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THE g-DEPTH OF AN ^-PROJECTOR1

H. J. SCHMIDT, JR.

Let % be a saturated formation and let G be a finite
solvable group with ^-projector JP. In a fundamental work,
Carter and Hawkes have shown that for suitably restricted %
there is a chain of j^crucial maximal subgroups of G termi-
nating with F. It is shown here that the number of links
in such a chain is an ^-invariant of G, called the gf-depth
of F in G and written d%(F, G).

If 4(G) is the g-length of G then, provided § is normal
subgroup-closed, the inequality S%(G) ̂  2 d%(F, G) + 1 is ob-
tained. If F is also nilpotent of nilpotency class c(F), then
it is proved that 4(G) ^ d%(F, G) + c(F).

If % and ξ> are two such suitable saturated formations
with § = &> comparisons of the invariants d%(F, G) and d$(H, G)
are made, where F and H are respectively the $- and £>-pro-
jectors of the the finite solvable group G. In particular, if
H ^ F then dd(F, G) ̂  d$(H, G), and if in addition d9(F, G) =
d^H, G) then H = F.

I* Introduction* In this paper all groups considered are finite
and solvable. Throughout we let % be a saturated formation which
is locally induced by a class of nonempty, integrated formations %(p),
one for each prime p. The concepts, definitions and notation of this
article are included in the above-mentioned paper [2] of Carter and
Hawkes. However, we make one standard definition not found there.

DEFINITION 1.1. Let % be a nonempty formation and let G be a
group. Let G13f = G* and define Gn% recursively by G{n+m = (Gft8f)*.
If % contains all cyclic groups of prime order then G%3? = {1} for some
integer n. The least such integer n is called the g-length of G and
is written 4(G).

DEFINITION 1.2. Let S^G. A factor H/K of G (if, K ^ G and
K <j H) is called an S-composition factor of G if S normalizes both H
and K and if iZ/ίΓ has no proper, nontrivial subgroup normalized by S
A subnormal series 1 = Ho <] iϊi <| <] Hn — G is called an S-com-
position series of G if each factor Hi+1/Hi is an S-composition factor
of G.

The Jordan-Holder theorem for operator groups ([9], 2.10 2) implies
that any two S-composition series for G are equivalent. Further,

1 In view of recent work by Schunk, Gaschϋtz and others, the term ^-projector is
used in place of ^-covering subgroup.
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because G is solvable we may infer ([9], 4.4.2 and 4.4.5) that each
S-composition factor of G is an elementary abelian p-group for some
prime p.

2* The f^-depttu In this section we define the notion of the
g-depth of an g-Proiector a n d derive its basic characterization as a
"depth".

DEFINITION 2.1. Let G be a group with g-projeetor F. If an
jP-composition factor H/K of G is a p-group, then H/K is called F-
central whenever it is centralized by F*{p); otherwise it is called F-
eccentric. If 1 = Ho <] Hx <] <j Hn = G is an F-composition series
for G, then the g-ctepth of F in G is the number of F-eccentric factors
in this series and is written as dd(F, G).

Because the action of F (under conjugation) on equivalent factors
is the same and because each two g-P r oJe ctors of G are conjugate,
it follows that dd(F, G) is an invariant of the group G which depends
only on the formation %.

We now establish that all g-crucial chains from F to G have the
same number of links, hence the terminology "depth". The proof
given below is due to Trevor Hawkes and is considerably shorter than
our original constructive proof.

THEOREM 2.2. Let G be a group with ^-projector F. Let

F = Mr< -Mr.., < . ••• < M; < •(?

be an ^-crucial chain from F to G. Then dd(F, G) = r.

Proof. Induct on \G\. Because F is an g-projector of M1 and
because the bottom r — 1 links of the given chain form an g-crucial
chain from F to M19 we have d%(F, M,) = r — 1.

Suppose that Mι is ^-maximal and put K — Core (ΛfΊ); let H/K be
the unique minimal normal subgroup of GjK (see [6], II. 1.4 and II.
3.2). Because Mι is g-crucial maximal and because F is an g-Pr°-
jector of G, we have that G/H ~ MJKe%\%(p), so that G - FH.
It follows that H/K is an jP-eccentric jF-composition factor of G and
that an F-eomposition series of G above H is a chief series of G above
H with the G-action on these factors equivalent to the inaction.

Now let ^ be an F-composition series of G through H/K. The
.F-composition factors in ^ below K are F-composition factors of Mx.
The observation of the preceding paragraph shows that the factors in
^ above H are chief factors of G and because G/He %, each of these
factors is g-central; therefore each is F-central since the action of F
and G on these factors are equivalent. Hence the isomorphism G/H =
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MJK yields the equality ds(F, G) = ds(F, MJ + 1 = (r - 1) + 1 = r.
This section concludes with several elementary observations. If

N<\G then FN/N is an g-p rojector of G/N. Thus there is an g-crueial
chain in G/N from FN/N to G/N. Because N is contained in the
core of any subgroup containing FN, we have the following.

