STARLIKE AND CONVEX MAPS IN BANACH SPACES

T. J. SuFfridge

Let X and Y be complex Banach spaces and let $B=\{x \in$ $X:\|x\|<1\}$. This paper concerns holomorphic maps $f: B \rightarrow Y$ which have local holomorphic inverses. That is, for each $x \in B$, there is a neighborhood $N \subset Y$ of $f(x)$ and a holomorphic function $g: N \rightarrow B$ such that $g(f(x))=x$ and $f(g(y))=y$ for all $y \in N$. Necessary and sufficient conditions are found which guarantee that such a map be one-to-one and map the unit ball B onto a domain which is convex or starlike with respect to 0 .

1. Introduction. When $X=Y=C$ (the complex plane), it is well known that if f is holomorphic in $|z|<1$ and satisfies $f(0)=$ $0, f^{\prime}(0) \neq 0$ then f is univalent and maps the disk onto a domain which is starlike with respect to 0 if and only if $\operatorname{Re}\left[z f^{\prime}(z) / f(z)\right]>0$ when $|z|<1$. Intuitively, this results from the fact that if we choose $z=r e^{i \theta}, 0<r<1, f(z) \neq 0$ and let $\phi(\theta)$ be a continuous branch of $\arg f\left(r e^{i \theta}\right)$ locally then $\partial \phi / \partial \theta=\operatorname{Re}\left[z f^{\prime}(z) / f(z)\right]$. This idea does not extend readily to Banach spaces so we consider a different approach suggested by the following theorems due to M. S. Robertson [4].

Theorem A. Let $w(z, t)=\sum_{1}^{\infty} b_{n}(t) z^{n}$ be regular in $|z|<1$ for $0 \leqq t \leqq 1$. Let $|w(z, t)|<1$ for $|z|<1,0 \leqq t \leqq 1, w(z, 0) \equiv z$. Let ρ be a positive real number for which $w(z)=\lim _{t \rightarrow 0^{+}}(w(z, t)-z) / z t^{\rho}$ exists. Then $\operatorname{Re} w(z) \leqq 0$ for $|z|<1$. If $w(z)$ is also analytic in $|z|<$ 1 and $\operatorname{Re}(w(0)) \neq 0$, then $\operatorname{Re}(w(z))<0$ for $|z|<1$.

Theorem B. Let $f(z)=z+a_{2} z^{2}+\cdots$ be regular and univalent in $|z|<1$. For $0 \leqq t \leqq 1$ let $F(z, t)$ be regular in $|z|<1$. Let $F(z$, $0) \equiv f(z)$ and $F(0, t) \equiv 0$. Let ρ be a positive real number for which $F(z)=\lim _{t \rightarrow 0^{+}}(F(z, t)-F(z, 0)) / z t^{\rho}$ exists. Let $F(z, t)$ be subordinate to $f(z)$ in $|z|<1$ for $0 \leqq t \leqq 1$. Then $\operatorname{Re}\left(F(z) / f^{\prime}(z)\right) \leqq 0,|z|<1$. If in addition $F(z)$ is also analytic in $|z|<1$ and $\operatorname{Re}(F(0)) \neq 0$, then $\operatorname{Re}\left(f^{\prime}(z) / F(z)\right)<0,|z|<1$.

As observed by Robertson, if f is holomorphic and univalent in $|z|<1, f(0)=0$, and $f(|z|<1)$ is starlike with respect to 0 then $(1-t) f(z)$ is subordinate to $f(z)$ (i.e., $(1-t) f(|z|<1) \subset f(|z|<1)$) for each $t, 0 \leqq t \leqq 1$. We may set $F(z, t)=(1-t) f(z)$ in Theorem B and obtain $F(z)=-f(z) / z$ when $\rho=1$. Thus we obtain the necessary
condition $\operatorname{Re}\left[z f^{\prime}(z) / f(z)\right]>0$ by using the concept of subordination.
Now assume f is holomorphic in $|z|<1, f(0)=0, f^{\prime}(z) \neq 0$ in $|z|<1$ and $w(z)=f(z) / z f^{\prime}(z)$ where $\operatorname{Re}(w(z))>0$ (equivalently $\operatorname{Re}\left[z f^{\prime}(z) / f(z)\right]>$ 0). Expanding $f^{-1}((1-t) f(z))$ in powers of t about $t=0$, we have

$$
f^{-1}\left((1-t f(z))=z-t f(z) / f^{\prime}(z)+o(t)=z(1-t w(z))+o(t)\right.
$$

so $\left|f^{-1}((1-t) f(z))\right|<|z|$ when $0<t<t_{0}$ for some $t_{0}>0$. As we shall see later, this will imply f is one-to-one and $f(|z|<1)$ is starlike with respect to 0 . This is the approach which is needed for extension of these ideas to Banach spaces.

It is well known that the image of the unit disk under a holomorphic map f satisfying $f^{\prime}(0) \neq 0$ is convex if and only if the function $z f^{\prime}(z)$ has an image which is starlike with respect to 0 . The generalization of this result to Banach spaces is false. In fact, we will show that if $X=\ell^{\prime}$ then $f: B \rightarrow Y$ is a biholomorphic map of B onto a convex domain if and only if f is a bounded linear map having a bounded inverse (Corollary 1). We will also show (Corollary 2) that if $X=$ ι^{∞} and $f: B \rightarrow Y$ is a biholomorphic map of B onto a convex domain then $f=L \circ g$ where $g: B \rightarrow X$ is given by $g=\left(g_{1}, g_{2}, \cdots\right), g_{k}(x)=$ $g_{k}\left(x_{k}\right)=x_{k}+a_{2 k} x_{k}^{2}+\cdots, x=\left(x_{1}, x_{2}, \cdots\right)$ and L is a bounded linear map having a bounded inverse (i.e., f is a linear map composed with a function whose coordinates are functions of one variable only).

See [6] for extension of Robertson's Theorems A and B to C^{n} and see [3] and [6] for some results concerning starlikeness and convexity in C^{n}.
2. Starlike maps in Banach spaces. Let $B_{r}=\{x \in X:\|x\|<r\}$ and $B=B_{1}$. For $0 \neq x \in X$, let $T(x)$ be the collection of all continuous real linear functionals x^{\prime} on X (regarded as a real linear space) satisfying $x^{\prime}(x)=\|x\|$ and $x^{\prime}(y) \leqq\|y\|$ for all $y \in X$. By the Hahn-Banach theorem, $T(x)$ is nonempty. Also, if $x^{\prime} \in T(x)$ then $\left\{y \in X: x^{\prime}(y)=\|x\|\right\}$ is a supporting hyperplane for the convex set $B_{\| x|x|}$. Let $\mathscr{P}_{0}(B)$ be the class of mappings $w: B \rightarrow X$ which are holomorphic and satisfy $w(0)=$ 0 and $x^{\prime}(w(x)) \geqq 0$ when $0 \neq x \in B$ and $x^{\prime} \in T(x)$. Further, let $\mathscr{P}(B)$ be the class of $w \in \mathscr{C}_{0}^{\prime}(B)$ which satisfy $x^{\prime}(w(x))>0$ when $0 \neq x \in B$ and $x^{\prime} \in T(x)$.

