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C-EMBEDDED 2X-SPACES

MiLToN ULMER

Let X = Tl.c4 X. be a product space and pc X. For each
ordinal y the S-space 2. (p) is given by: 2,(p) = {x € X: card ({a e
A: z, # Do) < Wy}. It is shown that under various hypotheses
on X, each continuous real-valued function on J,(p) extends
continuously over X. A counterexample is constructed to
show these hypotheses cannot be weakened in various ways.

Preliminaries. Let X = []... X, be an infinite product space and
p be some point in X. Following [8], for each ordinal v the XY-space
Y .(p) is the subspace which consists of all points differing from p on
fewer than Y, coordinates. Recall that a subspace Y is C-embedded
in X provided each continuous real-valued function on Y extends
continuously over X. The set of continuous real-valued functions on
a space Y shall be denoted by C(Y).

Much work has been done to determine when each continuous
real-valued function on a subset of a product space depends on coun-
tably many coordinates. (See [3] or [8] for references and a discus-
sion.) In the first section we shall apply these results to the study
of C-embedded ZX-spaces. In the second section we show there are
many more interesting situations in which each X-subspace is C-
embedded. In the final section an example is constructed showing
that the results of the previous sections cannot be improved in various
ways.

1. Functions depending on few coordinates. The problem of
whether a subspace is C-embedded is often solved by showing something
stronger. For instance, to show that the space 2 of countable ordinals
is C-embedded in the compact space 2* = {v: v < W,} one usually shows
that each function in C(Q) is constant on a tail. Similarly, if for a
X-space X,(p) it is known that each function in C(2,(p)) factors through
a countable subset of A, then 3 (p) is certainly C-embedded in the
product. Mazur used this approach in [7] under the hypothesis that
each X, be second countable.

In [8] it was shown that the best possible results of this kind
involve the property pseudo-¥-compactness. Recall that for any
infinite cardinal Y}, a space is pseudo-}}-compact provided each locally
finite collection of open subsets has cardinality less than . From
[8; Theorem 3.2] we know that if W, is not the supremum of a
countable set of smaller cardinals and if 3,(p) is pseudo-},-compact,
then each continuous real-valued funection on X,(p) depends on fewer
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than Y, coordinates, and hence X,(p) is C-embedded in X.

However, we can say more than this. Suppose ¥, is countably
accessible and X,(p) is pseudo-¥,-compact. By [8; Proposition 3.4]
we know C(2,(p)) may contain functions which depend on ¥, coordi-
nates. It turns out, that in spite of this 3,(p) is C-embedded in X.

NorATIiON 1.1. For any subset B of A we let /7, denote the
canonical projection of J[.., X, onto [[,., X.. For any point e X
we set x5 = II4(x), and we denote by «? the point in X defined by:
®; = x, provided ac B and xZ = p, otherwise. For any nonempty
basic open set Uc X we denote by R(U) the finite set of coordinates
on which the projection is not the entire factor. Let A(v) denote the
family of all subsets of A whose cardinality is less than Y., and let
N denote the set of positive integers.

LEMMA 1.2. let W be any infinite cardinal number, ¥ any
topological space, and E any closed mneighborhood of the diagonal in
Y xY. Let Z be any pseudo-Y§-compact subspace of X containing
). If f is a continuous function from Z to Y, then there ewists
a subset C of A such that card (C) < W, and such that for any points
x and y wn Z where x, = y,, we have (f(x), f(y)) € E.

Proof. This is a straightforward adaptation of [4; proof of the
sufficiency in Theorem 1].

We are now in position to state a theorem which drops the restric-
tion on the cardinal number \W,.

THEOREM 1.3. If X,(p) is pseudo-Y,-compact, then it is C-embedded
n X.

Proof. Let feC(X,(p)). By Lemma 1.2 there exists, for each
positive integer m, a subset B, € A(Y) such that whenever Yz, = %5,
then | f(y) ~ f(»)] < 1/n.

To extend f over all of X, let x€ X — Y.(p). Define f(x) =
lim,_.. f(#""). Since each x%» is in 3,(p) and since, by the choice of B,,
the sequence {f(¢""): ne N} is Cauchy, the limit exists. It suffices to
check that f is continuous at xze X.

