K and is analytic on its interior. Appealing again to Mergelyn's theorem, we conclude that τ is the uniform limit on K of polynomials. Hence $\tau \circ \psi$ belongs to B. Put $\Phi = \tau \circ \psi$. Then Φ maps Γ onto Γ in the following manner: (see figure)

 Φ takes the open arcs α_1 and α_2 homeomorphically onto γ_1 and γ_2 , and the closed arcs β_1 and β_2 onto the points $q_1 = \Phi(\theta_1) = 1$, $q_2 = \Phi(\theta_2)$ respectively.

(3) For each measure ν on Γ we define a measure ν^* on Γ by $\nu^*(E) = \nu(\Phi^{-1}(E))$, and for g in B and λ on $\gamma_1 \cup \gamma_2$ we put $g^*(\lambda) = g(\Phi^{-1}(\lambda))$. Let μ be a measure on Γ with $\mu \perp B$ and $\mu^* \neq 0$. Such measures must exist as otherwise every $\mu \perp B$ would be the zero measure on $\alpha_1 \cup \alpha_2$. Then for every closed subarc E of $\alpha_1 \cup \alpha_2$ of positive linear measure, it would follow that $B|_E = C(E)$. Hence Re $A|_E = C_R(E)$ which is impossible.

If g belongs to B and $|z| \neq 1$, define

$$T(g, z) = \int_{|\lambda|=1} \frac{(gd\mu)^*}{\lambda - z}(\lambda)$$
.

The function T is analytic on D and also on $\{z: |z| > 1\}$. We claim that T(g, z) = 0 if |z| > 1. For, on that set,

$$T(g, z) = \sum_{n=0}^{\infty} rac{-1}{z^{n+1}} \int_{|\lambda|=1} \lambda^n (gd\mu)^*(\lambda)$$
 .

The term for n = 0 is $\int_{|\lambda|=1} (gd\mu)^* = \int_{\Gamma} gd\mu = 0.$

For each n > 1,

$$\begin{split} \int_{|\lambda|=1} \lambda^n (gd\mu)^* &= \int_{r_1 \cup r_2} \lambda^n g^*(\lambda) d\mu^*(\lambda) \\ &+ q_1^n \int_{\beta_1} gd\mu + q_2^n \int_{\beta_2} gd\mu \\ &= \int_{\alpha_1 \cup \alpha_2} \varPhi^n(t) g(t) d\mu(t) \\ &+ \int_{\beta_1} q_1^n g(t) d\mu(t) + \int_{\beta_2} q_2^n g(t) d\mu(t) \\ &= \int_{|t|=1} \varPhi^n(t) g(t) d\mu(t) \\ &= 0, \text{ since } \varPhi^n g \text{ belongs to } B. \end{split}$$

(4) Let ν be any measure on Γ . Put $h(\theta) = \text{the } \nu$ -measure of the arc $\widehat{1e^{i\theta}}$. At any point $\lambda_0 = e^{i\theta_0}$ where $dh/d\theta(\theta_0)$ exists, we set $d\nu/d\lambda(\lambda_0) = dh/d\theta(\theta_0)$. Then for almost all values of λ_0 on Γ , we have

$$\lim_{{re^{i heta}
ightarrow\lambda_0}\over r<1} \Biggl[\int_{|\lambda|=1} {d
u(\lambda)\over\lambda-re^{i heta}} - \int_{|\lambda|=1} {d
u(\lambda)\over\lambda-{1\over r}e^{i heta}} \Biggr] = 2\pi i {d
u\over d\lambda}(\lambda_0) \; .$$