Examples. If $X=C$ and $z_{0} \neq 0$ then $T\left(z_{0}\right)$ contains only the functional x^{\prime} given by $x^{\prime}(z)=\operatorname{Re}\left[\left|z_{0}\right| z / z_{0}\right]$ and $\mathscr{P}(B)$ consists of the class of w such that $w(z) / z$ is holomorphic in $|z|<1$ and $\operatorname{Re}[w(z) / z]>0$.

If $X=C^{n}$ with sup norm, and $0 \neq x \in X$ then $T(x)$ consists of those functionals x^{\prime} given by $x^{\prime}(y)=\sum_{\left|x_{k} ;=\|x\|\right|} t_{k}\|x\| \operatorname{Re}\left(y_{k} \mid x_{k}\right)$ where $t_{k} \geqq 0$ for each k and $\sum_{\left|z_{k}\right|=||a \||} t_{k}=1$. In this case, $\mathscr{P}(B)$ is the class
of $w: B \rightarrow X$ which are holomorphic and satisfy $w(0)=0$ and $\operatorname{Re}\left[w_{j}(x) / x_{j}\right]>0$ when $\|x\|=\left|x_{j}\right|>0$. We remark that $\mathscr{P}_{0}(B)$ in this case is the class \mathscr{P} defined in [6].

If $X=\ell^{p}, 1<p<\infty$, and $0 \neq x \in X$ then $T(x)$ contains only the functional x^{\prime} given by $x^{\prime}(y)=\operatorname{Re}\left(\sum\left|x_{j}\right|^{p} y_{j} / x_{j}\right) /\|x\|^{p-1}$ and $\mathscr{P}(B)$ consists of those holomorphic $w: B \rightarrow \iota^{p}$ satisfying $w(0)=0$ and $\operatorname{Re}\left(\sum\left|x_{j}\right|^{p} w_{j}(x) / x_{j}\right)>0$.

If $X=\ell^{1}$ and $0 \neq x \in X$ then $T(x)$ consists of those functionals x^{\prime} given by

$$
x^{\prime}(y)=\operatorname{Re}\left(\sum_{x_{j} \neq 0}\left|x_{j}\right| y_{j} / x_{j}+\sum_{x_{j}=0} \alpha_{j} y_{j}\right)
$$

where α_{j} satisfy $\left|\alpha_{j}\right| \leqq 1$. In this case, $\mathscr{P}(B)$ consists of those holomorphic $w: B \rightarrow \ell^{1}$ satisfying $w(0)=0$ and $\operatorname{Re}\left[\sum_{x_{j} \neq 0}\left|x_{j}\right| w_{j}(x) / x_{j}-\right.$ $\left.\sum_{x_{j}=0}\left|w_{j}(x)\right|\right]>0$. In the finite dimensional case using the p norm, $1 \leqq p<\infty$ the class $\mathscr{P}_{0}(B)$ is the class \mathscr{P}_{p} defined in [6].

The following lemmas generalize Robertson's Theorems A and B to Banach spaces. They also include Lemmas 1-4 of [6].

Lemma 1. Let $v(x, t): B \times I \rightarrow B$ be holomorphic for each $t \in I=$ $[0,1], v(0, t)=0$ and $v(x, 0)=x . \quad$ If $\lim _{t \rightarrow 0^{+}}[(x-v(x, t)) / t]=w(x)$ exists and is holomorphic in B then $w \in \mathscr{P}_{0}(B)$.

Proof. Let $0 \neq x \in B$ and $x^{\prime} \in T(x)$. By Schwarz lemma, $\|v(x, t)\| \leqq$ $\|x\|$ so $x^{\prime}[(x-v(x, t)) / t]=\left(\|x\|-x^{\prime}(v(x, t))\right) / t \geqq(\|x\|-\|v(x, t)\|) / t \geqq 0$ and the desired result follows by continuity of x^{\prime}.

The following example shows that there are nontrivial cases in which the limit function w of Lemma 1 is not in the class $\mathscr{P}(B)$.

Example. Let $X=C^{2}$ with $\|x\|^{2}=\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}$. For $0 \leqq t \leqq 1$, let $v(x, t): B \rightarrow B$ be the restriction of the linear map having matrix

$$
\left(\begin{array}{cc}
\sqrt{1-t^{2}} & t \\
-t & \sqrt{1-t^{2}}
\end{array}\right)
$$

Then the limit function w of Lemma 1 is given by $w(x)=\left(-x_{2}, x_{1}\right)$. If $x^{\prime} \in T(x)$ then $x^{\prime}(y)=\operatorname{Re}\left(\bar{x}_{1} y_{1}+\bar{x}_{2} y_{2}\right) /\|x\|$ so $x^{\prime}(w(x))=\operatorname{Re}\left(-\bar{x}_{1} x_{2}+\right.$ $\left.x_{2} \bar{x}_{1}\right) /\|x\| \equiv 0$.

Lemma 2. Let $f: B \rightarrow Y$ be a biholomorphic map (holomorphic with a holomorphic inverse) of B onto an open set $f(B) \subset Y$ and let $f(0)=0$. Let $F(x, t): B \times I \rightarrow Y$ be a holomorphic function of x for each $t \in I, F(x, 0)=f(x), F(0, t)=0$ and suppose $F(B, t) \subset f(B)$ for each $t \in I$. Further, suppose $\lim _{t \rightarrow 0^{+}}[(F(x, 0)-F(x, t)) / t]=F(x)$ exists and is holomorphic. Then $F(x)=D f(x)(w(x))$ where $w \in \mathscr{P}_{0}(B)(D f(x)$ is the Fréchet derivative of f at x).

Proof. Since $F(B, t) \subset f(B)$ for each $t \in I$, there exists $v: B \times I \rightarrow$ $B\left(v(x, t)=f^{-1}(F(x, t))\right)$ holomorphic for each $t \in I$ such that $f(v(x, t))=$ $F(x, t)$ where $\|v(x, t)\| \leqq\|x\|$. Fix $x,\|x\|>0$. Then

$$
f(v(x, t))=f(x)+D f(x)(v(x, t)-x)+R(v(x, t), x)
$$

where $\|R(y, x)\| /\|y-x\| \longrightarrow 0$ as $\|y-x\| \longrightarrow 0$. Therefore

$$
\frac{F(x, 0)-F(x, t)}{t}=D f(x)\left(\frac{x-v(x, t)}{t}-\frac{R(v(x, t), x)}{t}\right)
$$

