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SOME INCLUSION THEOREMS FOR SEQUENCE SPACES

G. B E N N E T T

The purpose of this paper is to study inclusion theorems
for some of the more familiar sequence spaces. Necessary
and sufficient conditions are given for an FϋΓ-space to contain
each of the spaces bv0, bv, S?, 0 < p < oo, and c0. It is also
shown that the Hardy space Hp, 0 < p < 1, is a barrelled
subspace of its containing Banach space Bp. This leads to
new results concerning multipliers of Hp and to new estimates
on the growth of the Taylor coefficients of Bp functions.

The main results of §2 give necessary and sufficient conditions
for an î ίΓ-space to contain /, bv0 or bv. These results were obtained
by W. H. Ruckle, A. K. Snyder, and A. Wilansky, and the author in a
series of seminars held at Lehigh University during the period 1968-
1970. They are rather elementary and probably well-known to other
workers in the field; the main reason for including them here (without
proof) is that special cases (for example: [7], Theorem 10; [14],
Theorems XI (a), (b) and XII (a), (b); [16], Theorem 1 (1); [20],
Theorem 1) have been repeatedly established by various authors.
Theorems of Dawson [8] and Lorentz and Zeller [19] are extended,
and it is shown that sv is never a closed subspace of any convergence
domain. The results of this section also have relevance to Sember's
work on conull jPif-spaces [22].

FiΓ-spaces containing /v, 1 < p < oo, or c0 are characterized in § 3.
The techniques employed provide an extension to a result of Singer
[23] (for Banach spaces with no subspace isomorphic to c0) to arbitrary
sequentially complete locally convex spaces.

Section 4 covers the spaces sp, 0 < p ^ 1. It turns out, rather
surprisingly, that if an JFΈT-space contains one of these spaces, then
it contains all of them. As a corollary, it is shown that f\p>0 sv is
a barrelled subspace of /, thus improving a result of Wilansky ([27],
p. 45).

Section 5 returns to the study (see [3]) of scarce copies of solid
sequence spaces. / and ω enjoy the rather special property of having
every scarce copy barrelled, which fact in turn leads to further
inclusion theorems. Similar results are obtained for arbitrary solid
FK-AK-sipaces.

In §6 a study is made of the Hardy spaces Hp, 0 < p < 1, which
can be viewed as sequence spaces by identifying functions with their
Taylor series. Using a technique of Wilansky ([27], p. 45), it is shown
that Hp is a barrelled subspace of its containing Banach space Bp.
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18 G. BENNETT

This observation leads to the solution of a problem raised implicitly
by Duren, Romberg and Shields in the papers [10], [11] and [12], viz:
why do Hp and Bv almost always have the same multipliers? The
paper closes with some new results concerning the size of the Taylor
coefficients of functions in Bp.

!• Notation and preliminary ideas* ω denotes the space of all
(real- or) complex-valued sequences, and any vector subspace of ω is
called a sequence space. A sequence space E with a vector space topology
τ is a K-space if the inclusion mapping (E, τ) •—• ω is continuous when
ω is endowed with the topology of coordinaterwise convergence. If,
in addition, (E, τ) is complete and metrizable, (E, τ) is called a Frechet
K-space; if τ is locally convex, we abbreviate this to FK-space. The
basic properties of FiΓ-spaces may be found, for example, in [28].
In particular (extending Zeller's theorem 4.5(a) slightly), it follows
from the closed graph theorem that if E and F are Frechet Z-spaces
with E £ F, then E is continuously embedded in F. An FiΓ-space
whose topology is normable is a BK-space.

The following spaces will be important in the sequel: m, the space
of all bounded sequences; c, the space of all convergent sequences;
c0, the space of null sequences; sv, 0 < p < oo, the space of all absolu-
tely p-summable sequences;

bv = {x e ω: Σ I ^ - χj+i I < ^ l >

the space of all sequences of bounded variation, which is a £>i£-space
under the norm

oo

II x\\bv = Σ I®s - %j+i I + l i m I Xj \ (x e bv) .

As usual, /ι is replaced by /; and bv0 denotes bv Π c0.
The sequence (1,1, •••) is denoted by e and it is clear that bv =

bv0 + {β}. e\ j = 1, 2, , denotes the sequence (0, , 0,1, 0, •) with
the 'one' in the jth. position, and φ denotes the linear span of {ej: j =
1, 2, •} in ω.

