FACTORED CODIMENSION ONE CELLS IN EUCLIDEAN *n*-SPACE

ROBERT J. DAVERMAN

Seebeck has proved that if the *m*-cell *C* in Euclidean *n*-space E^n factors *k* times, where $m \leq n-2$ and $n \geq 5$, then every embedding of a compact *k*-dimensional polyhedron in *C* is tame relative to E^n . In this note we prove the analogous result for the case $m+1=n \geq 5$ and $n-k \geq 3$. In addition we show that if *C* factors 1 time, then each (n-3)-dimensional polyhedron properly embedded in *C* can be homeomorphically approximated by polyhedra in *C* that are tame relative to E^n .

Following Seebeck [8] we say that an *m*-cell C in E^n factors k times if for some homeomorphism h of E^n onto itself and some (m - k)-cell B in E^{n-k} , $h(C) = B \times I^k$, where I^k denotes the k-fold product of the interval I naturally embedded in E^k and where

$$B imes I^k \subset E^{n-k} imes E^k = E^n$$

is the product embedding.

In another paper [6] the author has studied results comparable to Seebeck's for factored cells in E^4 , but the techniques employed here differ slightly from those used in [6] and [8]. The main result generalizes work of Bryant [2], and the final section here expands on his methods to obtain a strong conclusion about tameness of all subpolyhedra in certain factored cells.

1. Definitions and Notation. For any point p in a metric space S and any positive number δ , $N_{\delta}(p)$ denotes the set of points in S whose distance from p is less than δ .

The symbol Δ^2 denotes a 2-simplex fixed throughout this paper, $\partial \Delta^2$ its boundary, and Int Δ^2 its interior.

Let A denote a subset of a metric space X and p a limit point of A. We say that A is locally simply connected at p, written 1-LC at p, if for each $\varepsilon > 0$ there is a $\delta > 0$ such that each map of $\partial \varDelta^2$ into $A \cap N_{\delta}(p)$ can be extended to a map of \varDelta^2 into $A \cap N_{\varepsilon}(p)$. Furthermore, we say that A is uniformly locally simply connected, written 1-ULC, if for each $\varepsilon > 0$ there is a $\delta > 0$ such that each map of $\partial \varDelta^2$ into a δ -subset of A can be extended to a map of \varDelta^2 into an ε -subset of A. Similarly, we say that A is locally simply connected in X at p, written 1-LC in X at p, if for each $\varepsilon > 0$ there is a $\delta > 0$ such that each map of $\partial \varDelta^2$ into $A \cap N_{\delta}(p)$ extends to a map of \varDelta^2 into $N_{\varepsilon}(p)$, and we say that A is uniformly locally simply connected in X (1-ULC in X) if the corresponding uniform property is satisfied. Suppose f and g are maps of a space X into a space Y that has a metric ρ . The symbol $\rho(f, g) < \varepsilon$ means that $\rho(f(x), g(x)) < \varepsilon$ for each x in X.

A subset S of a metric space is called an ε -subset if the diameter of S, written diam S, is less than ε .

A compact 0-dimensional subset X of a cell C is said to be *tame* (relative to C) if $X \cap \partial C$ is tame relative to ∂C and $X \cap$ Int C is tame relative to Int C. In addition, a 0-dimensional F_{σ} set F in C is said to be *tame* (relative to C) if F can be expressed as a countable union of tame (relative to C) compact subsets.

For definitions of other terms used here the reader is referred to such papers as [3, 8].

2. Tame polyhedra in factored cells. The goal of this section is to show that for any k-dimensional polyhedron P in a cell C that factors k times, $E^n - P$ is 1-ULC. However, instead of arguing this directly, we prove first that $E^n - C$ is 1-ULC in $E^n - P$.

PROPOSITION 1. If C is an (n-1)-cell in E^n that factors k times $(k \leq n-3)$ and P a k-dimensional polyhedron (topologically) embedded in C, then $E^n - C$ is 1-ULC in $E^n - P$.