The limit is taken along non-tangential curves lying within the unit disk. The statement follows from Fatou's theorem by rewriting the terms inside the brackets as a Poisson integral. By applying this equality to the measures $(gd\mu)^*$ and using that T(g, z) = 0 for |z| > 1 we conclude that, for almost all λ_0 on $\gamma_1 \cup \gamma_2$,

$$\lim_{\substack{z o\lambda_0,\|z|<1^*}}T(g,z)=\lim_{\substack{z o\lambda_0\|z|<1}}\int_{|\lambda|=1}rac{(gd\mu)^*}{\lambda-z}(\lambda)\ =2\pi ig^*(\lambda_0)rac{d\mu^*}{d\lambda}(\lambda_0)\;.$$

The function T(1, z) is the Cauchy transform of the nonzero measure μ^* . Since the Cauchy transform of a measure is zero almost everywhere-dxdy if and only if the measure itself is zero¹, and since T(1, z) vanishes identically for |z| > 1 it follows that T(1, z) cannot vanish identically on D. Also, T(1, z) has the boundary value $2\pi i(d\mu^*/d\lambda)(\lambda_0)$ for almost all λ_0 on $\gamma_1 \cup \gamma_2$. (Here boundary value means the limiting value along non-tangential curves approaching λ_0 from inside the unit disk). It is a theorem of Privalov and Lusin² that a function which is analytic on D and which has the non-tangential limiting value zero on a set of positive measure on Γ must vanish identically on D. Applying this result to T(1, z) we can conclude that $d\mu^*/d\lambda(\lambda_0) \neq 0$ for almost all λ_0 on $\gamma_1 \cup \gamma_2$.

For each g contained in B, T(g, z) is analytic on D and has the boundary values $2\pi i g^*(\lambda_0) d\mu^*/d\lambda(\lambda_0)$ almost everywhere on $\gamma_1 \cup \gamma_2$. Consequently, the function G(z) = T(g, z)/T(1, z) is meromorphic on D and has the boundary values $g^*(\lambda_0)$ almost everywhere on $\gamma_1 \cup \gamma_2$.

(5) Now we show that each function G(z) obtained in the manner just described is analytic on D. To this end, take z_0 in D so that $T(1, z_0) \neq 0$. The functional S defined on B by $S(g) = G(z_0)$ is linear. For any two functions g_1 and g_2 belonging to B, the function t(z) = $T(1, z)T(g_1g_2, z) - T(g_1, z)T(g_2, z)$ is analytic on D and has zero boundary values almost everywhere. Hence, by the theorem Privalov and Lusin cited in the last paragraph, $t \equiv 0$ and the meromorphic functions

$$\frac{T(g_1g_2, z)}{T(1, z)} \text{ and } \frac{T(g_1, z)}{T(1, z)} \frac{T(g_2, z)}{T(1, z)}$$

are identically equal whenever defined. Thus S is a multiplicative linear functional on the commutative Banach algebra B and as such has norm one. That is, $|G(z_0)| \leq ||g||$ for every z_0 with $T(1, z_0) \neq 0$. As the zeros of T(1, z) form a discrete set, all the singularities of G are removable and G extends analytically to D. Furthermore, G is bounded on D with $|G(z)| \leq ||g||$ for all z contained in D.

238

¹ See Browder [4] or Gamelin [5] for details.

² See Goluzin [6], p. 428, or Privalov [9].

(6). The next step is to show G belongs to A. G can be defined from g^* using the Poisson integral formula. A well-known property of that formula says that G has the nontangential boundary value $g^*(\lambda_0)$ at every point of continuity of g^* . Thus G has the boundary values g^* everywhere on $\gamma_1 \cup \gamma_2$. The following result may be used to prove that G has continuous boundary values everywhere on Γ .

THEOREM.³ If $f(z) \rightarrow a$ as $z \rightarrow \infty$ along a straight line and $f(z) \rightarrow b$ as $z \rightarrow \infty$ along another straight line, and f(z) is regular and bounded in the angle between, then a = b and $f(z) \rightarrow a$ uniformly in the angle.