We wish to conclude $R(v(x, t), x) / t \rightarrow 0$ as $t \rightarrow 0^{+}$so that $\lim _{t \rightarrow 0^{+}}((x-$ $v(x, t)) / t)$ exists and an application of Lemma 1 completes the proof. We first show that $\|x-v(x, t)\| / t$ is bounded as $t \rightarrow 0^{+}$. Suppose for some sequence $\left\{t_{n}\right\}, t_{n} \rightarrow 0^{+}$and $\left\|x-v\left(x, t_{n}\right)\right\| / t_{n} \rightarrow \infty$. We have

$$
F(x)=\lim _{n \rightarrow \infty}\left\{\left[D f(x)\left(\frac{x-v\left(x, t_{n}\right)}{\left\|x-v\left(x, t_{n}\right)\right\|}\right)-\frac{R\left(v\left(x, t_{n}\right), x\right)}{\left\|x-v\left(x, t_{n}\right)\right\|}\right] \frac{\left\|x-v\left(x, t_{n}\right)\right\|}{t_{n}}\right\}
$$

and since $R\left(v\left(x, t_{n}\right), x\right) /\left\|x-v\left(x, t_{n}\right)\right\| \rightarrow 0$ we must also have $D f(x)((x-$ $\left.\left.v\left(x, t_{n}\right)\right) /\left\|x-v\left(x, t_{n}\right)\right\|\right) \rightarrow 0$. This contradicts the assumption f^{-1} is holomorphic so such a sequence cannot exist, i.e., $\|x-v(x, t)\| / t$ is bounded as $t \rightarrow 0^{+}$. The desired conclusion now clearly follows.

If $X=C$ and $w \in \mathscr{P}_{0}(B)$ then $\operatorname{Re}(w(z) / z) \geqq 0$ when $|z|<1$. It is then easy to see that for $|\alpha|<1, w(\alpha z) / \alpha \in \mathscr{P}_{0}(B)$ and in fact $w \in$ $\mathscr{P}(B)$ unless $\operatorname{Re} w^{\prime}(0)=0$ and in this case w is constant. This result takes the following form in normed linear spaces.

Lemma 3. If $w \in \mathscr{P}_{0}(B)$ and $|\alpha|<1$ then

$$
\frac{1}{\alpha} w(\alpha x) \in \mathscr{P}_{0}(B)\left(\frac{1}{\alpha} w(\alpha x)\right. \text { is understood to be the limit value }
$$

$$
D w(0)(x) \text { when } \alpha=0)
$$

Further, if $x^{\prime} \in T(x), 0<\|x\|<1$ then $x^{\prime}(w(x))=0$ if and only if $x^{\prime}(D w(0)(x))=0$ and in this case $x^{\prime}(1 / \alpha \cdot w(\alpha x)) \equiv 0$ when $|\alpha|<1 /\|x\|$.

Proof. For $0<|\alpha|<1$ and $x^{\prime} \in T(x)$, define x_{α}^{\prime} by $x_{\alpha}^{\prime}(y)=x^{\prime}(|\alpha| y \mid \alpha)$ for all $y \in X$. Then $x_{\alpha}^{\prime}(\alpha x)=\|\alpha x\|$ and $x_{\alpha}^{\prime}(y) \leqq\|y\|$ for all $y \in X$ so $x_{\alpha}^{\prime} \in T(\alpha x)$. Therefore,

$$
0 \leqq \frac{1}{|\alpha|} x_{\alpha}^{\prime}(w(\alpha x))=x^{\prime}(w(\alpha x) / \alpha)
$$

and by continuity of $x^{\prime}, x^{\prime}(D w(0)(x)) \geqq 0$. Thus we have shown $w(\alpha x) / \alpha \in$ $\mathscr{P}_{0}(B)$ when $|\alpha|<1$.

Also, $x^{\prime}(y)=\operatorname{Re}\left[x^{\prime}(y)-i x^{\prime}(i y)\right]$ is the real part of a continuous
complex linear functional so $x^{\prime}(w(\alpha x) / \alpha)$ is a nonnegative harmonic function of α for fixed $x, \mid \alpha,<1 /\|x\|$. Therefore $x^{\prime}(w(\alpha x) / \alpha)>0$ or $x^{\prime}(w(\alpha x) / \alpha) \equiv 0$ (x fixed). This completes the proof.

Definition 1. A holomorphic map $f: B \rightarrow Y$ is starlike if f is one-to-one, $f(0)=0$ and $(1-t) f(B) \subset f(B)$ for all $t \in I$.

Theorem 1. Suppose $f: B \rightarrow Y$ is starlike and that f^{-1} is holomorphic on $f(B)$ open $\subset Y$. There exists $w \in \mathscr{P}(B)$ such that

$$
\begin{equation*}
f(x)=D f(x)(w(x)) \tag{1}
\end{equation*}
$$

Proof. Apply Lemma 2 with $F(x, t)=(1-t) f(x)$ to obtain (1) with $w \in \mathscr{P}_{0}(B)$. Since

$$
\frac{1}{\alpha} f(\alpha x)=D f(\alpha x)\left(\frac{1}{\alpha} w(\alpha x)\right)
$$

for $|\alpha|<1$, letting $\alpha \rightarrow 0$ we have

$$
D f(0)(x)=D f(0)(D w(0)(x))
$$

so $D w(0)(x)=x$ since f^{-1} holomorphic implies $D f(0)$ is invertible. Using Lemma 3 we conclude $w \in \mathscr{P}(B)$.

We have the following "converse" to Theorem 1.

Theorem 2. Let $f: B \rightarrow Y$ be holomorphic and $f(0)=0$. Assume $D f(x)$ has a bounded inverse for each $x \in B$ (hence f^{-1} exists and is holomorphic in a neighborhood of each point of $f(B)$) and that for some $w \in \mathscr{P}(B), f(x)=D f(x)(w(x))$. Suppose further that for each r, $0<r<1$, there exists $M(r)$ such that $\left\|[D f(x)]^{-1}\right\| \leqq M(r)$ when $\|x\| \leqq$ r. Then f is starlike.

Proof. We first observe that $f(x) \neq 0$ if $x \neq 0$ for $f(x)=0$ implies $D f(x)(w(x))=0$ so $w(x)=0$ since $D f(x)$ is invertible. But $x^{\prime} \in T(x)$ implies $x^{\prime}(w(x))>0$ so $w(x) \neq 0$ when $x \neq 0$.

For $0 \neq x \in B$, let N_{x} be a neighborhood of $f(x)$ in which f^{-1} exists as a holomorphic function. Let $v(x, t)=f^{-1}((1-t) f(x))$ for $-t_{0}<t<t_{1}$ where t_{0} and t_{1} are positive such that $(1-t) f(x) \in N_{x}$ when $-t_{0}<t<t_{1}$. We wish to show $\|v(x, t)\|$ is strictly decreasing as a function of t. Note that

$$
\begin{aligned}
v(x, t) & =v(x, 0)+[D f(x)]^{-1}(-t f(x))+o(t) \\
& =x-t w(x)+o(t)
\end{aligned}
$$

so for $x^{\prime} \in T(x)$ we have

$$
\begin{aligned}
\|v(x, t)\| & \geqq x^{\prime}(v(x, t))=x^{\prime}(x)-t x^{\prime}(w(x))+o(t) \\
& =\|x\|-t x^{\prime}(w(x))+o(t)>\|x\|
\end{aligned}
$$

when t is negative, $|t|$ sufficiently small. But we may apply this result at $y=v(x, t)$ (so $v(y, \tau)=f^{-1}((1-\tau)(1-t) f(x))$) to conclude that $\|v(x, t)\|$ is strictly decreasing in $-t_{0}<t<t_{1}$.