Proof. Suppose $C = B \times I^k \subset E^{n-k} \times E^k$. Define a subset Z of P as the set of all points p of P for which there exist a neighborhood N_p of p (relative to P) and a point b in B such that $N_p \subset \{b\} \times I^k$, and define Q = P - Z. We prove first that, for each point c in C, $E^n - C$ is 1-LC in $E^n - Q$ at c.

Consider c to be of the form (b, y), where $b \in B$ and $y \in \operatorname{Int} I^k$ (the case $y \in \partial I^k$ is similar and easier). Suppose N is a neighborhood of (b, y) such that $N \cap (B \times \partial I^k) = \emptyset$. There exist an open subset U of E^{n-k} and a contractible open subset V of I^k such that $(b, y) \in U \times$ $V \subset N$. By the construction of Q there exists a point $y' \in V$ such that $(b, y') \notin Q$. Let U' be an open subset of E^{n-k} such that

$$b\in U'\subset U$$
 and $(U' imes\{y'\})\cap Q=arnothing$.

Now we obtain an open subset W of E^{n-k} such that $b \in W \subset U'$ and the inclusion map $i: W \to U'$ is homotopic to a constant map.

Let L be a loop in $(W \times V) - C$. Since V is contractible to y', L is homotopic in $(W \times V) - C$ to a loop L' in $W \times \{y'\}$. But L' is contractible in

$$U' \times \{y'\} \subset N - Q$$
.

Thus, $E^n - C$ is 1-LC in $E^n - Q$ at c.

The definition of Z implies that P is locally tame at each point of Z. Hence, if $f: \Delta^2 \to E^n - Q$ is a map such that $f(\partial \Delta^2) \subset E^n - P$, then f can be approximated arbitrarily closely by maps $g: \Delta^2 \to E^n$ such that $g \mid \partial \Delta^2 = f \mid \partial \Delta^2$ and $g(\Delta^2) \subset E^n - P$. Thus, $E^n - C$ is 1-LC in $E^n - P$ at each point c of C. Since C is compact, the corresponding uniform property holds as well.

There may be some value in observing that this argument also gives the following result.

PROPOSITION 2. Let $B \times I^k \subset E^{n-k} \times E^k = E^n$ be an m-cell $(m < n, k \le n-3)$ and X a compactum in $B \times I^k$ such that $\dim (X \cap (\{b\} \times I^k)) < k$ for each b in B. Then $E^n - (B \times I^k)$ is 1-ULC in $E^n - X$.

THEOREM 3. If C is an (n-1)-cell in E^n that factors k times $(k \leq n-3)$ and X is either a k-dimensional polyhedron or a (k-1)-dimensional compactum in C, then $E^n - X$ is 1-ULC.

This theorem follows immediately from [1, Prop. 1] and either Proposition 1 or Proposition 2.

COROLLARY 4. If C is an (n-1)-cell in $E^n (n \ge 5)$ that factors k times $(k \le n-3)$, then each k-dimensional polyhedron P in C is tame.

The corollary is a straightforward application of the Bryant-Seebeck characterization of tameness [3] for codimension 3 polyhedra in terms of the 1-ULC property.

3. Approximations in cells that factor 1 time. This section contains a proof of the analogue of Seebeck's Corollary 5.1 [8] for codimension one cells.

PROPOSITION 5. If C is an (n-1)-cell in E^n that factors 1 time, then there exists a tame 0-dimensional F_σ set F in Int C such that, for each point c of Int C, $E^n - C$ is 1-LC in $(E^n - C) \cup F$ at c.