In the present case, the four limits $\lim_{\lambda \to q_i} g^*(\lambda)$, for i, j = 1, 2, all exist, because of the continuity of the function g. By considering neighborhoods of q_1 and q_2 in \overline{D} , mapping them to the upper half plane sending q_1 and q_2 in turn to the point at ∞ , we can conclude that $\lim_{z\to q_1} G(z)$ and $\lim_{z\to q_2} G(z)$ both exist and that $G \in A$. In fact, we must have that $\lim_{z\to q_1} G(z) = g(\theta_1) = g(-\theta_1)$ and $\lim_{z\to q_2} G(z) = g(2) = g(-\theta_2)$, for every function g belonging to B. But as B separates points on Γ , this is impossible unless $\theta_1 = 0$, $\theta_2 = \pi$. There, Φ is a homeomorphism of Γ onto Γ .

(7). Since Φ belongs to B, $A(\Phi) \subseteq B$ or equivalently $A \subseteq B(\Phi^{-1})$. As Re $B = \text{Re } A \neq C_R(\Gamma)$, then $B(\Phi^{-1}) \neq C(\Gamma)$. Hence by Wermer's Maximality Theorem, $B(\Phi^{-1}) = A$ or $B = A(\Phi)$.

THEOREM 2. Let Φ be a homeomorphism of Γ onto Γ satisfying Re $A(\Phi) = \text{Re } A$. Then Φ is absolutely continuous.

Proof. We also have that $\operatorname{Re} A(\Phi^{-1}) = \operatorname{Re} A$. Let m denote Lebesgue measure on Γ . We claim that if K is a closed set with m(K) = 0, then $m(\Phi(K)) = 0$. For, let $g \in C(\Phi(K))$. Then $g \circ \Phi|_K \in C(K)$. Since we assume that K is closed with m(K) = 0, it follows that $A|_K = C(K)^4$, so that there exists G belonging to A with $G|_K = g \circ \Phi|_K$. Thus $g|_{\phi(K)} = G \circ \Phi^{-1}|_{\phi(K)}$. In particular, if $g \in C_R(\Phi(K))$, then $g \in \operatorname{Re} A(\Phi^{-1})|_{\phi(K)} = \operatorname{Re} A|_{\phi(K)}$. Hence $\operatorname{Re} A|_{\phi(K)}$ is closed in the uniform norm. This implies that $A|_{\sigma(K)} = C(\Phi)K))^5$. If $m(\Phi(K)) > 0$, A would necessarily contain a nonzero function which vanished on a set of positive measure on Γ . This is impossible since the functions in A satisfy the Jensen inequality $\log |f(0)| \leq 1/2\pi \int_{\Gamma} \log |f| d\theta$. Hence we must have $m(\Phi(K)) = 0$.

³ Titchmarsh [11], 5,64.

⁴ This is a theorem of Rudin and Carleson. See [5] for details.

⁵ This result is due to Sidney and Stout [10].

Now if we define a measure μ on Γ by $\mu(E) = m(\Phi(E))$ we have that μ is absolutely continuous with respect to m. To see this, let m(E) = 0. There exists an F_{σ} set $F \subseteq E$ such that $\mu(E \setminus F) = 0$. We can write $F = \bigcup_{n=1}^{\infty} K_n$ where K_n is closed and $K_n \subseteq K_{n+1}$ for each n. From the last paragraph, it follows that $\mu(K_n) = 0$. Hence $\mu(F) = 0$ and $m(\phi(E)) = \mu(E) = 0$.

For an arc $\widehat{\alpha\beta}$, $\mu(\widehat{\alpha\beta}) = |\Phi(\beta) - \Phi(\alpha)|$. The absolute continuity of μ implies that for $\varepsilon > 0$, there is a $\delta > 0$ so that $m(E) < \delta \Rightarrow$ $\mu(E) < \varepsilon$. Hence if $\widehat{\alpha_i\beta_i}$, $1 \leq i \leq N$, are disjoint arcs with $\sum_{i=1}^N m(\widehat{\alpha_i\beta_i}) < \delta$ then $\sum_{i=1}^N |\Phi(\beta_i) - \Phi(\alpha_i)| < \varepsilon$. Therefore Φ is absolutely continuous.