For $0 \leqq t \leqq 1$, let $A_{t}=\{(1-\tau) f(x): 0 \leqq \tau \leqq t\}$ and let $T=\{t \in$ [0,1]: there exists a neighborhood N_{t} of A_{t} such that f^{-1} exists as a holomorphic function on N_{t} such that $\left.f^{-1}(f(x))=x\right\}$. It is easy to see that T is open and nonempty. We wish to show that T is closed so $T=[0,1]$. Let $0<t_{2} \leqq 1$ where $0 \leqq t<t_{2}$ implies $t \in T$. We wish to show $t_{2} \in T$. Define

$$
\begin{equation*}
L_{\tau}=\int_{0}^{\tau}\left\|\left[D f\left(f^{-1}((1-t) f(x))\right)\right]^{-1}(-f(x))\right\| d t \tag{2}
\end{equation*}
$$

Computing the derivative of $f^{-1}((1-t) f(x))$ with respect to t, we see that the integral (2) gives the length of the arc $f^{-1}\{(1-t) f(x)$: $0 \leqq t \leqq \tau\}$. Note also that for $0 \leqq \tau<t_{0},\left\|f^{-1}((1-t) f(x))\right\| \leqq\|x\|$ in the integrand since $\left\|f^{-1}((1-t) f(x))\right\|$ decreases with t. Hence by hypothesis, the integrand is continuous and bounded by $M(\|x\|)\|f(x)\|$ so the integral exists for $0 \leqq \tau \leqq t_{2}$. Further, if $0 \leqq \tau_{1}<\tau_{2}<t_{2}$ we have

$$
\begin{aligned}
L_{\tau_{2}}-L_{\tau_{1}} & =\int_{\tau_{1}}^{\tau_{2}}\left\|\left[D f\left(f^{-1}((1-t) f(x))\right)\right]^{-1}(-f(x))\right\| d t \\
& \geqq\left\|f^{-1}\left(\left(1-\tau_{2}\right) f(x)\right)-f^{-1}\left(\left(1-\tau_{1}\right) f(x)\right)\right\| \cdot
\end{aligned}
$$

Let $\left\{\tau_{k}\right\}_{k=1}^{\infty}$ be an increasing sequence of values of τ such that $L_{\tau_{k}}=$ $\left(1-2^{-k}\right) L_{t_{2}}$. Then

$$
\begin{aligned}
L_{t_{2}}\left|2^{-m}-2^{-n}\right| & =\left|L_{\tau_{m}}-L_{\tau_{n}}\right| \\
& \geqq\left\|f^{-1}\left(\left(1-\tau_{m}\right) f(x)\right)-f^{-1}\left(\left(1-\tau_{n}\right) f(x)\right)\right\|
\end{aligned}
$$

so $\left\{f^{-1}\left(\left(1-\tau_{k}\right) f(x)\right)\right\}_{k=1}^{\infty}$ is a Cauchy sequence which converges to some value $y \in X$ such that $\|y\| \leqq\|x\|$. Clearly $f(y)=\left(1-t_{2}\right) f(x)$. Let G be a neighborhood of $f(y)$ such that f^{-1} exists uniquely in G as a holomorphic function and $f^{-1}(f(y))=y$. Since some of the values $(1-$ t) $f(x)$ lie in G for $t<t_{2}$, the values of f^{-1} in G and in N_{t} must agree for these values of t. Therefore, $\left(\bigcup_{0 \leqq t<t_{2}} N_{t}\right) \cup G$ is a neighborhood of $A_{t_{2}}$ on which f has a unique holomorphic inverse. Thus we have proved $t_{2} \in T$ and T is closed.

Now suppose $f(x)=f(y), x \neq y$. Then there exist inverses g_{1} and g_{2} of f holomorphic in a connected neighborhood N of $A=\{(1-$ t) $f(x): 0 \leqq t \leqq 1\}$ such that $g_{1}(f(x))=x$ and $g_{2}(f(x))=y$. Clearly, the set of points on which g_{1} and g_{2} agree is both open and closed (relative to N) so either $g_{1} \equiv g_{2}$ or $g_{1}(u)$ is never equal to $g_{2}(u), u \in N$.

But $0 \in N$ and $g_{1}(0)=g_{2}(0)=0$ while also $f(x) \in N$ and $g_{1}(f(x))=x \neq$ $y=g_{2}(f(x))$. This contradiction completes the proof of the theorem.

Remark. We do not know whether Theorem 2 remains true without assuming X is complete or without the boundedness condition on $[D f(x)]^{-1}$. The usefulness of this boundedness condition comes from the fact that for $r<1$ this condition implies that the boundary of $f\left(B_{r}\right)$ (as a subset of Y rather than $f(B)$) is $f(\|x\|=r)$.

Example. Let $X=Y=\ell^{\infty}$ and define $f: B \rightarrow Y$ by $f(x)=\left(f_{1}\right.$, $\left.f_{2}, \cdots\right)$ where $f_{1}(x)=x_{1}$ and $f_{j}(x)=x_{j}\left(1-x_{1}\right)$ if $j \geqq 2$. Then

$$
[D f(x)]^{-1}(f(x))=w(x)=\left(w_{1}, w_{2}, \cdots\right)
$$

where $w_{1}=x_{1}$ and $w_{j}=x_{j} /\left(1-x_{1}\right)$ if $j \geqq 2$. Suppose $0 \neq x \in B$ and $x^{\prime} \in T(x)$. If $\left|x_{1}\right|<\|x\|$ then $x^{\prime}(1,0,0, \cdots)=0=x^{\prime}(i, 0,0, \cdots)$ for otherwise we may choose α so that $\|x\|=\|x+(\alpha, 0,0, \cdots)\|$ and $\|x\|<x^{\prime}(x)+x^{\prime}(\alpha, 0,0, \cdots)=x^{\prime}(x+(\alpha, 0,0, \cdots))$.

If $\|x\|=\left|x_{1}\right|$, then $x^{\prime}\left(x_{1}, 0,0, \cdots\right) \geqq 0$ otherwise, choose $\alpha=-$ $t x_{1}$ where t is small and positive so that $\|x+(\alpha, 0,0, \cdots)\| \leqq\|x\|$ and $x^{\prime}(x+(\alpha, 0,0, \cdots))>x^{\prime}(x)=\|x\|$.