We shall also be concerned with matrix transformations y — Ax,
where x, y eω, A = {a^Zj^i is an infinite matrix with complex coeffi-
cients, and (formally)

CO

Vi = Σ ^ Λ (i = 1, 2, . . .) •

If each of these series converges we say that y = Ax exists and write
y e ωA. More generally, if E is any subset of ω, we denote by EA

the set
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{x e ω: Ax exists and Ax e E) .

cA is called the convergence domain of the matrix A and xecA is
said to be A-limitable. The sequence {a^}^ is called the ΐth row of
A and {α^ }Γ=1 the jth. column.

The following result, proved by Zeller in [28], Theorem 4.10(a),
will be useful throughout the paper.

THEOREM 1. Let E be an FK-space whose topology is given by
means of the seminorms {g%}~=i and let A be an infinite matrix. Then
EA is an FK-space when topologized by

x—>\χ,\ (i = i , 2 , . . . ) ;

x •sup|Σα««il (i = l , 2 , •••);
n j = L

x > qn(Ax) (n = 1, 2, ..) .

Finally, if E and F are vector spaces which form a separated
dual pair, we follow the notation of [21] and denote the weak topology
on E by σ(E, F), the Mackey topology by τ(E, F), and the strong
topology by β(E, F). If (E, τ) is a topological vector space, the set
of all τ-continuous linear functionals on E is denoted by E\

2. FK-spaces containing /, bv0 or bv.

THEOREM 2. An FK-space E contains / if and only if {ej: j —
1, 2, •••} is a bounded subset of E.

Our next result follows from Theorems 1 and 2 by using the
fact that E is a Z-spaceβ

COROLLARY. Let A be a matrix and E an FK-space. Then A
maps / into E if and only if the columns of A belong to E and form
a bounded subset there.

Putting E = c or /p, l ^ p ^ oo, enables us to give 'quickie'

proofs of results of Hahn ([14], Theorems XII (a) and (b)), Cohen and

Dunford ([7], Theorem 10), and Knopp and Lorentz ([16], Theorem

1(1)).
Using the result of Hahn, Lorentz and Zeller ([19], Lemma 5)

have shown that I cannot be the convergence domain of any matrix
A. Motivated by their paper, we introduce the set co(r, s) = {x e c0:
xrj — — x y j = l ? 2, •; xk = 0 for other k}, where r = {rj}γ=1 and
s = {Sj}J=1 are sequences of positive integers satisfying rx < sλ < r2 <
s2 < . co(r, s) is a Sif-space under the topology generated by the
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norm

x > s u p I x r j I ,
n

and since Σ*=i x^k ~> χ as j —> oo, it is clear that 9? Π co(r, s) is dense
in cQ(r, s).

Our next theorem improves the result of Lorentz and Zeller
mentioned above and also the results of Dawson [8].

THEOREM 3. // {An}~=1 is a family of matrices, each mapping /
into c, then there exist sequences r and s of positive integers such that

00

co(r, s) £ Π cA*

Proof. This is essentially the same as that of Lemma 5 of [19]
and will be omitted.

Our next result, which follows immediately from Theorem 3, should
be compared with Theorem 4 of [2].

COROLLARY 1. If {An}™=ι is a family of matrices, each mapping
/ into c, then Π~=i C^AUO<P<CO SV is nonempty. In particular, for
0 < p < 00 9 /p is not the convergence domain of any matrix.

COROLLARY 2. For 1 ̂  p < ©o? s
p is not a closed subspace of any

convergence domain.

Proof. Let p ^ 1 be fixed, and suppose that, for some matrix A,
we have /v £ cA. From Theorem 3 and the remarks made immediately
before it, there exist sequences r and s of positive integers such that
co(r, s) £ ψ, the closure of φ in cA. It follows that ψ\/v is nonempty,
so that lp is not closed in cA.

We note that the statement of Corollary 2 is valid whenever
0 < p ^ co. For 0 < p < 1 this follows since sv is not even locally
convex (see also Theorem 6); for p — 00, /°° = m, a separability argu-
ment may be used (see [1], Corollary 1 to Theorems 4 and 5).