Fix € > 0. Let » be any positive integer for which 1/n < ¢/3.
Since 2°* is in 3,(p), there exists a basic open neighborhood U of x?»
such that for any point y in Un X,(p) we have | f(y) — f(x"")| < ¢/3.
U is of the form: U = [licpwUs X MHecrwy Xoo Let F = R(U) N B,,
and let V = HaeFUa X HaeF Xa'

We will show that V' is an e-neighborhood of 2. Let y be any
point in V. Since y°* belongs to U, we have |f(»"") — f(z*)| < ¢/3.
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Also, | f(y™) — )| =1/n<¢/3, and | f(2)"" — f(x)| < 1/n<¢/3. Thus
| f(@) — f)| = [ F (@) = fE@™)] + 1 f@™) — f@™] + /@™ — f@)| <
e. Thus V is the desired neighborhood of .

The reader is referred to [8; Proposition 3.3] for conditions which
insure that Y,(p) is pseudo-¥,-compact.

2. The main theorem. In the previous section we found a
class of Y-spaces which were C-embedded because the continuous
functions were almost completely determined by sufficiently small
subsets of A. In this section we shall show that for any infinite
cardinal Y\, there are C-embedded X' -spaces which allow functions which
depend on Y coordinates. The most immediate example is an appro-
priate product of discrete spaces. By [8; Theorem 3.4] a product of
sufficiently large discrete spaces will admit real-valued continuous
functions which depend on any preconceived number of coordinates.
However, Theorem 2.2 below yields that every 3,-subspace of a product
of discrete spaces is C-embedded.

DEFINITION 2.1. A point % in a topological space is said to be a
P-point provided the intersection of any countable collection of neigh-
borhoods of y is also a neighborhood of y. A space is said to be a
P-space provided each point in the space is a P-point. The reader is
referred to [5] for a detailed treatment of this property.

THEOREM 2.2. If (i) 2,(p) is pseudo-¥,~compact; or

(ii) W, is a regular uncountable cardinal, and for each index
ac A and each point x,€ X,, x, has a neighborhood base of cardinality
less than Y,; or

(iii) for each ae A, X, is a P-space, and v > 0; then X.(p) is C-
embedded in X.

Notice that condition (i) places no restrictions on ¥W,. Also,
condition (iii) makes no mention of v other than v > 0. Thus X(p)
is C-embedded provided X is any product of P-spaces.

Since case (i) has already been proved and since it suffices to
prove case (iii) for v = 1, we may assume in what follows that W,
is regular and uncountable.

Let feC(2,(p)). Since each X-subspace is dense in X, from [2;
Theorem 5.3, page 216], to show that f can be extended continuously
to all of X it suffices to show that f extends continuously to each
space of the form X,(p) U {#}, with € X. In order to do this we first

need some lemmas. These lemmas make no use of the hypotheses of
Theorem 2.2.

LeMMA 2.3. Let I be a simply ordered set with mo countable
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cofinal subset. A net im the real numbers R, directed by I, must
have a cluster point in R.

Proof. This is an easy consequence of the fact that R is Lindelof.
The following lemma tells us how to extend f to the arbitrary
point ze X.

LEMMA 2.4. There exists a countable subset S of A such that
f(x°) = f(x") whenever T is countable and Sc T c A.

Proof. Fix 6 > 0. We will show that there exists a countable
subset B; of A such that for all countable subsets B> B, we have
| f(@®) — f@™)] < a.

Suppose no such B; exists. Then we can choose a transfinite
sequence of countable subsets of A, {F.:7 < W}, such that for each
countable ordinal 7, E. D U,. E, and | f(z"™) — f(x"*)| = é.

Now {f(x™):7 < W} is a net in the real numbers, and this net
is directed by the countable ordinals. By Lemma 2.3, and the fact that
consecutive elements of the net are separated by at least d, it is clear
that this net must have at least two cluster points », and 7,

Since the real numbers satisfy the first axiom of countability,
we can choose a subsequence {f(x°"n): n e N} of the net with the follow-
ing properties: E. Cc E,c+--CE. CE. C---,andlim,.. f(z ) =
r, while lim,_. f(z"2+) = r,.

The set E = U,.~ £., is countable, and hence z” € X,(p). However,
since {"m: me N} is a net in Y (p) converging to &® we must have
by the continuity of f that f(x*) = lim,_. f(z"*»), which clearly fails.

The set S = Uney Byn satisfles the lemma.

Clearly if f has a continuous extension to X,(p) U {x}, then the
value of the extended function at the point 2 must be f(x%). Define

@) = f@).

DerINITION 2.5. Let ¢ > 0. A subset B of 4 is said to be ¢,-
cofinal for a point y e 3,(p) provided card (B) < W,,» and provided the
following condition is satisfied: Given any set B’ ¢ A(y) which is
disjoint from B, there exists a basic open e-neighborhood of y which
is not restricted on B'.