Also, if $\|x\|=\left|x_{1}\right|$ then $x^{\prime}\left(i x_{1}, 0,0, \cdots\right)=0$ since $\sqrt{1+t^{2}}\|x\| \geqq$ $x^{\prime}\left((1 \pm i t) x_{1}, x_{2}, \cdots\right)=x^{\prime}(x) \pm t x^{\prime}\left(i x_{1}, 0,0, \cdots\right)$ so

$$
\sqrt{\frac{1+t^{2}}{|t|}-1}\|x\| \geqq \pm x^{\prime}\left(i x_{1}, 0,0, \cdots\right) .
$$

Similarly, $x^{\prime}\left(i\left(0, x_{2}, x_{3}, \cdots\right)\right)=0$ and $x^{\prime}\left(0, x_{2}, x_{3}, x_{4}, \cdots\right) \geqq 0$. Therefore

$$
\begin{aligned}
x^{\prime}(w(x)) & =x^{\prime}\left(x_{1}, 0,0, \cdots\right)+x^{\prime}\left(\frac{1}{1-x_{1}}\left(0, x_{2}, x_{3}, \cdots\right)\right) \\
& =x^{\prime}\left(x_{1}, 0,0, \cdots\right)+\operatorname{Re}\left(\frac{1}{1-x_{1}} x^{\prime}\left(0, x_{2}, x_{3}, \cdots\right)\right) \\
& >0
\end{aligned}
$$

so f is starlike. Note that as x tends to a boundary point of the form $\left(1, x_{2}, x_{3}, \cdots\right), f(x)$ tends to the point $(1,0,0,0, \cdots)$.
3. Convex maps of the unit ball. We wish to obtain necessary and sufficient conditions that $f: B \rightarrow Y$ be a biholomorphic map of B onto a convex domain in Y. We begin with the following lemma.

Lemma 4. If $f: B \rightarrow Y$ is a biholomorphic map of B onto a convex domain then $f\left(B_{r}\right)$ is convex for each $r, 0 \leqq r \leqq 1$.

Proof. Suppose $x_{0}, y \in B,\|y\| \leqq\left\|x_{0}\right\|$ and $x_{0} \neq 0$. Then $t f\left(x_{0}\right)+$ $(1-t) f(y) \in f(B)$ when $0 \leqq t \leqq 1$ and we wish to show $t f\left(x_{0}\right)+$ $(1-t) f(y) \in f\left(B_{r}\right)$ when $\left\|x_{0}\right\|<r$. Let $<$ be a (complex) continuous linear functional satisfying $\ell\left(x_{0}\right)=1,\|\iota\| \leqq 1 /\left\|x_{0}\right\|$. Let $t f(x)+(1-$ $t) f(\ell(x) y)=f(v(x, t))$. Then $v(0, t)=0$ and $\|v(x, t)\|<1$ so $\|v(x, t)\| \leqq$ $\|x\|$. Hence $f\left(v\left(x_{0}, t\right)\right)=t f\left(x_{0}\right)+(1-t) f(y)$ where $\left\|v\left(x_{0}, t\right)\right\| \leqq\left\|x_{0}\right\|$ and the lemma is proved.

Definition 2. If $f: B \rightarrow Y$ is a biholomorphic map of B onto a convex domain, we say that f is convex.

If $X=C$, it is well known than a function f holomorphic in $|z|<$ 1 satisfying $f^{\prime}(0) \neq 0$ is convex if and only if $\operatorname{Re}\left[z f^{\prime \prime}(z) / f^{\prime}(z)+1\right]>0$ in $|z|<1$. The analogous condition for a general Banach space is necessary but not sufficient.

Theorem 3. If $f: B \rightarrow Y$ is convex then

$$
\begin{equation*}
D^{2} f(x)(x, x)+D f(x)(x)=D f(x)(w(x)) \tag{3}
\end{equation*}
$$

where $w \in \mathscr{P}(B)$.
Proof. Let $F(x, t)=1 / 2\left(f\left(e^{i \sqrt{t}} x\right)+f\left(e^{-i \sqrt{t}} x\right)\right)$ for $t \in I$. Then $F(x$, t) satisfies the hypotheses of Lemma 2 with

$$
\begin{aligned}
F(x)= & \lim _{t \rightarrow 0^{+}} \frac{f(x)-\frac{1}{2}\left(f\left(e^{i \sqrt{t}} x\right)+f\left(e^{-i \sqrt{t}} x\right)\right)}{t} \\
= & \lim _{t \rightarrow 0^{+}}-\frac{1}{2 t}(D f(x)((2 \cos \sqrt{t}-2) x) \\
& \left.+D^{2} f(x)(i \sin \sqrt{t} x, i \sin \sqrt{t} x)+o(t)\right) \\
= & \frac{1}{2}\left(D f(x)(x)+D^{2} f(x)(x, x)\right)
\end{aligned}
$$

Hence (3) follows with $w \in \mathscr{O}_{0}(B)$. Again, $D w(o)(x)=x$ and by Lemma $3, w \in \mathscr{P}(B)$.

The example $X=C^{2}$ with sup norm and $f\left(z_{1}, z_{2}\right)=\left(z_{1}+z_{2}^{2} / 2, z_{2}\right)$ shows the condition is not sufficient (f is not convex by Corollary 2 below).

Let $Q_{0}(B)$ be the class of functions $w: B \times B \rightarrow X$ which are holomorphic in each variable and which satisfy $w(x, x)=0$ and $x^{\prime}(w(x)$ $y) \geqq 0$ when $x^{\prime} \in T(x)$ and $\|y\| \leqq\|x\|$. Let $Q(B)$ be the collection of all $w \in Q_{0}(B)$ which satisfy $x^{\prime}(w(x, y))>0$ when $x^{\prime} \in T(x)$ and $\|y\|<$ $\|x\|$.

Lemma 5. If $w \in Q_{0}(B)$ and $|\alpha|<1$ then $1 / \alpha \cdot w(\alpha x, \alpha y) \in Q_{0}(B)$ (the
limit value at $\alpha=0$ is $D w(0,0)(x, y))$. Further, if $x^{\prime} \in T(x), 0 \neq x \in B$, and $\|y\| \leqq\|x\|$ then $x^{\prime}(w(x, y))=0$ if and only if $x^{\prime}(D w(0,0)(x, y))=0$.

Proof. See the proof of Lemma 3.
Theorem 4. Suppose $f: B \rightarrow Y$ is convex. Then $f(x)-f(y)=$ $D f(x)(w(x, y))$ where $w \in Q(B)$.

