CONCERNING DENTABILITY

MICHAEL EDELSTEIN

It is shown that c_0 contains a closed and bounded convex body which is dentable but fails to have extreme points. On the other hand, there exists a strictly convex, closed, symmetric, convex body which fails to be dentable. (Thus dentability is, in general, unrelated to extremal structure.)

1. In [2], Rieffel introduced the notion of dentability for a subset K of a Banach space X. Rephrased, it reads:

1.1. K is dentable if, for every $\varepsilon > 0$, there is an $x \in K$ and an $f \in X^*$ such that some hyperplane determined by f separates x from $K_{\varepsilon} = K \sim \overline{B(x, \varepsilon)}$, where $B(x, \varepsilon)$ is the ball of radius ε about x.

One of the questions asked by Rieffel [Ibid., p. 77] is whether a closed and bounded convex set exists in some Banach space which is dentable but has no strongly exposed points. We answer this question by exhibiting a dentable symmetric closed convex body in c_0 which has no extreme points at all. To further show that the connection between dentability and extreme structure can be quite tenuous, we also exhibit in c_0 a strictly convex body which (in spite of the fact that each boundary part is exposed) is not dentable.

Another question of Rieffel, namely, whether each weakly compact subset of a Banach space is dentable has recently been answered in the affirmative by Troyanski [3]. The example of the unit ball in the conjugate Banach space m is used by us (Proposition 3) to show that, in contrast to the above, a weak*-compact set need not be dentable.

2. Dentability properties of certain subsets of c_0 and m.

PROPOSITION 1. There is a dentable closed and bounded convex body in c_0 which has no extreme point.

Proof. For $n = 1, 2, \cdots$ set $B_n = B((2 - 2^{1-n})e_n, 2^{1-n})$, where $e_n = \{x_i\} \in c_0$ with $x_n = 1$, $x_i = 0$ for $i \neq n$. Let $C_n = (-B_n) \cup B_n$ and $C = \overline{co} (\bigcup_{n=1}^{\infty} C_n)$. We claim that C has the desired properties.

(i) C has no extreme points.

Suppose, for a contradiction, that C has an extreme point

$$y = (y_1, y_2, \cdots)$$
.

Clearly, ||y|| > 1 (since \overline{C}_1 contains the unit ball) and without restriction of generality we may assume that $||y|| = y_k$ for some k. Let $\{u^{(m)}\}$ be a sequence in $co \{\bigcup_{n=1}^{\infty} C_n\}$ converging to y with

(1)
$$||u^{(m)} - y|| < \min(y_k - 1, 2^{-k-2})$$
 $(m = 1, 2, \cdots)$.

Write

(2)
$$u^{(m)} = \sum_{i=1}^{l} \lambda_i u^{(mi)}$$

with $u^{(mi)} \in C_i$, $\lambda_i \ge 0$ $(i = 1, 2, \dots, l)$, and $\sum_{i=1}^{l} \lambda_i = 1$. It is clear from the definition of the B_i that, for i > k, $u_k^{(mi)} \le 2^{1-i} \le 2^{-k}$, where $u_k^{(mi)}$ is the kth coordinate of $u^{(mi)}$.

Thus, by (1),

$$1 < u_k^{(m)} = \sum\limits_{i=1}^k \lambda_i u_k^{(mi)} \ + \sum\limits_{i=k+1}^l \lambda_i u_k^{(mi)} \ \leq 2 \sum\limits_{i=1}^{i=k} \lambda_i + 2^{-k} \left(1 - \sum\limits_{i=1}^k \lambda_i
ight).$$

It follows that

$$(3) \qquad \qquad \sum_{i=1}^{k} \lambda_i > \frac{1-2^{-k}}{2-2^{-k}} > \frac{1}{2} - \frac{1}{2^{k+1}} \ge \frac{1}{4}.$$

Now let j be a positive integer with the property that $|y_j| < 2^{-k-3}$. To show that y, contrary to assumption, cannot be an extreme point, we exhibit two points \bar{y} and \underline{y} in C such that $\bar{y}_j > \underline{y}_j > y_{-j}$ with all other coordinates of these points equal. To this end define $\{\bar{u}^{(m)}\}$ and $\{\underline{u}^{(m)}\}$ as follows.