Let S be as in Lemma 2.4.

LEMMA 2.6. Given any € > 0, there exists a set T, containing S
such that T. is &~-cofinal for x':.

Proof. Suppose that for some ¢ > 0 no such 7., exists. We can
then choose a sequence S, c S,---c S, C --- of sets in A(v) containing
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S such that for each basic open e-neighborhood U of z°* we have
RB(U) N (Sprs — Sa) # @.

Take S. = UnexS.. Since W, is regular and uncountable, we
have S.. € A(7), and hence #°~¢ 3,(p). Thus there exists a basic open
e-neighborhood U of z°=. However, since R(U) is finite, U is an &-
neighborhood of all but finitely many of the points in the set {#°*: n e
N}; and for any such 2°*, we have R(U)N (Sir: — S») = @. Since
this contradicts the construction, there must exist a set 7. containing
S which is e,-cofinal for ™.

LeEMMA 2.7. There exists a set Te A(v) containing S and such
that T is e-cofinal for x* for all € > 0.

Proof. Let T, be 1/n,-cofinal for &"/*. Take T = Unex Tifne

LeEMMA 2.8. Given any € > 0, there exists a finite set F'. < T which
is &-~cofinal for x7.

Proof. Since T is e,-cofinal for #7, we can choose inductively a
transfinite sequence {U.: 7 < W,} of basic open e-neighborhoods of "
with the property that for any o < 7 < W,, we have R(U,) N R(U.) <
T. Let & denote the family of finite subsets of 7.

Since card (&) = card (T) < W, and W, is regular, there must
be some finite F.e. & such that F.= R(U)N T for all ¢ in some
W, -fold subset I" of W,.

To see that F is ¢,-cofinal for 27, let 7" € A(7) be any set for which
F.NT = @. Since {R(U,) — F..tel} is a collection of ¥, pairwise
disjoint subsets of A, there is an index ¢ e I" for which R(U,)N T' =
@. This proves the lemma.

We are now in a position to prove Theorem 2.2.

Proof of Theorem. Recall that we defined f(x) = f(x°), and that
f(z%) = f(2"), where S and T are as in the preceding lemmas.

Fix ¢ > 0. Let 6 = ¢/2 and let the finite set < T be d,-cofinal
for «7.

We will now show that under the conditions of (ii) or (iii), there
is a basic open e-neighborhood U of x” which is only restricted on F.
Since f(x) = f(2"), and since 2, = z%, we will have that U is also an
e-neighborhood of z.

Case (ii): Let {V.:zel'} be a neighborhood base for x, in the
subproduct [[..» X.. Furthermore, choose this base so that card (I") <
N

Since F is &,-cofinal for 27, we can choose inductively a family
{U: »n < W,} of basic open e-neighborhoods of 7 for which the collection
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{R(U) — F:x < W} is a family of Y, pairwise disjoint finite subsets
of A— F.

Since card (I") < 3,, there is an index ¢, /" such that 7,(U,) D
V., for all X in 4, where 4 is some ¥,-fold subset of W,.

Now, since a point y is in Y,(p) if and only if the set {a: y. =+
. is of smaller cardinality than },, we have that y € Y.(p) and y, ¢
V., imply that y belongs to infinitely many U, Ae4. Thus V. x
Ie:r X, is an e-neighborhood for 2", and hence also for z.

Case (iii): Suppose that the intersection of any countable collection
of neighborhoods of x, is also a neighborhood of x.

Since F' is d,-cofinal for 2”7, we can choose a countable family {U,:
ne N} of basic open o-neighborhoods of x” such that the collection
{R(U,) — F:ne N} is a family of pairwise disjoint subsets of 4 — T.

Since each I7,(U,) is a neighborhood of z, in J[..r X, V =
Nney (U, is also a neighborhood of %,. We will show that U =
V X I«er X. 18 an e-neighborhood of .

Suppose there exists a point y € 2, (p) N U for which | f(y) — f(x)]| =
20 = e. Since y belongs to X,(p), there exists a basic open neighbor-
hood W of y such that for any point ze W 2,(p), we have | f(z) —
fyl<o.

Since {R(U,) — F: ne N} is an infinite collection of pairwise disjoint
subsets of A4, and since R(W) is finite, there exists an integer m
such that R(U,) N R(W) c F. Define the point ze X,(p) by: z. = 9.
provided o€ R(W) U F, and z, = 2% otherwise.