Proof. Since $(1-t) f(x)+t f(y) \in f(B)$ for all $x, y \in B$ when $0 \leqq$ $t \leqq 1$, there exists $v(x, y, t): B \times B \times I \rightarrow B$ such that $f(v(x, y, t))=$ $(1-t) f(x)+t f(y)$. By Lemma $4,\|v(x, y, t)\| \leqq \max (\|x\|,\|y\|)$. Also,

$$
f(v(x, y, t))=f(x)+D f(x)(v(x, y, t)-x)+R(v(x, y, t), x)
$$

so

$$
\begin{aligned}
f(x)-f(y) & =\lim _{t \rightarrow 0^{+}} \frac{f(x)-f(v(x, y, t))}{t} \\
& =\lim _{t \rightarrow 0^{+}}\left(D f(x)\left(\frac{x-v(x, y, t)}{t}\right)-\frac{1}{t} g(v(x, y, t), x)\right) \\
& =D f(x)(w(x, y))
\end{aligned}
$$

Since $w(x, y)=\lim _{t \rightarrow 0^{+}}(x-v(x, y, t)) / t$, it is clear that $w \in Q_{0}(B)$. Since $D w(0,0)(x, y)=x-y$, Lemma 5 implies that $w \in Q(B)$.

Again assuming a boundedness condition on $[D f(x)]^{-1}$ we can prove the converse.

Theorem 5. Suppose $f: B \rightarrow Y$ is holomorphic, $D f(x)$ has bounded inverse for each $x \in B$ and that for some $w \in Q(B), f(x)-f(y)=$ $D f(x)(w(x, y))$. Suppose further that for each $r, 0<r<1$, there exists $M(r)>0$ such that $\left\|[D f(x)]^{-1}\right\| \leqq M(r)$ when $\|x\| \leqq r$. Then f is convex.

Proof. Since $w(x, 0) \in \mathscr{P}(B), f(x)-f(0)$ is starlike. Let $v(x, y, t)=f^{-1}((1-t) f(x)+t f(y))$ when $x, y \in B$ and $t \in\left[0, t_{0}\right]$ where t_{0} is such that $(1-t) f(x)+t f(y) \in f(B)$ when $0 \leqq t \leqq t_{0}$. Proceeding as in the proof of Theorem 2, we have

$$
v(x, y, t)=x-t w(x, y)+o(t)
$$

so $\|v(x, y, t)\|$ is decreasing (as a function of t) when $\|v(x, y, t)\|>\|y\|$. By methods similar to those used in the proof of Theorem 2, we conclude that the set of allowable values of $t_{0} \in[0,1]$ is nonempty, open and closed. Hence we may choose $t_{0}=1$ and it follows that $f(B)$ is convex.

Theorem 6. Let $f: B \rightarrow Y$ be convex, $0 \neq x \in B$ and let $x^{\prime} \in T(x)$. Then the hyperplane $\left\{y \in Y: x^{\prime}\left[(D f(x))^{-1}(y)\right]=x^{\prime}\left[(D f(x))^{-1}(f(x))\right]\right\}$ is a supporting hyperplane for the convex set $f\left(B_{\||x| \mid}\right)$. If $y \neq 0, x^{\prime}(y)=0$ and $\|x+t y\|=\|x\|$ for $0<t<t_{0}$, then $x^{\prime}\left[(D f(x))^{-1}(f(x+t y))\right]=$ $x^{\prime}\left[(D f(x))^{-1}(f(x))\right]$ for $0<t<t_{0}$ (i.e., $f(x+t y)$ lies in the supporting hyperplane described above).

Proof. By Theorem 4, $\|y\|<\|x\|$ implies

$$
0<x^{\prime}(w(x, y))=x^{\prime}\left[(D f(x))^{-1}(f(x)-f(y))\right]
$$

so

$$
x^{\prime}\left[(D f(x))^{-1}(f(x))\right]>x^{\prime}\left[(D f(x))^{-1}(f(y))\right]
$$

That is, all points in $f\left(B_{\|x\|}\right)$ lie on the same side of the hyperplane and the first part of the theorem is proved.

Expanding $f(x+t y)$ in a power series about x we have

$$
f(x+t y)=f(x)+t D f(x)(y)+\frac{1}{2} t^{2} D^{2} f(x)(y, y)+o\left(t^{2}\right)
$$

so

$$
\begin{aligned}
w(x, x+t y) & =(D f(x))^{-1}(f(x)-f(x+t y)) \\
& =-t y-\frac{1}{2} t^{2}(D f(x))^{-1}\left(D^{2} f(x)(y, y)\right)+o\left(t^{2}\right)
\end{aligned}
$$

and

$$
x^{\prime}(w(x, x+t y))=-\frac{1}{2} t^{2} x^{\prime}(D f(x))^{-1}\left(D^{2} f(x)(y, y)\right)+o\left(t^{2}\right) .
$$

By Lemma 5 and Theorem 4, we conclude $x^{\prime}\left\{\lambda(D f(\lambda x))^{-1}\left(D^{2} f(\lambda x)(y\right.\right.$, $y))\} \leqq 0$ when $|\lambda| \leqq 1 /\|x\|$ with equality when $\lambda=0$. Since the function under consideration is a harmonic function of λ we conclude $x^{\prime}\left((D f(x))^{-1}\left(D^{2} f(x)(y, y)\right)\right)=0$. Using induction on the higher order terms in the series we obtain the desired result, $x^{\prime}(w(x, x+t y))=0$.

Note that if x is not an extreme point of the closed ball of radius $\|x\|, x \neq 0$, then y and x^{\prime} as given in the theorem do exist.

We now apply Theorem 6 to two particular spaces which show that the requirement that a holomorphic map of the unit ball be convex is very restrictive at least in some spaces. We asume that (S, R, μ) is a measure space with μ a positive measure defined on the σ-ring R of subsets of S. We assume S has two disjoint subsets of finite positive measure.

Theorem 7. Let $X=L(\mu)$ (the space of complex valued integrable
functions on S). If $f: B \rightarrow Y$ is convex then $f(x)-f(0)$ is linear.
Proof. We may assume $Y=X, f(0)=0$ and $D f(0)=I$ (otherwise, replace f by $\left.[D f(0)]^{-1}(f(x)-f(0))\right)$. Since $f(x)=x+1 / 2 \cdot D^{2} f(0)(x$, $x)+\cdots$, it is sufficient to show $D^{n} f(0)=0, n=2,3, \cdots$. The proof is by induction. Let $x=\alpha x_{E}+\beta x_{F}$ where E and F are disjoint sets of finite positive measure, x_{E} and x_{F} are characteristic functions for E and F respectively, $|\alpha| \mu(E)+|\beta| \mu(F)<1$ (so $x \in B$) and $\alpha \beta \neq 0$. Let x^{\prime} be the real continuous linear functional on X given by

$$
x^{\prime}(u)=\operatorname{Re}\left[|\alpha| / \alpha \int_{E} u d \mu+|\beta| / \beta \int_{F} u d \mu\right]
$$

and let

$$
y=-\alpha /(|\alpha| \mu(E))(1-i r) x_{E}+\beta /(|\beta| \mu(F))(1+i s) x_{F}
$$

where r and s are real.
Then $x^{\prime}(y)=0$ and

$$
\begin{aligned}
\| x & +t y \|=|\alpha|(\mu(E)-t /|\alpha|) \sqrt{1+(r t /(|\alpha| \mu(E)-t))^{2}} \\
& +|\beta|\left(\mu(F)+t /|\beta| \sqrt{1+(s t /(|\beta| \mu(F)+t))^{2}}\right. \\
= & \|x\|+|\alpha| \mu(E) r^{2} t^{2} /\left(2(|\alpha| \mu(E)-t)^{2}\right) \\
& +|\beta| \mu(F) s^{2} t^{2} /\left(2(|\beta| \mu(F)+t)^{2}\right)+o\left(t^{2}\right) \geqq\|x\|
\end{aligned}
$$

if $|t|$ is sufficiently small.
Therefore, using Theorem 4 and the definition of Q we conclude $x^{\prime}(w(x+t y, x)) \geqq 0$ if $|t|$ is sufficiently small. Since $x^{\prime}(y)=0$, it follows as in the proof of Theorem 6 that $x^{\prime}(D t(x))^{-1}\left(D^{2} f(x)(y, y)\right)=0$.