REMARKS. (1) Theorem 1 cannot be extended freely: there exist examples of sets X, and two uniform algebras A and B defined on X satisfying Re A = Re B, but for which no homeomorphism Φ yields $B = A(\Phi)$.

(2) If, on Γ , $B = \overline{A}$, the set of complex conjugates of the functions in A, the map $z \to \overline{z}$ is a suitable choice for Φ .

III. Sufficient conditions on Φ to conclude Re $A(\Phi) = \text{Re } A$.

DEFINITION. Let Re $A^{\dagger} = \{f: f \text{ is continuous on } R$, with period 2π , and so that the function F, defined on Γ by $F(e^{i\theta}) = f(\theta)$, belongs to Re $A\}$.

DEFINITION. For u in Re A, define $|||u||| = ||u|| + ||\tilde{u}||$ where $||\cdot||$ is the uniform norm on Γ , $u + i\tilde{u}$ belongs to A and $\tilde{u}(0) = 0$. For fin (Re A)[†], \tilde{f} denotes the function in (Re A)[†] such that $G(e^{i\theta}) = f(\theta) + i\tilde{f}(\theta)$ belongs to A and Im G(0) = 0. We put $||f|| = \max_{\mathbf{R}} |f|$ and

$$|||f||| = ||f|| + ||\widetilde{f}||$$
.

With $||| \cdot |||$ as a norm, Re A and (Re A)[†] have the structure of real Banach spaces in which smooth functions are dense.

LEMMA 1. Suppose ϕ is a homeomorphism of $[-\pi, \pi]$ onto $[\alpha, 2\pi + \alpha]$, with inverse ψ , and satisfying

(i) $\phi(0) = 0$,

(ii) ϕ is of class C^2 , $\phi'(-\pi) = \phi'(\pi)$, $\psi'(\alpha) = \psi'(\alpha + 2\pi)$,

(iii) $|\phi'(t)| \ge \gamma > 0$, $|\psi'(t)| \ge \delta > 0$ and $|\psi''(t)| \le M$ for all t in $[-\pi, \pi]$.

Then, for a smooth function f in $(\text{Re } A)^{\dagger}$, $f \circ \phi$ which is defined on $[-\pi, \pi]$, if extended periodically to R, lies in $(\text{Re } A)^{\dagger}$. There exists a constant C > 0, depending only on γ , δ and M, so that

$$|\widetilde{f\circ\phi}(0)-\widetilde{f}(0)|\leq C||f||$$
 .

Consequently,

$$|\widetilde{f\circ\phi}(0)|\leq (C+1)|||f|||$$
 .

Proof. We can assume, with no loss of generality, that $\phi'(t) \ge \gamma$ on $[-\pi, \pi]$. The proof if ϕ is a decreasing function is almost identical. Our assumption means that $\phi(-\pi) = \alpha < 0$.

Let f be a smooth function in $(\text{Re } A)^{\dagger}$. As $\phi(-\pi) + 2\pi = \phi(\pi)$, then $f \circ \phi$ can be extended to **R**, continuously with period 2π . Since f and ϕ are smooth and $\phi'(-\pi) = \phi'(\pi)$, $f \circ \phi$ is smooth and thus belongs to $(\text{Re } A)^{\dagger}$.