PROPOSITION 2.3. If N<\G then there is an %-crucial chain in
G from FN to G. The length of this chain is an %-invariant of G,
namely d9(FN/N, G/N).

If we write dd(FN, G) for dd(FN/N, G/N) then, since F is an
^-projector of FN, the following is immediate.

PROPOSITION 2.4. Let N<3G. Then

dd(F, G) = dd(F, FN) + d,(FN, G) .

3* The Influence of g-depth* We now study relations among
dd(F, G)9 the g-le ngth 4(G) of G, and, in case F is nilpotent, the
nilpotency class c(F) of F. For the first result only, we make the
additional assumption that % is normal subgroup-closed.

THEOREM 3.1. Let % be normal subgroup-closed, and let G be a
group with ^-projector F. Then

Proof. Let r = ds(F, G) and induct on | G\. If M is an
maximal subgroup containing Ff then dd(F, M) = r — 1. Since M <
G we may write 4(M) ^ 2(r - 1) + 1 = 2r - 1.

Let K = Core (Λf) and, as in the proof of (2.2), let H/K be the
unique minimal normal subgroup of G/K. Since M is ^-crucial we
have that M/K= G/He% and that H/K is ^-eccentric.

Because M/Ke % we obtain ikF ^ iΓ. But K/M* < ilf/ikfs e g and
g is normal subgroup-closed, so that K% ^ M5. A standard induction
argument now shows that Knd ^ Mn* for all n. Therefore s%(K) ^ 4(Λf) ^
2r — 1. Finally G/He% and iϊ/iΓ is elementary abelian so that
4(G) ^ s%{G/K) + 4(JBΓ) ̂  2 + (2r - 1) = 2r + 1, the desired inequality.

We remark that if ϋft is the class of nilpotent groups and G is the
symmetric group on four letters, then the 2-Sylow subgroups of G are
the 5Jί-projectors of G and are maximal. Since G has nilpotent length
3, the inequality of (3.1) is best possible.

We are grateful to Trevor Hawkes for the following example which
shows that the normal subgroup-closed hypothesis of (3.1) is necessary.
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EXAMPLE 3.2. Let H be the subgroup of SL(2,11) of order 120
which corresponds to the alternating group on five letters under
the canonical epimorphism from SL(2, 11) to PSL(2, 11). It is known
that H acts fixed point freely on an elementary abelian group V of
order II 2 ([6], p. 500). The normalizer K of a 2-Sylow subgroup of
H has order 24. Let R be the split extension VK. Let W be a
faithful, irreducible Z5u?-module and let G be the split extension WR.
Let Q be the 2-Sylow subgroup of K and let P be a 3-Sylow subgroup
of K. It is well-known that Q is a quaternion group and that its
central involution z is centralized by the generator x of P.

Let % be locally induced by the following. If p ^ 5, 11 let %(p) =
{1}. Let S(ll) be the smallest formation containing Z%. If ξ> is the
formation of all {2, 3, ll}-groups in which the 2-chief factors are central
and the nontrivial 11-chief factors are eccentric, then let f?(5) be the
formation of extensions of 5-groups by groups in £>. Then each $(p)
is integrated. However, %(5) is not normal subgroup-closed, for V <\
V(x, z} e %(S) and V is an 11-group. A result of Doerk ([3], 2.2) shows
that % is not normal subgroup-closed.

Finally, G has g-le n£th 4 and the g-subgroup F = WV(x, z) is
maximal. Hence dΰ(F, G) = 1 and the inequality of (3.1) fails for this
G and %.

By way of contrast, we give an example of a group G of !Ji-
length 2 which has a Carter subgroup A of 9ΐ-depth n, where n is
an arbitrary integer.

EXAMPLE 3.3. Let 2 < pi < p2 < < pn be prime numbers and
set H = ZPl x ZP2 x . x ZPn. For i = 1, , n let S, = Aut (Zp.) ~
Zp.^. Set A = B, x B2 x x S% and let A act on H coordinate-
wise. Put G = HA, the split extension. Then A — C(A) = N(A) is
nilpotent, so that A is a Carter subgroup of G. If Mi = (ZPl x x
Zp. x {1} x x {1})A, where the factor {1} appears n — ί times, then
A < Mι < M2 < < Mn_γ < -Mn = G is an St-crucial chain of
length n, so that dΆ(A, G) = n. It is clear that G has nilpotent
length 2.