Letting $L_{x}(\cdot, \cdot)=(D f(x))^{-1}\left(D^{2} f(x)(\cdot, \cdot)\right)$ we have

$$
\begin{aligned}
\operatorname{Re}[& \int_{E}\left(\alpha(1-i r)^{2} /\left(|\alpha| \mu^{2}(E)\right) L_{x}\left(x_{E}, x_{E}\right)\right. \\
& -2 \beta(1-i r)(1+i s) /(|\beta| \mu(E) \mu(F)) \cdot \\
& \left.L_{x}\left(x_{E}, x_{F}\right)+|\alpha| \beta^{2}(1+i s)^{2} /\left(\alpha|\beta|^{2} \mu^{2}(F)\right) L_{x}\left(x_{F}, x_{F}\right)\right) d \mu \\
& +\int_{F}\left(\alpha^{2}|\beta|(1-i r)^{2} /\left(|\alpha|^{2} \beta \mu^{2}(E)\right) L_{x}\left(x_{E}, x_{E}\right)\right. \\
& -2 \alpha(1-i r)(1+i s) /(|\alpha| \mu(E) \mu(F)) \cdot \\
& \left.\left.L_{x}\left(x_{E}, x_{F}\right)+\beta(1+i s)^{2} /\left(|\beta| \mu^{2}(F)\right) L_{x}\left(x_{F}, x_{F}\right)\right) d \mu\right]=0 .
\end{aligned}
$$

In (4), if we replace α and β by $\lambda \alpha$ and $\lambda \beta$ and multiply through by $|\lambda|$ we obtain an analytic function of λ for $|\lambda|<R$ where $R>1$ which has 0 real part and is 0 at $\lambda=0$. Therefore the quantity in brackets is 0 . Since α, β, r, and s are variable, we conclude that each of the six terms above is 0 . Letting α and β tend to 0 , we conclude
that if A and B are disjoint measurable sets of finite measure then

$$
\int_{A} D^{2} f(0)\left(x_{A}, x_{A}\right) d \mu=\int_{B} D^{2} f(0)\left(x_{A}, x_{A}\right) d \mu=\int_{A} D^{2} f(0)\left(x_{A}, x_{B}\right) d \mu=0
$$

If A and $E \cup F$ are disjoint and A has finite positive measure, we may replace the functional x^{\prime} in the argument above by x_{1}^{\prime} where

$$
x_{1}^{\prime}(u)=x(u)+\operatorname{Re} \int_{A} \gamma u d \mu
$$

where $|\gamma| \leqq 1, \gamma$ complex. This leads to the conclusion, $\int_{A} D^{2} f(0)\left(x_{E}\right.$, $\left.x_{F}\right) d \mu=0$.

Hence we may now conclude that for simple functions y we have $D^{2} f(0)(y, y)=0$. This implies $D^{2} f(0)(y, y)=0$ for all $y \in L(\mu)$. Similarly, $D^{k} f(0)(y, y, \cdots, y)=0$ for $k=3,4, \cdots$.

The theorem now follows from the power series for f about 0 .
Choosing S to be the positive integers and μ counting measure we obtain the following corollary.

Corollary 1. If $X=\ell^{1}$ and $f: B \rightarrow Y$ is convex then $f(x)-f(0)$ is linear.

Theorem 8. Let $X=L^{\infty}(\mu)$ (the space of essentially bounded, complex valued, measurable functions on S) and suppose $f: B \rightarrow Y$ is convex. If $x, y \in B$ where $x(s)=y(s)$ for all $s \in E \subset S$ and $\mu(E)>0$ then $(D f(0))^{-1}(f(x))(s)=(D f(0))^{-1} f(y)(s)$ for almost all $s \in E$.

Proof. We may assume $Y=X, f(0)=0$ and $D f(0)=I$ (otherwise, replace f by $\left.(D f(0))^{-1}(f(x)-f(0))\right)$. We will show that if $\mu(E)>0$, then for almost all $s \in E$ we have $f(x)(s)=f\left(x x_{E}\right)(s)$ (where x_{E} is the characteristic function of E). We accomplish this by showing, $(D f(x))^{-1} D^{n} f(x)(y, \cdots, y)(s)=0$ a.e. on E when $y(s)=0$ on $E(n \geqq 2)$ and $D^{2} f(x)\left(x_{E}, y\right)=0$ when $y=0$ on E. An induction argument will then show $D^{n} f(x)\left(x_{E}, y, y, \cdots, y\right)=\lim z \rightarrow 0\left[D^{n-1} f(x+z y)\left(x_{E}, y, y, \cdots, y\right)-\right.$ $\left.D^{n-1} f(x)\left(x_{E}, y, y, \cdots, y\right)\right] / z=0$ for $n \geqq 3$ when $y=0$ on E and using the fact that $D^{n} f(x)$ is n-linear and symmetric (writing $y=y x_{E}+$ $y\left(1-x_{E}\right)$) we have

$$
\begin{aligned}
& \mathrm{D}^{n} f(x)(y, y, \cdots, y)=D^{n} f(x)\left(y x_{E}, y x_{E}, \cdots, y x_{E}\right) \\
& \quad+D^{n} f(x)\left(y\left(1-x_{E}\right), y\left(1-x_{E}\right), \cdots, y\left(1-x_{E}\right)\right)
\end{aligned}
$$

for all $n \geqq 1$ when E is measurable. Hence for $s \in E$ we have

$$
D^{n} f(0)(y, y, \cdots, y)(s)=D^{n} f(0)\left(y x_{E}, y x_{E}, \cdots, y x_{E}\right)(s) \quad \text { a.e. on } E .
$$

Therefore,

$$
\begin{aligned}
f(x)(s) & =\left[\sum_{k=1}^{\infty} \frac{1}{k!} D^{k} f(0)(x, x, \cdots, x)\right](s) \\
& =\left[\sum_{k=1}^{\infty} \frac{1}{k!} D^{k} f(0)(x, x, \cdots, x)(s)\right] \\
& \sum_{k=1}^{\infty} \frac{1}{k!} D^{k} f(0)\left(x x_{E}, x x_{E}, \cdots, x x_{E}\right)(s) \\
& =f\left(x x_{E}\right)(s) \text { for almost all } s \in E .
\end{aligned}
$$