Clearly z is in X,(p) since 2 is in Y,(p). Since z, = y, for all
ae R(W), we have that ze W. But yr€V, and Vc II,(U,). Thus
2y = Yp 18 in II(U,). Also, z,= 2% for all «c R(U,) — F. Thus z
is in U,, as well as W. Since U, is a dé-neighborhood of z?, we have:
e |fy) — f@I=1fly) — FRI+ [f@) — f@)| <+ 0=c¢

This contradiction proves that U is an e-neighborhood of x. Thus
the theorem is complete.

The following corollary gives a wealth of examples of spaces which
satisfy conditions (ii) and (iii), but not necessarily condition (i) of
Theorem 2.2.

COROLLARY 2.9. If X is a product of discrete spaces, then every
2 -subspace is C-embedded.

Clearly a discrete space of cardinality Y fails to be pseudo-}R-
compact. Thus, given any cardinal number ¥, by taking a product
of suitable discrete spaces, one can construct a product space and a
Y -subspace which admit continuous functions depending on more than
W coordinates. Since these Y-spaces are C-embedded, condition (i)
of Theorem 2.2 misses many of the most interesting cases.
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Theorem 2.2 also yields a proof of the fact that C-embedding is
equivalent to C*-embedding. (Recall that a subspace is C*-embedded
provided each bounded continuous real valued function extends over
the entire space.) This could also be shown by using [5; Theorem
1.18].

COROLLARY 2.10. If Zc X contains X.(p), then Z is C-embedded
in X if and only if Z is C*-embedded in X.

Proof. Suppose Z is C*-embedded in X, and suppose f is an
arbitrary function in C(Z). Let xe X. Considering X to be a product
of discrete spaces, we know that f extends continuously to Z U {x},
and hence, with this extension f(x) < «o. Now, since Z is C*-embedded,
the extended function is continuous in the original topology.

Since any C-embedded subspace is always C*-embedded, the corol-
lary is proved.

If X is the product of nonmeasurable discrete spaces, then X is
realcompact. Since in this case we know that XY (p) is C-embedded,
the following corollary is clear.

COROLLARY 2.11. If X 1is the product of discrete spaces of mnom-
measurable cardinality, then for any point p in X, the Hewitt real-
compactification of X.(p) coincides with X.

One also has the following more general, but less elegant, corollary:

COROLLARY 2.12. If X is a realcompact product space, and X and
2.(p) satisfy either (i), (it), or (iit) of Theorem 2.2, then the Hewitt
realcompactification of X.(p) coincides with X.

We let v(Y) denote the Hewitt realcompactification of Y. To see
that the Hewitt realcompactification of a X-space is often larger than
the product space itself, take the coordinate spaces to be noncompact,
pseudocompact spaces such as the space 2 of countable ordinals with
the usual topology. In this case the coordinate spaces X, = 2, are not
realcompact, but for any point pe X = [[res 2o, 2.(p) is C-embedded
since these coordinate spaces are first-countable. Thus we have
2(p) C Taes 2. (2 (p)), where all the inclusions are proper.

We can say more than this. Using various results from Glicksberg’s
paper [4], we see first, by [4; Theorem 4], that since Q is locally
compact, X must be pseudocompact, and hence, by [4; Theorem 1],
that the Stone-Cech compactification of this product is the product of
the Stone-Cech compactifications. But since X is pseudocompact, we
have v(X) = B(X). Thus: 3,(p) C Ilecs 2. TV (2:(D) = V(IMacs 20) =
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B(HaeA Qa) = HaeA B(Qa) = HaeA Q2F = HaeAU(‘Qa)’ where Q* = QU Rl
with the usual topology.

3. The counterexample. In the last section we saw that every
X-space in a product of discrete spaces is C-embedded. In fact, if
each coordinate space is first-countable, then every X -subspace is C-
embedded.

Now, if f is a continuous function from any space into the real
numbers, then f is also continuous on the topology which is induced
by taking the family {f~'((a, )): @ and b rational} as a basis. Clearly
this topology is first-countable since it is second-countable. Thus, one
might be tempted to conjecture that every Y ,-space is C-embedded.
However, since the sets in this basis may fail to be basic open sub-
sets in the product topology, this weaker topology may be extremely
complex.

In fact, we shall see that given any cardinal number Y,, there
is a product space X, and a Y,-subspace which fails to be C-embedded.
What is more, the example can be constructed so that each coordinate
space is discrete everywhere except at one point, and all but one of
the coordinate spaces will be compact.