Proof. Assume $C = B \times I \subset E^{n-1} \times E^1 = E^n$. Let c = (b, t) be a point of Int C and U a neighborhood of c such that $U \cap C \subset \text{Int } C$. We assume further that U is a product neighborhood $U = U' \times J$, where $U' \subset E^{n-1}$ and $J \subset E^1$. Corresponding to U is a neighborhood V of c such that any map $f': \partial A^2 \to V - C$ extends to a map $f: A^2 \to U$ such that $f^{-1}(f(A^2) \cap C)$ is 0-dimensional ([4, Cor. 2C, 2.1] or [5, Th. 3.2]). We can change this map f near C, altering only the E^1 coordinates of points in the range, so that in addition $f(\Delta^2) \cap C \subset B \times \{t\}$. We shall obtain a map $g: \Delta^2 \to \bigcup$ satisfying

(i) $g \mid \partial \Delta^2 = f \mid \partial \Delta^2 = f'$,

(ii) $g(\Delta^2) \cap C$ is a tame (relative to C) 0-dimensional subset of Int C.

Let ε be a positive number such that if $g: \mathcal{A}^2 \to E^n$ and $\rho(f, g) < \varepsilon$, then $g(\mathcal{A}^2) \subset U$.

Cover $f^{-1}(f(\Delta^2) \cap C)$ by the interiors of a collection of small, pairwise disjoint 2-cells $_1D_1, _1D_2, \cdots, _1D_{k(1)}$ in Int Δ^2 . Slide the sets $f(_1D_i)$ vertically to define a map $g_1: \Delta^2 \to E^n$ satisfying

- $(A_{\scriptscriptstyle 1}) \quad g_{\scriptscriptstyle 1} \mid {\it \Delta}^{\scriptscriptstyle 2} igcup_{\scriptscriptstyle 1} D_{\it i} = f \mid {\it \Delta}^{\scriptscriptstyle 2} igcup_{\scriptscriptstyle 1} D_{\it i},$
- (B_1) $ho(g_1,f)<arepsilon/2,$
- (C_1) $g_1({}_1D_i) \cap C \subset B \times \{{}_1t_i\}$, where ${}_1t_i \neq {}_1t_j$ whenever $i \neq j$,

 (D_1) $g_1^{-1}(g_1(\varDelta^2) \cap C)$ is 0-dimensional.

The ${}_1D_i$'s must be chosen with sufficiently small diameters that each set $f({}_1D_i) \cap C$ is contained in the interior of a small (n-2)-cell in $B \times \{t\}$. Thus,

 (E_1) there exist pairwise disjoint (n-1)-cells ${}_1K_1, {}_1K_2, \cdots, {}_1K_{k(1)}$ in Int C, each of diameter $< \varepsilon/2$, such that $\bigcup \operatorname{Int} {}_1K_i \supset g_1(\mathcal{A}^2) \cap C$.

The remaining approximations g_j will be so close to g_1 that \bigcup Int ${}_1K_i \supset g_j(\varDelta^2) \cap C$.

Let $\varepsilon_2 = \min \{\varepsilon/4, 1/2\rho(g_1(\varDelta^2) \cap C, C - \bigcup_i K_i)\}$. To repeat this process, cover $g_1^{-1}(g_1(\varDelta^2) \cap C)$ by the interiors of a collection of a very small, pairwise disjoint 2-cells $_2D_1, _2D_2, \cdots, _2D_{k(2)}$ in \bigcup Int $_1D_i \subset$ Int \varDelta^2 . Slide the sets $g_1(_2D_i)$ vertically to define a map $g_2: \varDelta^2 \to E^n$ satisfying

- $(A_2) \quad g_2 \mid arDelta^2 igcup_2 D_i = g_1 \mid arDelta^2 igcup_2 D_i,$
- (B_2) $ho(g_2, g_1) < arepsilon_2,$
- (C_2) $g_2(_2D_i) \cap C \subset B \times \{_2t_i\}$, where $_2t_i \neq _2t_j$ whenever $i \neq j$,
- (D_2) $g_2^{-1}(g_2(\varDelta^2) \cap C)$ is 0-dimensional.