Assume first that f(0) = 0. The integral formula for evaluating harmonic conjugates gives⁶

All these integrals are absolutely convergent because of the smoothness of f and ϕ , and because $f(0) = \phi(0) = 0$. We use the fact that $x \cot x$ has a series expansion

⁶ Zygmund [13] vol. I, p. 131.

$$x \cot x = \sum_{n=0}^{\infty} A_n x^n$$

which converges for $|x| < \pi$. Hence

$$\frac{1}{\tan x} = \frac{1}{x} + a(2x)$$

where a(t) is real analytic for $|t| < 2\pi$. Substitution of (3) into (1) and (2) yields

$$\widetilde{f}(0) = - rac{1}{2\pi} \int_{lpha}^{2\pi+lpha} f(t) igg[rac{1}{t} + a(t) igg] dt \ igg[rac{1}{2} + a(t) igg] dt$$

and

$$\widetilde{f\circ\phi}(0) = - rac{1}{2\pi} \int_{lpha}^{2\pi+lpha} f(t) \Biggl[rac{1}{rac{\psi(t)}{2}} + a(\psi(t)) \Biggr] \psi'(t) dt \; .$$

Since $-2\pi < \alpha < 0$, a(t) is continuous on $[\alpha, 2\pi + \alpha]$, and since $-\pi \leq \psi(t) \leq \pi$, these two integrals are absolutely convergent. Subtracting them, we get

(4)
$$|\widetilde{f \circ \phi}(0) - \widetilde{f}(0)| \leq \frac{1}{2\pi} ||f|| \int_{\alpha}^{2\pi+\alpha} \left\{ 2 \left| \frac{\psi'(t)}{\psi(t)} - \frac{1}{t} \right| + |a(\psi(t))| \psi'(t) + |a(t)| \right\} dt .$$

We estimate each term in the integrand. For the first term, we write $\psi(t) = t\psi_1(t)$. ψ_1 is smooth on $[\alpha, 2\pi + \alpha]$ and $\psi_1(0) \neq 0$. For each t in $[\alpha, 2\pi + \alpha]$,

$$egin{aligned} \psi(t) &= \int_0^1 rac{d}{ds} \psi(st) ds \ &= \int_0^1 t \psi'(st) ds \ &= t \int_0^1 \psi'(st) ds \ . \end{aligned}$$

Thus

$$\psi_{\scriptscriptstyle 1}(t) = \int_{\scriptscriptstyle 0}^{\scriptscriptstyle 1} \psi'(st) ds \geqq \delta$$
 .

Also,

$$\psi_{1}'(t) = \int_{0}^{1} \frac{d}{dt} \psi'(st) ds$$

$$= \int_{0}^{1} s \psi''(st) ds$$

$$(5) \qquad \longrightarrow |\psi_{1}'(t)| \leq M \int_{0}^{1} s ds = \frac{M}{2}$$

$$\implies \left|\frac{\psi'(t)}{\psi(t)} - \frac{1}{t}\right| = \left|\frac{\psi_{1}'(t)}{\psi_{1}(t)}\right| \leq \frac{M}{2\delta}$$

$$\implies \int_{\alpha}^{2\pi+\alpha} \left|\frac{\psi'(t)}{\psi(t)} - \frac{1}{t}\right| dt \leq \frac{M\pi}{\delta}.$$

For the second term in (4),

(6)
$$\int_{\alpha}^{2\pi+\alpha} |a(\psi(t))| \psi'(t) dt = \int_{-\pi}^{\pi} |a(t)| dt.$$

For the last term, we note that

$$egin{aligned} &2\pi+lpha&=\phi(\pi)\ &=\phi(\pi)-\phi(0)\ &=\pi\phi'(r) \ ext{for some} \ r\in[0,\pi]\ .\ &\Longrightarrow 2\pi+lpha&\geq\gamma\pi\ &\Longrightarrowlpha&\geq\gamma\pi-2\pi\ . \end{aligned}$$

Similarly,

$$\begin{aligned} & -\alpha = -\phi(-\pi) \\ & = \phi(0) - \phi(-\pi) \\ & = \pi \phi'(r_1) \text{ for some } r_1 \in [-\pi, 0] \text{ .} \\ & \longrightarrow -\alpha \ge \gamma \pi \\ & \longrightarrow 2\pi + \alpha \le 2\pi - \gamma \pi \text{ .} \end{aligned}$$