Thus, in terms of Theorem 2.2 (i), all but one of the coordinate
spaces will be well behaved.

Similarly, one can construet a product space in which all but one
of the coordinate spaces are first-countable, and yet the product space
will contain a X,-space which is not C-embedded. Also, one might
conjecture that condition (ii) of Theorem 2.2 could be weakened.
Rather than requiring that each point in each coordinate space admit
a neighborhood basis of cardinality less than X,, one might hope that
it would be sufficient to require only that each point in each coordinate
space is the intersection of fewer than ¥, neighborhoods. It turns
out, however, that the example given below can be altered so that
every point in each coordinate space is a G;-point, and yet there exists
a X,-subspace which fails to be C-embedded. Since ¥, was an arbitrary
cardinal number, and G,-points are those points which are the intersec-
tion of a countable set of neighborhoods, this conjecture fails completely.

Finally, by altering the counterexample in another way, it is
possible to have every coordinate space except one be a P-space, and
to have the one special space be discrete everywhere except one point.

The construction of the product space X, employs the concept of
a regular ultrafilter on a set of cardinality ¥,. The following definition
is a special case of a definition given by Keisler in [6].

DEFINITION 3.1. An ultrafilter on a set of cardinality W is said
to be regular provided there exists an W-fold subfamily & such that
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any infinite subfamily of &% has empty intersection.

We shall be most interested in the subfamily &

The existence of regular ultrafilters is well known. The following
construction is particularly well suited for our later use.

CoNSTRUCTION 3.2. Let W, be any infinite cardinal, and let B
be an index set of cardinality Y,. For each ge B, let N, be a copy
of the positive integers. Let A* be another index set of cardinality
W,. For each positive integer k, let (k) denote the family of all
k-element subsets of A*. Let I, be any Dbijection from {ks;: g€ B}
onto (k). For each ae A*, set D, = {ks: a € I, (ks)}, and finally set
F = {D,saec A%}

To see that .# has the finite intersection property, let F' be any
finite subset of A*. Suppose F contains & elements; then F' belongs
to A (k), and there is an element ge B for which I,(k;) = F. But
then k; € Nacr Do

To see that the intersection of any infinite subfamily of & is
empty, simply notice that for each index g e B, k; belongs to exactly
k of the sets in &

It is also clear from this property of .&# that each member of
& must have cardinality \W,.

We will now construct the product space X, = [[.., X, and the
Y. -subspace which is not C-embedded.

ExampLE 3.8. Let A be the index set which contains A* and
one other point, say 0. Let % be the family of subsets of D, =
Use» N; which we constructed in 3.2.

Let X, = D, U {c,}, where X, has the discrete topology everywhere
except at the special point o, Let the family {D, U {co,}: a € A*} be
a subbasis for the neighborhood system of the point <, in X.

For each index ae A%, let X, = D, U {,} where X, is the one-
point compactification of the discrete space D,. Finally, set X, =
IIsc4 X., and denote the induced product topology by 7.

Now in this product space every coordinate space except one is
compact. Before showing the existence of a X,-subspace which is
not C-embedded, we shall construct a similar product in which every
coordinate space except one is first-countable.

ExampLE 3.4. Let the sets A4, X,, and X, for « in A* be the
same as in the previous example. Let X, have the same topology as
above, and for each coordinate space X,, a # 0, let X, have the discrete
topology everywhere except the point «,. For each integer n, define
Via, n) = {ks: @ € I(ks) and k> n} U {co,}. Let the family {V(«, n): n € N}
be a neighborhood system for the point o, in X,, and let X, =
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II.c. X, have the product topology 7" induced by these new topologies.
Notice that each coordinate space other than X, is first countable,
and hence each point in these spaces is a G,-point, and notice that
each point in X, is a G,-point (by the construction on .&#)!

Finally, we shall give the product a topology in which every coordi-
nate space except X, is a P-space.

ExampLE 3.5. Let X, retain its previously defined topology. For
each element e A* let X, have the discrete topology everywhere
except at the point «,. A basic open neighborhood of the point <o,
shall be any set of the form X, — C, where C is a countable subset
of D,. Now each X,, « ++ 0, is a P-space.

To prevent each X,, @ # 0, from being a discrete space under
this topology, we will require that the set D,, and hence each subset
D,, be uncountable.

Let this topology on the product space X, = [[..s X. be denoted
by 1".

Now we have three different topologies on the same product X,.
We will define a single 3,-subspace which fails to be C-embedded in
each of these topologies.