The $_{2}D_{i}$'s must be chosen with sufficiently small diameters that each set $g_{1}(_{2}D_{i})$ is contained in a small (n-2)-cell in some $(B \times \{_{1}t_{j}\}) \cap (\bigcup \operatorname{Int}_{1}K_{i})$. Thus,

(*E*₂) there exist pairwise disjoint (n-1)-cells $_{2}K_{1}, _{2}K_{2}, \dots, _{2}K_{k(2)}$ in $\bigcup \operatorname{Int}_{1}K_{i}$, each of diameter $< \varepsilon_{2}$, such that $\bigcup \operatorname{Int}_{2}K_{i} \supset g_{2}(\varDelta^{2}) \cap C$.

By continuing in this manner we construct a sequence of maps $g_n: \mathcal{A}^2 \to E^n$ satisfying analogous conditions $(A_n) - (B_n)$ and an associated sequence of collections $\{{}_nK_i\}$ of n-1 cells in C satisfying an analogous condition (E_n) . The restrictions of condition (B_n) guarantee that $g = \lim g_n$ is a continuous function of \mathcal{A}^2 into U, and the restrictions of (E_n) guarantee that

$$g(\varDelta^2) \cap C \subset \bigcap_{n=1}^{\infty} \left(\bigcup_{i=1}^{k(n)} \operatorname{Int}_n K_i \right)$$
.

Thus, $g(\Delta^2) \cap C$ is a tame (relative to C) 0-dimensional subset of C [7, Lemma 2].

To prove the theorem from this fact, observe that for each $\varepsilon > 0$ there exists a countable collection $\{V_i\}$ of open sets covering Int Csuch that any map $f': \partial \varDelta^2 \to V_i - C$ extends to a map g of \varDelta^2 into an ε -subset of E^n such that $g(\varDelta^2) \cap C$ is a tame 0-dimensional subset of Int C. Since there are only countably many homotopy classes of maps of $\partial \varDelta^2$ into $V_i - C$, the desired set F can be defined as the countable union of sets $g(\varDelta^2) \cap C$.

THEOREM 6. Suppose C is an (n-1)-dimensional cell in E^n that factors 1 time, P is an (n-3)-dimensional polyhedron properly embedded in C, and $\varepsilon > 0$. There exists an ε -push h of (C, P) such that h(P) is tame relative to E^n .

Proof. The case n = 4 is trivial, and no push is needed [6]; hence, we assume $n \ge 5$. By [8, Cor. 5.1] there exists an $\varepsilon/2$ push h_1 of (C, P) such that $h_1(P \cap \partial C)$ is tame. Let F denote the 0-dimensional F_{σ} set of Proposition 5. There exists an $\varepsilon/2$ push h_2 of $(C, h_1(P))$ such that $h_2h_1(P) \cap F = \emptyset$ and $h_2 \mid \partial C = 1$. Let h denote the ε -push h_2h_1 . It follows that $E^n - C$ is 1-LC in $E^n - h(P)$ at each point of Int C, and in stronger form, as shown in § 2, that $E^n - h(P)$ is 1-LC at each point of Int C. The tameness of $h(P) \cap \partial C$ then implies that $E^n - h(P)$ is 1-LC at every point of h(P). Thus, h(P) is tame [3].

COROLLARY 7. Let S denote an (n-2) sphere in S^{n-1} , the (n-1)-sphere, and Σ the suspension of S in S^n , the suspension of S^{n-1} . Then there exists a tame (relative to Σ) 0-dimensional F_{σ} set F in Σ such that $S^n - \Sigma$ is 1-ULC in $(S^n - \Sigma) \cup F$. Furthermore, if P is an(n-3)-dimensional polyhedron in Σ and $\varepsilon > 0$, there exists an ε -push h of (Σ, P) such that h(P) is tame relative to S^n .

4. Factored cells in which all lower dimensional compacta are locally nice. Let $C = B \times I^k \subset E^{n-k} \times E^k = E^n$ be an *r*-cell (r < n). Although the low dimensional polyhedra in C are nicely embedded, some (k + 1)-cell in C may be wild. In this section we mention a property of certain cells B that implies every (r - 1)-dimensional polyhedron in C is nicely embedded.