Let E be a set of positive measure, let $0<\varepsilon<r<1$ and

$$
\begin{equation*}
x=\alpha x_{E}+\left(1-x_{E}\right) u, u \in X \tag{7}
\end{equation*}
$$

where $|\alpha|=r$ and $\|u\| \leqq r-\varepsilon$.
Let $y \in B$ satisfy

$$
\begin{equation*}
y(s)=0 \text { if } s \in E \tag{8}
\end{equation*}
$$

Then $\|x+\beta y\|=\|x\|=r$ for $|\beta|$ sufficiently small. Let x^{\prime} be the real continuous linear functional on X given by

$$
x^{\prime}(v)=\operatorname{Re} \int_{E}\left(\frac{\bar{\alpha}}{r \mu(E)}\right) v d \mu
$$

Then $x^{\prime} \in T(x)$ and $x^{\prime}(\beta y)=0$ so Theorem 6 applies. Since $\arg \beta$ is arbitrary we may therefore conclude

$$
\begin{equation*}
(D f(x))^{-1} D^{2} f(x)(y, y)(s)=0 \quad \text { a.e. on } E \tag{9}
\end{equation*}
$$

But $(D f(x))^{-1} D^{2} f(x)(y, y)$ is an analytic function of α for $|\alpha|<1(E, u$, and y remain fixed) which satisfies (9) when $|\alpha|>\|u\|$. Hence (9) holds when $|\alpha|<1$ and $\|u\|<1$. For arbitrary $x \in B$, we may approximate $x x_{E}$ on E by simple functions to see that (9) holds for all $x \in B$ if $y(s)=0$ on E. An induction argument shows that (9) holds when $D^{2} f(x)(y, y)$ is replaced by $D^{n} f(x)(y, y, \cdots, y)$ where $n \geqq$ 2 and $y=0$ on E.

We now wish to show $D^{2} f(x)\left(x_{E}, y\right)=0$ for all $x \in B$ and $y \in X$ satisfying $y(s)=0$ if $s \in E$.

Let x and y be given by (7) and (8) and set $h=\beta y+t \alpha x_{E}$ where $|\beta|=t^{1 / 2}$. Then for t sufficiently small, $\|x+h\| \sqrt{1+t^{2}}\|x\|$ and

$$
\begin{aligned}
w\left(x, \frac{1}{\sqrt{1+t^{2}}}(x+h)\right) & =(D f(x))^{-1}\left(f(x)-f\left(\frac{1}{\sqrt{1+t^{2}}}\right)(x+h)\right) \\
& =-v-(D f(x))^{-1}\left(D^{2} f(x)(v, v)\right)-\cdots
\end{aligned}
$$

where

$$
v=\left(\frac{1}{\sqrt{1+t^{2}}}-1\right) x+\frac{1}{\sqrt{1+t^{2}}} \cdot h
$$

With x^{\prime} as above, applying Theorem 4 we obtain

$$
\begin{aligned}
0 \leqq & x^{\prime}\left(w\left(x, \frac{1}{\sqrt{1+t^{2}}}(x+h)\right)\right) \\
= & \operatorname{Re}\left(\frac{-i r t \beta}{\mu(E)} \int_{E}(D f(x))^{-1} D^{2} f(x)\left(x_{E}, y\right) d \mu\right) \\
& +o\left(t^{2}\right)
\end{aligned}
$$

Since $|\beta|=t^{1 / 2}$ and $\arg \beta$ is arbitrary, we conclude

$$
\begin{equation*}
\int_{E}(D f(x))^{-1} D^{2} f(x)\left(x_{E}, y\right) d \mu=0 \text { when } y=0 \text { on } E \tag{10}
\end{equation*}
$$

Let $F \subset S, F$ measurable, and $\mu(F)>0$. Equation (10) implies

$$
\int_{F \cap E}(D f(x))^{-1} D^{2} f(x)\left(x_{E}, y\right) d \mu=0
$$

Also,

$$
\begin{aligned}
& \int_{F-E} \quad L_{x}\left(x_{E}, y\right) d \mu=\int_{F-E}\left[L_{x}\left(y x_{F}, x_{E}\right)\right. \\
& \quad+\frac{1}{2} L_{x}\left(x_{E}+y\left(1-x_{F}\right), x_{E}+y\left(1-x_{F}\right)\right)-\frac{1}{2} L_{x}\left(x_{E}, x_{E}\right) \\
& \left.\quad-\frac{1}{2} L_{x}\left(y\left(1-x_{F}\right), y\left(1-x_{F}\right)\right)\right] d \mu=0
\end{aligned}
$$

for the first term is 0 by (10) applied to $F-E$ and the other 3 terms are 0 by (9) applied to $F-E$. Hence we conclude $(D f(x))^{-1} D^{2} f(x)\left(x_{E}\right.$, $y)(s)=0$ a.e. on S so $D^{2} f(x)\left(x_{E}, y\right)=0$.

Again taking S to be the positive integers with μ the counting measure we obtain the following corollary.

Corollary 2. If $X=\ell^{\infty}$ and $f: B \rightarrow Y$ is convex then $f(x)$ $f(0)=\operatorname{Df}(0)(g(x))$ where $g(x)=\left(g_{1}\left(x_{1}\right), g_{2}\left(x_{2}\right), \cdots\right)$ and $g_{k}\left(x_{k}\right)=x_{k}+$ $a_{2 k} x_{k}^{2}+\cdots$ maps $\left|x_{k}\right|<1$ onto a convex domain.
4. Discussion. The techniques used in this paper may also be used to extend the concepts of close-to-convexity and spirallikeness to Banach spaces. There are at least two different ways of extending the analytic condition for close-to-convexity to Banach spaces and these apparently lead to different classes of functions. Results concerning these concepts are as yet incomplete and will be discussed in a later paper.

References

1. L. A. Harris, Schwarz's Lemma in normed linear spaces, Proc. Natl. Acad. Sci. U.S.A., 64 (4), (1969), 1014-1017.
2. E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Colloq. Publ., 31 (1957).
3. Takeshi Matsuno, Star-like theorems and convex-like theorems in the complex vector space, Sci. Rep. Toko, Kyoiku Daigaku, Sect A 5 (1955), 88-95.
4. M. S. Robertson, Applications of the subordination principle to univalent functions, Pacific J. Math., 11 (1961), 315-324.
5. G. T. Schwartz, Nonlinear Functional Analysis, Courant Inst. of Math. Sciences NYU, 1965.
6. T. J. Suffridge, The principle of subordination applied to functions of several variables, Pacific J. Math., 33 (1970), 241-248.

Received March 27, 1972.
University of Kentucky