Thus,

(7)
$$\int_{\alpha}^{2\pi+\alpha} |a(t)| dt \leq \int_{-2\pi+\gamma\pi}^{2\pi-\gamma\pi} |a(t)| dt.$$

The inequalities (4), (5), (6) and (7) imply

$$(8) \qquad |\widetilde{f \circ \phi}(0) - \widetilde{f}(0)| \leq ||f|| \frac{1}{2\pi} \left[2\pi \frac{M}{\delta} + \int_{-\pi}^{\pi} |a(t)| dt + \int_{-2\pi+\gamma\pi}^{2\pi-\gamma\pi} |a(t)| dt \right].$$

Put C/2 equal to the coefficient of ||f|| in (8). Note that C depends only on M, δ and γ . That inequality applies to smooth functions in (Re A)[†] vanishing at x = 0. Now, let f be any smooth function in (Re A)[†]. We can apply (8) to f - f(0). Since $\tilde{f}(0) = \underbrace{\tilde{f}(f - f(0))}_{(0)}(0)$ and $\widetilde{f \circ \phi}(0) = \underbrace{\tilde{f}(f - f(0))}_{(0)}(0)$, we conclude that

$$\begin{split} |\widetilde{f \circ \phi}(0) - \widetilde{f}(0)| &\leq ||f - f(0)|| \frac{C}{2} \\ \implies |\widetilde{f \circ \phi}(0) - \widetilde{f}(0)| &\leq C ||f|| \\ \implies |\widetilde{f \circ \phi}(0)| &\leq C ||f|| + |\widetilde{f}(0)| \\ &\leq C ||f|| + ||\widetilde{f}|| \\ &\leq (C+1) |||f||| \, . \end{split}$$

DEFINITION. For $\beta > 0$ define C_{β} by $C_{\beta} = \{ \Phi : \Phi \text{ is a homeomorphism of } \Gamma \text{ onto } \Gamma \text{ of class } C^2 \text{ satisfying:} \}$

$$egin{aligned} eta &\leq \left|rac{d}{dt} arPhi(e^{it})
ight| \leq rac{1}{eta} \ eta &\leq \left|rac{d}{dt} arPhi^{-1}(e^{it})
ight| \leq rac{1}{eta} \ \left|rac{d^2}{dt^2} arPhi(e^{it})
ight| &\leq rac{1}{eta} \ \left|rac{d^2}{dt^2} arPhi^{-1}(e^{it})
ight| &\leq rac{1}{eta} \ \end{aligned}
ight\}. \end{aligned}$$

LEMMA 2. There exists $K_{\beta} > 0$, depending only on β such that for all Φ belonging to C_{β} with $\Phi(1) = 1$ and for all smooth functions F in Re A, we have

$$|\widetilde{F(arPhi)}(1)| \leq K_{\scriptscriptstyleeta}|||F|||$$
 .

Proof. Define ϕ on $[-\pi, \pi]$ by $\Phi(e^{it}) = e^{i\phi(t)}$. Then ϕ is of class C^2 and $\phi(0) = 0$. If $\Psi = \Phi^{-1}$ and $\Psi(e^{iu}) = e^{i\psi(u)}$ for $u \in \phi([-\pi, \pi])$, then ψ is the inverse of ϕ . Furthermore

$$egin{aligned} | \phi'(t) | &= \left| rac{d}{dt} arPsi(e^{it})
ight| \;, \ | \psi'(t) | &= \left| rac{d}{dt} arPsi(e^{it})
ight| \;, \end{aligned}$$

and

$$|\psi^{\prime\prime}(t)| = \left|rac{d^2}{dt^2} arPsi(e^{it})
ight| + \left|rac{d}{dt} arPsi^{(it)}
ight|^2.$$

If we set $\gamma = \beta$, $\delta = \beta$ and $M = 1/\beta + 1/\beta^2$, then ϕ satisfies the

hypotheses of Lemma 1, and if we apply the lemma to ϕ , the constant C obtained in (8) depends only on β .