THEOREM 4. An FK-space contains bvo(bv) if and only if (e e E)
and (Σ*=i ej' i = 1, 2, •} is α bounded subset of E.

COROLLARY 1. Let A be a matrix and E and FK-space. Then
A maps bvQ into E if and only if the columns of A belong to E and
their partial sums form a bounded subset there.

Putting E = c or bv, enables us to give 'quickie' proofs of results
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of Hahn ([14], Theorems XI (a) and (b)) and Mears ([20], Theorem 1).
The important class of conull .Fif-spaces was introduced by Snyder

in [24]; an jPJff-space E containing ψ (j {e} is said to be conull if

Σ ej = e weakly in E.
3 = 1

The next result, which follows at once from Theorem 4, enables us
to remove the hypothesis 'containing bvJ from several of the theorems
in [22]. (See also p. 159 of [22].)

COROLLARY 2. Any conull FK-space must contain bv.

3. FK-spaces containing /p 1 < p < oo, or cQ. We begin this
section in a more general setting by considering a series, ΣΠ=i %i9 of
elements from a locally convex space (E, τ). Motivated by [23], p.
131, we say that ΣΓ=i ̂  is weakly p-unconditionally Cauchy, 1 <
p ^ oo, if ΣίLi y.χ. converges in (E, τ) whenever y e /v. (Here we use
the convention that s~ = c0.) Our next theorem improves a result
of Singer ([23], Theorem 8, where the same statement, with 1 < p <
oo, is given, but only for E a Banach space containing no subspace
isomorphic to c0).

THEOREM 5. Let (E, τ) be a sequentially complete locally convex
space. Then a series, ΣΠ=i χi > of elements of E is weakly p-uncondi-
tionally Cauchy, 1 < p ^ oo, if and only if

( 1 ) ^

where q = p/(p — 1) denotes the dual exponent of p.

Proof. The proof of the necessity of (1) is the same as that given
by Singer and will be omitted.

To establish the converse implication, we consider the linear
mapping T from φ into E defined by

Ty = Σ Viχi (v e <P)
ί = l

If FeE', then

(Ty, F) - F(± Vixλ - Σ ViF(

and so, putting i<X )̂ = /<, we have / = {/JΓ=i

F> = (y, /> .
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It follows that T is σ{φ, /q)-+σ{E, jE")-continuous and so ([21], p. 62)
T is also τ(φ, /q) —• τ-continuous. Now /v is τ(/v, /g)-metrizable so
that ([21], p. 82)

τ(φ, /q) = τ(s*, /q)\φ .

Thus, if ye /p, then{Σ?=il/Λ=i is r(^,^ff)-Cauchy so that {T(ΣUViei))Z=i
is r-Cauchy in E9 i.e., {Σ?=i2/A}Γ=i converges in i?

We note that, for p = co and i? a Banach space, the above result
(with different proof) has been given by Bessaga and Pelczynski
([6], Lemma 2).

If E is an .FjKΓ-space containing φ, then putting x{ = e\ i = 1, 2,
•••, gives the following corollary (see also [4], Proposition 5, for the
case p = oo).

COROLLARY. AW FK-space E contains /v, 1 < p ^ °°, if and only
if φ ξΞ= E and

4» FiΓ-spaces containing / p , 0 < p ^ 1* For 0 < p < 1 it is well-
known that /v is a Frechet if-space when topologized by means of
the paranorm

Σ ( x e / p ) f

so that ([17], §15.12 (1)) /p is of the first category in s. However,
in spite of this, we have the rather surprising

THEOREM 6. An FK-space contains Γ\p>0 /
v (if and) only if it

contains /.

Proof. ΠPX) SV, regarded as a countable intersection, f |ϊ=i /ljni
is a Frechet iΓ-space when endowed with the projective topology,
and {ej:j = 1, 2, •••}, being bounded in each /v space, is bounded in
Πί»o sv. If E is an FiΓ-space containing Π?>o ̂ p» the inclusion mapp-
ing: Γ)P>OSP—>E is continuous by the closed graph theorem; con-
sequently {ej:j = 1, 2, •••} is bounded in E, and the desired conclu-
sion follows from Theorem 2.

COROLLARY. ΠP>O SP is a barrelled subspace of /.