Using (2), set

$$\bar{u}_n^{(mi)} = \underline{u}_n^{(mi)} = u_n^{(mi)}$$

for $m = 1, 2, \dots, j; n \neq j, i = 1, 2, \dots, l;$

$$ar{u}_{j}^{\scriptscriptstyle (mi)} = - \ \underline{u}_{j}^{\scriptscriptstyle (mi)} = egin{cases} 2^{-k} & ext{for} \ i \leq k \ 0 & ext{for} \ i > k \end{cases}$$

It follows from (3) that

$$ar{u}_j^{\scriptscriptstyle (m)}=- \underline{u}_j^{\scriptscriptstyle (m)}\geqq 2^{-k-2}$$
 .

Thus, $\bar{u}_j^{(m)} \ge y_j + 2^{-k-3}$ and $\underline{u}_j^{(m)} \le y_j - 2^{-k-3}$. It is now obvious that $\{\bar{u}^{(m)}\}$ and $\{\underline{u}^{(m)}\}$ converge to points \bar{y} and \underline{y} , respectively, having the desired properties. This completes the proof that C has no extreme points.

(ii) C is dentable.

Let $\varepsilon > 0$ be given and choose n so that $2^{2-n} < \varepsilon$. We show that $\overline{co}(C \sim B)$ wehre $B = B(2e_n, \varepsilon)$ does not contain $2e_n \in C$.

To this end, consider the set $H^{(n)} = \{x \in co (\bigcup_{n=1}^{\infty} C_n): x_n \ge 2 - 2^{-n}\}$. Any member h of $H^{(n)}$ can be represented in the form $h = \sum_{i=1}^{m} \lambda_i x^i$ with $\lambda_i \ge 0$, $\sum_{i=1}^{m} \lambda_i = 1$ and $x_i \in C_i$, $i = 1, 2, \dots, m$; $m \ge n$. Now, by definition, $h_n = \sum_{i=1}^{m} \lambda_i x_n^i \ge 2 - 2^{-n}$. On the other hand,

$$egin{aligned} h_n &= \lambda_n x_n^n + \sum\limits_{i \neq m} \lambda_i x_n^i \leqq \lambda_n x_n^n + (1 - \lambda_n) \ &= \lambda_n (x_n^n - 1) + 1 \leqq \lambda_n + 1 \;. \end{aligned}$$

It follows that $\lambda_n \geq 1 - 2^{-n}$. Consequently,

$$||\, 2e_n - h\, || \leq 2^{2-n} \ (h \in H^{(n)})$$
 ,

for $|(2e_n)_n - h_n| \leq |2 - (2 - 2^{-n})| = 2^{-n}$ and, for $k \neq n$,

$$(2e_n-h)_k=|\sum\lambda_i x_k^i|\leq 1-\lambda_n\leq 2^{2-n}$$
 .

Thus $B(2e_n, \varepsilon)$ contains $H^{(n)}$ and clearly, $\overline{C \sim H^{(n)}}$ is convex with $2e_n \notin \overline{C \sim H^{(n)}}$. We have shown that C is dentable completing thereby the proof of the proposition.

PROPOSITION 2. In c_0 there exists a symmetric, closed and bounded convex body which is strictly convex and fails to be dentable.

Proof. Let

$$C = \left\{ x \in c_{0} : \; || \, x \, || + \left(\sum\limits_{n=1}^{\infty} 2^{-n} x_{n}^{2}
ight)^{1/2} \leq 1
ight\}$$
 .

It is well-known (cf. [1, p. 362]) that C defines an equivalent strictly convex norm and, therefore, only the nondentability has to be shown. We note that for $x = (x_1, x_2, \dots, x_n, \dots) \in \text{bdry}C$, we have $||x|| \ge 1/2$ so that for such an x there is an integer m with $|x_m| = ||x|| \ge 1/2$. Let $1/4 > \varepsilon > 0$ and choose $0 < \delta < \varepsilon/2$ small enough so that ||x|| = $||x'|| + \delta$ if x' is the vector obtained from x by replacing each coordinate x_i , with $|x_i| = ||x||$, by $|x_i| - \delta$. Next, let k be large enough so that $||x_k| < \delta$ and

$$\left(\sum\limits_{n \neq k} 2^{-n} x_n^2 + rac{1}{2^{k+4}}
ight)^{1/2} \leq \left(\sum\limits_{n=1}^\infty 2^{-n} x_n^2
ight)^{1/2} + \delta$$
 .