THEOREM 8. Let B denote an m-cell in $E^n (m \le n-2)$ such that, for each (m-1)-dimensional compactum $X \subset B$, $E^n - X$ is 1-ULC, and let C denote $B \times I^k$, contained in $E^n \times E^k = E^{n+k}$. Then, for each (m + k - 1)-dimensional compactum $Y \subset C$, $E^{n+k} - Y$ is 1-ULC.

Proof. It suffices to consider only the case k = 1. Let $\varepsilon > 0$ and $w \in \text{Int } I$. We shall costruct an ε -push h of (E^{n+1}, Y) such that

 $(E^n \times \{w\}) - h(Y)$ is 1-ULC. Let V denote the ε -neighborhood of $Y, \{b_i\}_{i}^{\infty}$ a countable dense subset of B, and π the natural projection of $E^{n+1} = E^n \times E^1$ onto the first factor. For any open subset N of E^{n+1} containing $(b, w) \in B \times I$ there exists a point $(b', w') \in N \cap (B \times I - Y)$. If N is a connected open set of the form $N = W \times J$, then there exists a homeomorphism g of E^{n+1} onto E^{n+1} such that (a) $g \mid E^{n+1} - N =$ identity, (b) g((b', w')) = (b', w), (c) g(C) = C and (d) $\pi g = g$. Consequently, there exist a sequence $\{h_i\}$ of homeomorphisms of E^{n+1} onto itself and a sequence of points $\{b'_i\}$ in B such that for $i = 1, 2, \cdots$

- (0) $\rho(x, h_i(x)) < \varepsilon/2^i$ for all x in E^n ,
- $(1)
 ho(b_i, b_i') < 1/i,$
- $(2) \quad (b'_i, w) \oplus h_i \circ h_{i-1} \circ \cdots \circ h_1(Y),$
- $(3) \quad h_{i+k}((b'_i, w)) = (b'_i, w) \text{ for all } k > 0,$
- $(4) \quad h_i(C) = C$
- $(5) \quad \pi h_i = h_i.$
- (6) $h_i | E^{n+1} V =$ identity.

Furthermore, using Condition (a) and careful epsilonics we can construct the sequence $\{h_i\}$ so that the function $h = \lim_{n \to \infty} h_n \circ \cdots \circ h_1$ is an ε -homeomorphism of E^{n+1} onto itself. Then Condition (6) implies that h is an ε -push of (E^{n+1}, Y) .

Condition (1) implies that $\{b'_i\}$ is a dense subset of B, and Conditions (2) and (3) yield that $(b'_i, w) \notin h(Y)$ $(i = 1, 2, \dots)$. Thus, $h(Y) \cap (B \times \{w\})$ is nowhere dense in $B \times \{w\}$. Consequently, $E^n \times \{w\} - h(Y)$ is 1-ULC by hypothesis (since $h(Y) \subset B \times I$), and we obtain the desired conclusion by appealing to Theorem 1 of [1].

We exploit the construction of the push h a second time in proving the following:

THEOREM 9. Let B denote an (n-1)-cell in E^n such that, for each (n-2)-dimensional compactum $X \subset B$, $E^n - B$ is 1-ULC in $E^n - X$, and let C denote $B \times I^k$, contained in $E^n \times E^k$. Then for each (n + k - 2)-dimensional compactum $Y \subset C$, $E^{n+k} - C$ is 1-ULC in $E^{n+k} - Y$.

Proof. Simplifying as before, we consider k = 1 and $c \in C$ a point of the form (b, w), where $b \in B$ and $w \in \text{Int } I$, and we shall show that $E^{n+1} - C$ is 1-LC in $E^{n+1} - Y$ at c.