The next lemma is the primary inductive tool for the remainder
of this section. We make it as general as possible.

LEMMA 3.4. Let ξ) be a class of groups which is closed under
homomorphίc images; and let f be a positive integervalued set function,
defined on the class of groups, satisfying

(#) f(R) ^ f(RΘ), where R is a group and θ is an epimorphism
of R.
Let G be a group in § of minimal order which fails to satisfy

(*) 4(G) ^ dAF, G) + f(F), where F is an ^-projector of G.
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Then
(a) G has a unique minimal normal subgroup A,
(b) A is complemented and A = C(A),
(c) A <* F, and

(d) s,(G/A) = 4 ( O - 1.
If, in addition, F is nilpotent, then

(e) F is a p-Sylow subgroup of G, where p is the exponent of A.

Proof. Let n = 4(G). It is clear that Gi%) otherwise 4(G) =
1, d9(F, G) = 0 and (*) obtains since /(F) ^ 1. Therefore n ^ 2.

Let ^? be the class of groups of g-len&tli at most n — 1. It is
well-known ([4], 4.3) that ^ is a saturated formation.

Let A be a minimal normal subgroup of G. Since G/A e £> and
FA/A is an g-Pr°iector of G/A, it follows that

( i ) d,(F, G) ̂  dd(FA, G) ̂  S9(G/A) - f(FA/A) ^ 4(G/A) - f(F).
If 4(G/A) = n, then (*) holds. Therefore 4(G/A) ^ n - 1. Since ^
is a (saturated) formation and 4(G) = ^, it follows that A is the
unique minimal normal subgroup of G. Also Ae g, so that s$(G/A) —
w - 1 and A = G{n~m. This proves (a) and (d).

If any of the inequalities in (i) is strict, then

d,(F, G) ̂  (n - 1) - f(F) + 1 = n - f(F),

contrary to the choice of G. Therefore dd(F, G) = (n - 1) - f(F),
whereupon F = FA and A ^ F. This proves (c).

If M is an ^-projector of G, then G = MA, Mf] A = 1, and ikf
is maximal. Thus A = C(A), proving (b).

Finally, suppose that F is nilpotent and let A be a p-group.
Because A ^ F, a nontrivial ^-complement of F would centralize A,
contrary to (b). Hence F is a p-group. As $ 2 31, it is elementary that
N(F) = ί7, consequently F must be a p-Sylow subgroup of G.

Next we establish one of the main results of this section.

THEOREM 3.5. If F is nilpotent, then

4(G) ^ dΰ(F, G) + c(F) ,

where c(F) is the nίlpotency class fo F.

Proof. If a group R is not nilpotent, we extend the function c
by defining c{R) = \R\. Then the function c satisfies (#) of (3.4). Let
G be a minimal counter-example to the theorem and let n — 4(G).
Using (3.4) we see that G has a unique minimal normal subgroup A
with A = C{A), ASF, sB(G/A) = n - 1, and that F is a p-Sylow
subgroup of G, where A is a p-group.
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Since Z{F) ^ C(A) = A we have that c(F/A) < c(F). By the
choice of G,

d,(F, G) = d,(F/A, G/A) ^ sd(G/A) - c(F/A) > ( n - 1) - e(F) .

Therefore d9(F, G) ^ (n - 1) - c(F) + 1 = n - c(F), contrary to the
choice G. This proves (3.5)

As a special case of (3.5), we have

COROLLARY 3.6. 4(G) <£ dΛ(C, G) + c(C), w&ere C is a Carter
subgroup of the group G.

In the remainder of this section we give sufficient conditions for
the inequality 4(6?) ^ d9(F, G) + 1 to obtain.

A group G is said to belong to ^/% [3] provided the set of %-
projectors of G coincides with the set of g-normalizers of G. Although
Doerk [3] has studied ^/% in detail, we need only the elementary fact
that if G e ^ 8 and iV< G then G/Ne ^/%.

THEOREM 3.7. The inequality

(*) 4(G) ^ d,(F, G) + 1

obtains provided one of the following holds:

(a) G belongs to %/$9 or
(b) F complements Gd.

Proof. The function / = 1 satisfies (#) of (3.4). Let φ be the
class of groups satisfying either (a) or (b). Note that both hypotheses
are invariant under homomorphisms.

Let G be a group of minimal order belonging to φ and failing
to satisfy (*). From (3.4) we infer that G has a unique minimal
normal subgroup A with A = C(A), A ^ F, and 4(G/A) = 4((?) - 1.

Suppose that (a) holds. Since F is an g-normalizer of G and A ^
F, it follows that A is %-central. If A is a p-group then G/C(A) —
G/A e %(p) S g; therefore 4(G) = 1 and G 6 %. But then it is easy
to see that (*) would hold, contrary to the choice of G.