To prove nondentability, it clearly suffices to exhibit $u, v \in C$ such that $||(u + v)/2 - x|| < \delta$ and $||u - v|| \ge 1/2$. To this end, set $u_i = v_i = x_i$ for those $i \ne k$ for which $|x_i| < ||x||$; $u_k = -v_k = 1/4$; and $u_j = v_j = x_j - \delta x_j/|x_j|$, otherwise. Since $||u|| = ||v|| = ||x|| - \delta$ and

$$\left(\sum_{n=1}^{\infty} \mathbf{2}^{-n} u_n^2
ight)^{1/2} = \left(\sum_{n=1}^{\infty} \mathbf{2}^{-n} v_n^2
ight)^{1/2} \leqq \left(\sum_{n=1}^{\infty} \mathbf{2}^{-n} x_n^2
ight)^{1/2} + \delta$$
 ,

 $|x_k| < \delta$, and, for all coordinates $j \neq k$ at which u, v and x are distinct, we have $|((u + v)/2 - x)_j| = \delta$. Finally,

$$||u - v|| = ||u_k - v_k|| = \frac{1}{2}$$
.

PROPOSITION 3. The unit ball in m is not dentable.

Proof. Let $0 < \varepsilon < 1/4$ and $x = (x_1, x_2, \cdots) \in m$ with $||x|| \leq 1$. Either (i) there is an integer k with $|x_k| \leq 1/4$, or (ii) for every index *j*, $|x_j| > 1/4$.

In case (i), define \bar{x} and x by setting

$$ar{x}=\left(x_{\scriptscriptstyle 1},\,x_{\scriptscriptstyle 2},\,\cdots,\,x_{\scriptscriptstyle k}+rac{1}{4},\,\cdots
ight)\ \underline{x}=\left(x_{\scriptscriptstyle 1},\,x_{\scriptscriptstyle 2},\,\cdots,\,x_{\scriptscriptstyle k}-rac{1}{4},\,\cdots
ight)$$

so that $(1/2)(\overline{x} + \underline{x}) = x$ and $||\overline{x} - \underline{x}|| = 1/2 > \varepsilon$. In case (ii), define

$$x^{(i)} = \left(x_1, x_2, \cdots, x_i - rac{x_i}{4 |x_i|}, \cdots
ight) \quad (i = 1, 2, \cdots)$$
 ,

so that $||x - x^{(i)}|| = 1/4$. Now, $x \in \overline{co} \{x^{(i)}: i = 1, 2, \dots\}$. For,

$$\left(x-rac{1}{j}\sum\limits_{n=1}^{j}x^{(n)}
ight)_{k}=egin{cases} 0, & ext{if} \ k>j\ rac{1}{j}\left(x_{k}-rac{x_{k}}{4\leftert x_{k}
ightert}
ight)$$

showing that $(1/j) \sum_{n=1}^{j} x^{(n)} \rightarrow x$. Thus, the dentability condition fails, proving the proposition.

References

1. G. Köthe, Topological Vector Spaces I, Berlin-Heidelberg-New York, 1969.

2. M. A. Rieffel, Dentable subsets of Banach spaces with application to a Radon-Nikodym theorem, Proc. Conf. Functional Anal., Thompson Book Co., Washington, 1967 pp. 71-77.

3. S. L. Troyanski, On locally uniformly convex and differentiable norms in certain non-separable Banach spaces, Studia Math., 37 (1971), 173-179.

Received January 27, 1972. This research was supported by the National Research Council of Canada, Grant A-3999. The author is a visiting scholar at the University of California, Berkeley; on sabbatical leave from Dalhousie University.

UNIVERSITY OF CALIFORNIA, BERKELEY