Since each coordinate space was constructed primarily from a
subset of D,, there are many identifications we can make. In par-
ticular, if # is a point in the product X,, and « is an element of A4,
then not only is #, an element of X,, but it can also be considered
to be a point in many of the other coordinate spaces. This is of
course an abuse of notation, but hopefully the context will make the
situation more comprehensible than any additional notation.

ExAmMPLE 3.6. Let pe X, be any point such that p, #* oo, for
each ae A. Define the function f from 3,(p) into R by:

1 provided z, # o, and x, = %, whenever 2,€ D, ;
0 otherwise.

f@) =

We must check that f is continuous on 3,(p) in each of the three
topologies. However, since T is a coarser topology than either 7" or
T”, it suffices to check the continuity of f on 3,(p) with the relative
topology induced by (X,, T). To this end, let  be an arbitrary point
in %, (p).

Suppose first that f(x) = 1. Let F' be the finite set {a: x, € D,}.
Define V= [lacr {®a} X [laer Xae Clearly V is a basic open neighborhood
of x and for any ye VN X,(p), f(y) = 1.

Suppose now f(x) = 0. If x, % oo, there must be some o’ € A*
such that x,€ D, but x,+# x,. Define V = {&} X {®x} X [avo,er Xow If
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X, = oo, let &’ € A* be any index for which x, # c, and let D,.e &
be any set not containing x,. Set U = (Do N D,.) U {oy}. Define
V= U X {&x} X ITawo,er Xoe By either definition, V is a basic open
neighborhood of 2 and for any ye V' N 3,(p), f(y) = 0. Hence f is a
continuous function on Y,(p) in the relative topology induced by (X, T).

Next we will show that f cannot be extended to a continuous
function on the entire product space with either the topology T, TV,
or T”. In particular, we will show that f cannot be extended con-
tinuously to the point ¢ = [l.c. {cod}.

To see this, let V be a basic open neighborhood of ¢ in (X, T),
(X;, T"), or (X,, T"). Since V is restricted on only finitely many
coordinates, there must be a point ye VN 3,(p) such that y, = oo,
Hence f(y) = 0.

Thus it suffices to find a point ze V' N 3,(p) such that f(z) = 1.

Case (). V is open in T. Since Tc T’, and T T”, both Case
(ii) and Case (iii) serve to demonstrate Case (i). Since Case (ii) is more
difficult, we will do Case (iii) first.

Case (iii). V is open in 7. In this case, as we remarked in
Example 3.5, W, is taken to be uncountable. V is of the form: V =
Vo X Heaer Ve X eagruio Xa Where each V,, a € F, has countable comple-
ment C, in X,. Since V, must be uncountable, Vy — (Uacr Co) is
infinite. Let d be any point in V, — (Uaer C.) other than o, and let
F" be the set of all indices awe A for which de D,. Define the point
2eX,(p) NV by: 2, = d provided ac F’, and 2, = p, otherwise.

By the definition of f we have f(z) = 1. Thus f admits no con-
tinuous extension over all of (X, T").

Case (ii). V is open in T'. In this case V is of the form: V =
VO X HaeFV(a9 na) X HaaFU(o} -Xw Where Vo = (naeG Da) U {OOO}’ and G
is a finite subset of A*.

We claim now that (Na..rV(a, %)) N (Neee Do) is nonempty. To
see this, we may assume without loss of generality that the cardinality
of G is larger than max {n,: « € F}. Thus, since each k;, 8 € B, belongs
to at most k& of the sets in &, we have the following inclusion:
(Neer Ve, 7)) N (Naes Do) D Naerve Dae  But F has the finite intersec-
tion property, so there is a point d e (Naer V(@, 7)) N (Naece De)-

Now, let z be any point in Y,(p) such that z, = d whenever de
D,. By the choice of d, we must have ze V, and f(z) = 1.

Thus f cannot be extended continuously over X, with either the
topology T, T", or T"”. This completes the counterexample.

REMARK 8.7. In the previous section it was shown that there
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are non-realcompact product spaces in which every X,-subspace is C-
embedded. We are now in a position to destroy a related conjecture
by proving that there are realcompact product spaces containing X,-
subspaces which fail to be C-embedded.

In Example 8.3 each coordinate space except X, is compact and
hence realcompact. It is easy to see that if ¥, is nonmeasurable,
then X, is also realcompact. Thus there is no clear relationship
between a product space being realcompact and each 3,-subspace being
C-embedded.
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