If F is a smooth function in Re A and if f is defined on R by $f(\theta) = F(e^{i\theta})$, then f is a smooth function in $(\text{Re } A)^{\dagger}$ with |||F||| = |||f||| and $\widetilde{f \circ \phi}(0) = \widetilde{F \circ \Phi}(1)$. Hence (9) yields that

$$|\widetilde{F(arPhi)}(1)| \leq (C+1)|||F|||$$
 .

Therefore the lemma is proved by defining $K_{\beta} = C + 1$.

LEMMA 3. If Φ belongs to C_{β} , then

$$|\widetilde{F(arPhi)}(1)| \leq K_{eta}|||F|||$$

for all smooth functions F contained in Re A.

Proof. Define λ by $\Phi(1) = e^{i\lambda}$ and set $\Phi_1 = e^{-i\lambda}\Phi$. Note that $\Phi_1(1) = 1$. If $\Psi = \Phi^{-1}$ and $\Psi_1 = \Phi^{-1}_1$ then $\Psi_1(e^{it}) = \Psi(e^{i(t+\lambda)})$. We check that $\Phi_1 \in C_\beta$ by noting that

$$egin{aligned} &\left| rac{d}{dt} arPsi_1(e^{i\iota})
ight| = \left| rac{d}{dt} arPsi(e^{i\iota})
ight| \ &\left| rac{d^2}{dt^2} arPsi_1(e^{i\iota})
ight| = \left| rac{d^2}{dt^2} arPsi(e^{i\iota})
ight| \ &\left| rac{d}{du} arPsi_1(e^{iu})
ight| = \left| rac{d}{du} arPsi(e^{i(u+\lambda)})
ight| \ &\left| rac{d^2}{du^2} arPsi_1(e^{iu})
ight| = \left| rac{d^2}{du^2} arPsi(e^{i(u+\lambda)})
ight| \end{aligned}$$

Thus, by Lemma 2, $|\widetilde{G(\Phi_i)}(1)| \leq K_{\beta}|||G|||$ for all smooth functions G belonging to Re A. Now, given F smooth in Re A, put $G(e^{i\theta}) = F(e^{i(\theta+\lambda)})$. Then $G(\Phi_1) = F(\Phi)$, $\widetilde{G(\Phi_1)} = \widetilde{F(\Phi)}$ and |||F||| = |||G|||. Hence

$$|\widetilde{F(arPhi)}(1)| \leq K_{\scriptscriptstyleeta}|||F|||$$
 .

LEMMA 4. For $\Phi \in C_{\beta}$ and ζ with $|\zeta| = 1$,

$$|F(\Phi)(\zeta)| \leq K_{\beta} |||F|||$$

for all smooth functions F in Re A.

Proof. Fix $\zeta = e^{i\lambda}$ on Γ . Define Φ^* by $\Phi^*(e^{i\theta}) = \Phi(e^{i(\theta+\lambda)})$. By comparing the derivatives of Φ, Φ^* and their respective inverses in a manner similar to that in Lemma 3, we can show that $\Phi^* \in C_{\beta}$. Therefore, for a smooth function F in Re A,

$$\widetilde{F(arPhi^*)}(1) \mid \ \leq K_{\scriptscriptstyleeta} \mid\mid\mid F \mid\mid\mid$$
 .

But $\widetilde{F(\Phi)}(\zeta) = \widetilde{F(\Phi^*)}(1)$. Hence

$$|\widetilde{F(arPhi)}(\zeta)| \leq K_{\scriptscriptstyleeta} |||F|||$$
 .