Proof. Noting that ΠP>O ^P is dense in /, the corollary follows
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at once from Theorem 1 of [5]. This theorem, however, is rather
lengthy, and the following alternative proof of the corollary is perhaps
preferable here.

Suppose that {an}ζ=1 is a σ(m, Γ\P>Q /p)-bounded sequence of elements
of m. If A denotes the matrix whose nth. row is an, then clearly we
have Π?»o Sp £ mA. It follows from Theorems 1 and 6 that ^ £ mA so
that {αw}~=1 is also σ(rn, ̂ -bounded. Thus, the topologies σ(m, ΠP>olp)
and σ(m, I) define the same bounded sequences and therefore the same
bounded sets; consequently,

β(Π '\ m) = β(s, m) I Π ^ = II Hi-topology | Π ^ ,
p>0 p>0 ρ>0

and the desired result follows at once from Corollary 1, pβ 66, of
[21].

The corollary implies that if X is any subspace of / with Γ\p>os
p ϋ

I g / , then X is a barrelled subspace of /. In particular, we obtain
the result ([27], Example 1.2, p. 45) of Wilansky which asserts that
/ιβ is a barelled subspace of /.

The reader should compare the results of this section with Theorem
8 and its corollary,

5* Scarce copies of sequence spaces* In this section we return
to our study of scarce copies of sequence spaces (see [3]) and begin
by recalling some definitions. A sequence space E is said to be solid
(respectively monotone) if xye E whenever x e E and y e m (respectively
Vj' = ± 1 for all j). r = {r%}~^ will always denote a nondecreasing,
unbounded sequence of positive integers with r1 = 1 and rn = o(n).
We define, for each x e ω and each positive integer n, the counting
function, cn(x), as the number of nonzero elements in the set {xl9 x2,
•••, xn). Given any subset E of ω, we consider

σ(E, r) = {xeE: cn(x) ^ rn for n = 1, 2, . •} .

σ{E, r) is not, in general, a vector space, and we denote its linear
span by Σ(E, r). Such a space will be called a scarce copy of E; it
is clear that if E is solid, monotone, or contains φ, then every scarce
copy of E has the same property. Moreover, if (E, τ) is a iΓ-space
containing an element x with x5 Φ 0, j = 1, 2, , then every scarce
copy of E is of the first category in E.

In view of this last observation the following is somewhat
unexpected.

THEOREM 7. Every scarce copy of ω is barrelled.

Proof. Let Σ = Σ(ω, r) be a scarce copy of o). If K is a σ(φ, Σ)-
bounded subset of φ, then
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s u p | α y | < oo (j = 1,2,
aeK

since J 3 ^ . Moreover, it is not difficult to see that there exists a
positive integer j0 such that

sup 1̂ 1 = 0 0" ^ io)
K
p

aeK

Thus the topologies σ(φ, Σ) and 6r(<£>, ω) define the same bounded sets
and the desired result follows as in the proof of the corollary to
Theorem 6.

Theorem 7 may be interpreted as an inclusion result, viz:

COROLLARY. // an FK-space E contains a scarce copy of ω, then
E = ω.

Proof. Noting that every scarce copy of ω is dense in α>, we
may apply Theorem 1, (i) => (ii), of [5] (i.e., the closed graph theorem
for barrelled spaces).

In a similar fashion it is possible to establish the following results
and we leave the details to the reader.

THEOREM 8. Every scarce copy of f}p>0 /v is barrelled as a subspace
of /. In particularr, every scarce copy of / is barrelled.

COROLLARY. An FK-space contains a scarce copy of Γ\P>oSp if
and only if it contains /.

Unfortunately, none of the other sequence spaces discussed in this
paper (/p, 1 < p < oo, bv0, bv, cθ9 c, m) possesses this property enjoyed by
ω and /. Indeed, it can readily be shown that if X is one of these
spaces, the no scarce copy of X is barrelled. This observation, along
with Theorem 1, (i) <=> (iii), of [5], leads to the following existence
result.

THEOREM 9. If X is one of the spaces /p, 1 < p < oo, bv0, bv,
c0, c or m, and Σ(X9 r) is a scarce copy of X, then there exists a BK-
space Y with

Σ(X, r)^Y^X.