Let $\varepsilon > 0$. Choose a countable dense subset $\{b_i\}$ of B. Then reapplying the techniques found in the proof of Theorem 8, we find an $(\varepsilon/6)$ -homeomorphism h of of E^{n+1} onto itself and a sequence $\{b'_i\}$ of points in B satisfying Conditions (0)-(6) stated there. Let U denote the $\varepsilon/6$ -neighborhood of b in E^n and V the $(\varepsilon/3)$ -neighborhood of w in Int I. Then both (b, w) and h((b, w)) are contained in $U \times V$, and diam $(U \times V) < \varepsilon/2$. Since B is an (n - 1)-cell there exists a neighborhood U' of b in E^n such that $b \in U' \subset U$ and each map f of $\partial \Delta^2$ into U' - B can be extended to a map F of Δ^2 into U such that $F^{-1}(F\Delta^2) \cap B)$ is 0-dimensional.

In this paragraph we prove that $U' \times V$ is a neighborhood of h(c) such that any loop in $(U' \times V) - C$ is contractible in an $\varepsilon/2$ -subset of $E^{n+1} - h(Y)$. If $f:\partial \Delta^2 \to (U' \times V) - C$, f is homotopic in $(U' \times V) - C$ to a map $f':\partial \Delta^2 \to U' \times \{w\}$. Let $F:\Delta^2 \to U \times \{w\}$ be an extension of f' such that $F^{-1}(F(\Delta^2) \cap (B \times \{w\}))$ is 0-dimensional. Once again $h(Y) \cap (B \times \{w\})$ is nowhere dense in $B \times \{w\}$, which means that $(E^n - B) \times \{w\}$ is 1-ULC in $((E^n) \times \{w\}) - h(Y)$. Cover $F^{-1}(F(\Delta^2) \cap (B \times \{w\}))$ by finitely many pairwise disjoint 2-cells D_1, \dots, D_t in Int Δ^2 such that $F \mid \partial D_i$ can be extended to a map G_i of D_i into $(U \times \{w\}) - h(Y)$. By redefining F as G_i on $D_i(i = 1, \dots, t)$ one can easily see that $f \mid \partial \Delta^2: \partial \Delta^2 \to (U \times V) - h(Y)$ is homotopic to a constant map.

Because h^{-1} is an $(\varepsilon/6)$ -homeomorphism and diam $U \times V < \varepsilon/2$, diam $h^{-1}(U \times V) < \varepsilon$. In addition, $h^{-1}(U' \times V)$ is a neighborhood of c such that any map $g: \partial \Delta^2 \to h^{-1}(U' \times V) - C$ can be extended to a map $G: \Delta^2 \to h^{-1}(U \times V) - Y$. This completes the proof.

COROLLARY 10. Let B denote an m-cell in $E^n(m < n)$ such that, for each (m - 1)-dimensional compactum $X \subset B$, $E^n - B$ is 1-ULC in $E^n - X$. Then each p-dimensional polyhedron P in $B \times I^k \subset E^n \times E^k$ $(p + 3 \leq n + k, p < m + k)$ is tame.

References

1. J. L. Bryant, On embeddings with locally nice cross-sections, Trans. Amer. Math. Soc., 155 (1971), 327-332.

2. _____, An example of a wild (n-1)-sphere in S^n in which each 2-complex is tame, Proc. Amer. Math. Soc., **36** (1972), 283-288.

- 3. J. L. Bryant and C. L. Seebeck, III, Locally nice embeddings in codimension three, Quart. J. Math., (Oxford) (2) **21** (1970), 265-272.
- 4. J. W. Cannon, ULC Properties in neighborhoods of embedded curves and surfaces in E^3 , (to appear).
- 5. R. J. Daverman, Slicing theorems for n-spheres in Euclidean (n + 1)-space, Trans. Amer. Math. Soc., **166** (1972), 479-489.
- 6. _____, Wild cells in E^4 in which every arc is tame, Proc. Amer. Math. Soc., **34** (1972), 270-272.

7. D. R. McMillan, Jr., *Taming Cantor sets in Eⁿ*, Bull. Amer. Math. Soc., **70** (1964), 706-708.

8. C. L. Seebeck, III, Tame arcs on wild cells, Proc. Amer. Math. Soc., 29 (1971), 197-201.

Received January 5, 1972. Partially supported by NSF Grant GP-19966.

UNIVERSITY OF TENNESSEE