LEMMA 5. If Φ belongs to C_{β} for some $\beta > 0$, then $\operatorname{Re} A(\Phi) \subseteq$ Re A.

Proof. From Lemma 4, it follows that if F is a smooth function in Re A,

$$\|\widetilde{F(arPhi)} \leq K_{\scriptscriptstyleeta}|\|F\||$$
 .

Hence

$$egin{aligned} |||F(arPsi)|| &= ||F(arPsi)|| + ||\widetilde{F(arPsi)}|| \ &\leq ||F|| + K_{eta}|||F||| \leq (K_{eta}+1)|||F||| \ . \end{aligned}$$

Defining T by $T(F) = F(\Phi)$, we see that T is a bounded linear transformation defined on smooth functions in Re A and mapping into Re A. The domain of T is dense in Re A, so that T has a norm preserving extension which maps Re $A \to \text{Re } A$; we also denote this extension by T. If u belongs to Re A, there are smooth function F_n in Re A with $|||F_n - u||| \to 0$, and therefore $|||F_n(\Phi) - Tu||| \to 0$. These imply that $||F_n - u|| \to 0$ and $||F_n(\Phi) - Tu|| \to 0$. Hence $Tu = u(\Phi)$. That is $u(\Phi)$ belongs to Re A for every u in Re A.

THEOREM 3. Let Φ belong to C_{β} for some $\beta > 0$. Then $\operatorname{Re} A(\Phi) = \operatorname{Re} A$.

Proof. We apply Lemma 5 to Φ and Φ^{-1} , both of which are contained in C_{β} , to conclude Re $A(\Phi) \subseteq$ Re A and Re $A(\Phi^{-1}) \subseteq$ Re A. Therefore Re $A(\Phi) =$ Re A.

COROLLARY. Let Φ be a homeomorphism of Γ onto Γ of class C^2 with $d/dt(\Phi(e^{it})) \neq 0$ for all t. Then $Re A(\Phi) = Re A$.

REMARK. The assumption that $d/dt(\Phi(e^{it}) \neq 0 \text{ cannot be eliminated},$ as there do exist examples of homeomorphisms Φ of Γ onto Γ which are of class C^{∞} , but for which $\operatorname{Re} A(\Phi) \neq \operatorname{Re} A$.

References

 $\mathbf{246}$

^{1.} A. Bernard, Une caracterisation de C(X) parmi les algèbres de Banach, C. R. Acad. Sc. Paris, **267** (1968), 634-635, Series A.

2. _____, Comparaison d'algèbres de fonctions à l'aide des parties reélles de leurs éléments, C. R. Acad. Sc. Paris, **270** (1970), 29-32, Series A.

3. ____, Algèbres ultraseparantes de fonctions continues, C. R. Acad. Sc. Paris, **270** (1970), 818-819, Series A.

4. A. Browder, Introduction to Function Algebras, W. A. Benjamin, Inc., 1969.

5. T. W. Gamelin, Uniform Algebras, Prentice-Hall, 1969.

6. G. M. Goluzin, *Geometric Theory of Functions of a Complex Variable*, Amerian Mathematical Society, Translations of Mathematical Monographs, Vol. **26**, 1969.

7. K. Hoffman and J. Wermer, A Characterization of C(X), Pacific Math., J. **12** (1962), 941-944.

8. Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, 1968.

9. I. I. Privalov, Randeigenschaften analytischer Funktionem, VEB Deutscher Verlag, 1956.

10. S. J. Sidney and E. L. Stout, A note on interpolation, Proc. Amer. Math. Soc., 19 (1968), 380-382.

11. E. Titchmarsh, The Theory of Functions, Oxford Univ. Press, 1939.

12. J. Wermer, Function rings on Riemann surfaces, Annals of Math., 67 (1958), 45-71.

13. A. Zygmund, Trigonometric Series 2nd. ed., Cambridge Univ. Press, 1959

Received July 23, 1971.

BROWN UNIVERSITY