However, we do have the following result for AZ-spaces. (Recall
that a topological sequence space (E, τ) containing φ is said to be an
AK-space provided that {Σi=i χfij)l=ι is r-convergent to x, for each
xeE).
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THEOREM 10. Let E be a solid FK-AK-space and let Σ(E) denote
the union of all the scarce copies of E. Then Σ(E) is a barrelled
subspace of E.

Proof. It is an easy consequence of the Banach-Steinhaus theorem
that the dual of E may be identified with the space Ea, where

E" = {y e ω: Σ I fyVj | < °°, for each x e E) .
i

It follows that the FK-topology on E is just τ(E, Ea), so that (E,
τ(E, Ea)) is barrelled. Furthermore, Σ(E) may be identified with the
sequences {\Xj)T=i where xe E and λ satisfies X3 = 0 or 1, j — 1, 2, ,
and lim^o,, l /nΣj = 1 λ, = 0. Thus, from a result of Webb ([26], Lemma
D(l), p. 360), Σ(E) is τ(Σ(E), £7")-barrelled. (Note that Webb's result
was stated only for perfect sequence spaces—the extension to the
solid case is routine.) Now, just as in the proof of Theorem 5, we
see that τ(Σ(E), Ea) = τ(E, Ea) \ Σ(E), and it follows that Σ(E) is a
barrelled subspace of E.

COROLLARY. Let E be a given solid FK-AK-space. Then an FK-
space contains every scarce copy of E if and only if it contains E.

6. Hp, 0 < p < 1, and its containing Banach space. In this
section we consider the Hardy space Hp, 0 < p < 1, of functions /
which are analytic in the open unit disk and which satisfy

' = sup A- P I/(re") \pdθ < oo .

It is a well-known result of Walters ([25], Theorem) that Hp is a
Frechet space under the paranorm ]] |U We shall also be interested
in the space Bp, 0 < p < 1, of functions analytic in the disk which
satisfy

11/IL*> = 4~2π

For 0 < p < 1, it is known that Hp a Bp ([15], p. 412), that Bp is a
Banach space under the norm | |. | |B P ([10], Theorem 3), and that Hp

is dense in Bp ([10], Theorem 3 (iii)).
For a subset E of ω, λ e ω is said to be a multiplier of Hp

(respectively Bp) into E if whenever

f(z) = Σ &nZn e Hp (respectively Bp) ,
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then {λnαΛ}~=0 e E. The theory of multipliers has been studied exten-
sively by various authors and we refer the reader to [9], §6.4, for
the details. The purpose of this section is to show that Hp and Bp

'nearly always' have the same multipliers, thus answering a question
raised implicitly by the work of Duren, Romberg and Shields in the
papers [10], [11] and [12].

For the remainder of this section it will be convenient for us
to regard Hp and Bp as sequence spaces. This we do, as usual, by
identifying functions analytic in the disk with their Taylor coefficients.

PROPOSITION 1. Under the identification mentioned above, Bp is
a BK-space and Hp a Frechet K-space,

Proof. It follows from the remarks made above that Bp is a
Banach sequence space. To show that the coordinate mappings are
continuous, we consider

f(z) = fΛanz
nzBp.

n = 0

Fixing n, we have

^ — Γ(l - r)llp-2Γ\f(reίθ)\dθ)dr
2π Jo v o /

by the Cauchy integral formula

Consequently, Bp is a i?i£-space.
That Hp is a if-space is a well-known result ([2 5], Theorem 6)

due to Walters.
We note here that the constant β(n + 1, 1/p — 1) given in the

proof of Proposition 1 is best possible. This can be seen by consider-
ing the functions f(z) = 1, z, z2, etc. As a corollary, we obtain the
following slight sharpening of a result of Duren, Romberg and Shields
and Shields ([10], Theorem 4).

COROLLARY. If f(z) = ΣΓ=o anz
n e Bp, then

\an\ ^ (-L- l\n + l)1^
\p J

Proof. Note that
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v p Γ ( ^ + i)r(i/3> - 1 )

Our next result is based on idea of Wilansky ([27], Example
1.2, p. 45).

LEMMA 1. Let (E, τ) be a metrίzable locally convex space and let
F be a subspace of E. Suppose there exists a Frechet topology τι ̂ >
τ\F on F with the property that every τ ̂ continuous linear functional
is τ\F-continuous. Then (F\τ\F) is barrelled.

Proof, Given a barrel, V, in (F, τ\F), we are required to show
that V is a τ | i^-neighborhood of zero. Now V, being absorbent, we
have F = U~=i nV Each nV, being τ |i^-closed, must also be ^-closed,
and it follows from the Baire category theorem that one of them must
contain a τ ropen set. Thus V itself is a convex ^-neighborhood of zero.

We complete the proof by showing that every convex ^-neigh-
borhood of zero is a τ | .P-neighborhood of zero. To do this, we consider
the locally convex topology τ2 generated by τ l β (A base for this
topology is formed by taking convex covers of -^-neighborhoods of zero.)
Clearly, we have

( 2 ) zlF^T^T,

and so our hypothesis imply that (F, τ2)' = (F, τ \ F)\ But τ is
metrizable so that ([21], p. 82) τ\F is just the Mackey topology.
Consequently

( 3 ) r2 ^ τ I F ,

and the inclusion relationships (2) and (3) give the desired result.

THEOREM 11. Hv is a barrelled subspace of Bp,0 < p < 1.

Proof. We take E = B? and F = Hp in the lemma. That τ, ^
τ IF follows from Proposition 1 and the closed graph theorem for
complete metric spaces (see, for example, [17], §15.12(3)). That τx

and τ \ F define the same continuous linear functionals is just Theorem
7 of [10].

We note that the proof of the lemma also gives the following
information—the locally convex topology on Hp generated by \\-\\Hp is

just the subspace topology from Bp. This observation leads to a slight

improvement of a result ([18], p. 614) of Livingston—the convex cover
of Q* II \\HP-ball contains an entire || \\BP-hall.
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We are now in a position to state the main result of this section.

THEOREM 12. An FK-space contains Hp if and only if contains Bp.

Proof. The sufficiency being obvious, we restrict attention to the
necessity. But this follows as in the proof of the corollary to Theorem
7, since, by Theorem 11 and the remarks made at the beginning of
this section, Hp is a dense barrelled subspace of Bp.

COROLLARY 1. Let A be a matrix and E an FK-space. Then A
maps Hp into E if and only if A maps Bp into E.

Proof. A maps Hp into E <=> Hp £ EA

<==> Bp £ EA (by Theorems 1 and 12)
<=» A maps Bp into E.

Our next result answers a question raised implicitly by the work
of Duren, Romberg and Shields in [10], [11] and [12].

COROLLARY 2. Hp and Bp have the same multipliers into any
FK-space.

Proof. This follows at once from Corollary 1 noting that coor-
dinaterwise multiplication by λ is given by means of the matrix A,
where ai5 = diό\ά.

Finally, we indicate how Theorem 12 may be used to give new
estimates for the Taylor coefficients of Bp functions. If 0 < p < 1 and

f(z) =ΣaΛz
neHp,

well-known results of Hardy and Littlewood ([9], Theorems 6.2 and
6.4) assert that

(4) ±np-2\an\
p< - ,

and

( 5 ) α n = Ofa1"-1) .

We note here that (5) does not follow from (4), contrary to the assertion
made on page 421 of [13]. Duren, Romberg and Shields ([11], p. 259)
point out that (4) may fail for Bp functions, but ([10], Theorem 4)
that (5) carries over to this larger class. (The latter observation
follows at once from Theorem 12.) Combining (4) and (5) give a
whole family of mutually independent inequalities, namely
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( 6 ) Σ n { p q - p - q ) l P I a n \ q < oo ,

whenever q > p.
Duren and Shields ([11], p. 259) have observed that (6) carries

over to Bp functions if q = 1, but fails whenever q < 1. We complete
the picture by establishing

COROLLARY 3. If f(z) = Σ~ = o anz
n e Bp, then

oo

( 7 ) 2un PQ P Q Ian Q < °°

whenever q ^ 1.

Proof. Letting E = {x€ω:Σn=ιn{pq~p~q)lP\a«\q < °°}> it is clear
that J? is a J5i£-space whenever q ^ 1. Inequality (7) asserts that
Hp £ E; Theorem 12 gives S p g i7, and inequality (7) is established.

Added in proof. In a private communication, Professor
P. L. Duren has kindly pointed out that Corollary 3 also follows
from the special case q = 1 and the inequality (5).
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