Suppose that (b) holds. Since I < AnGd<lG, it follows that
A ^ G*. Thus A<,FnG* = I, a contradiction. This completes the
proof.

We now restrict our attention to the class Si of nilpotent groups
and obtain further conditions which afford (*) of (3.7) with % replaced
by ϋft. For the remainder of this section, G is a group with Carter
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subgroup C.
A subgroup H of G is called pronormal provided, for every xeG,

there is a yeζH, Hx) with H" = H\ Rose shows ([8], 1.6) that if
H is pronormal in G then N(H) is the subnormalizer of H in G.
Secondly, he shows that the class of groups with pronormal system
normalizers is a formation ([8], 3.4) which contains (1) the class of
A-groups (abelian Sylow subgroups), and (2) the class of groups of
nilpotent length at most 2.

THEOREM 3.8. The inequality

(*) Λ(G) ^ d»(C, G) + 1

obtains provided one of the following holds:

(a) G has p-length 1 for all primes, p|(?*|, or
(b) G has pronormal system normalizers.

Proof. Again, let / = 1 and let § be the class of groups satisfying
either (a) or (b). It is immediate that $ is closed under homomorphic
images.

Let G be a group of minimal order which belongs to φ and fails
to satisfy (*). Using (3.4) we find that G has a unique minimal
normal subgroup A of exponent p with A = C(A), A ^ C, sΛ(G/A) =
sΛ(G) — 1, and that C is a p-Sylow subgroup of G.

Suppose that (a) holds. Because A is the unique minimal normal
subgroup of (?, we infer that Opf(G) = 1. Since A <Ξ; G*9 we have that
G has p-length 1. Thus G has a normal p-Sylow subgroup, namely
C. But this is contrary to C = N(C)9 so that (a) cannot hold.

Suppose that (b) holds. Observe that A is -Ji-eccentric because
sΛ(G/A) = s*(G) — 1. Therefore a system normalizer D of G avoids
A. If D <: C then D is both subnormal and pronormal in C, whereupon
D is normalized by C ([8], 1.5). But then [A, D] ^ A n -D = 1, contrary
to A = C(A) This completes the proof,

4* g-deρth versus £>-deρth* In this section we consider two
formations % and § which are locally induced by nonempty, integrated
formations {%(p)} and {$>(p)} respectively. We call a local formation
%(p) full if %(p) = ©^(p)? where ©p is the class of ^-groups. The
discussion on p. 350-1 of [3] shows that the formations f$ and §
studied here can always be induced by full local formations. Through-
out this section we assume that $ £ g and that all local formations
for both % and § are full; it follows readily from this that Q(p) s

for each prime p. In this setting we compare the invariants
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dd(F, G) and dϋ(H9 (?), where G is a group with g-projector F and
^-projector H.

THEOREM 4.1. IfH^F then d,(F9 G) ̂  d,(H, G).

The referee has observed that this theorem follows immediately
from the following more general result which we will need later.

THEOREM 4.2. IfH^FandN^G, then dd(F, FN) ^ d9(H9 HN).

Proof. Let ^ be an F-composition series for N. Then ^ is
an iί-invariant series and can be refined to an iϊ-composition series
for N. From the definition of the depth function it will suffice to
show that each F-eccentric factor in ^ contains at least one iϊ-eccen-
tric composition factor. Suppose then that M/N is F-eccentric factor
in <g* If M/N is iϊ-hypercentral then HM/Ne φ. Since H is an φ-
projector of G, HN/N is an ^-projector of HM/N, and consequently
H covers the factor M/N. Thus F covers M/N, contradicting the fact
that M/N is F-eccentric. This completes the proof of (4.2).

Even though g Ξ2 φ it is generally the case that an g-projector
does not contain an ^-projector. In fact, if H is contained in no
conjugate of F, then the inequality of (4.1) can fail as the following
example shows.

EXAMPLE 4.3. Let R be the primitive solvable permutation group
of degree 8 and order 168. Let E be the 2-Sylow subgroup of R, let
P be a 7-Sylow subgroup of R and let Q be a 3-Sylow subgroup of
R which normalizes P. Let W be a faithful, irreducible Z5R-modu\e
and let V be a faithful, irreducible ZnWR-modu\e, where WR is the
split extension. Let G be the split extension of V by WR. Finally
let H = VWEQ and M = VEPQ. It follows that H and M are maximal
subgroups of G of indices 7 and \W\ respectively.

If π is a set of primes, let (§>π be the set of π-groups. Define $
and % locally as follows:

£(2) - 3(2) - ©{2)3,7} and φ(5) = 3(5) -
{2,3,5}

g(7) = ©m2t6, where St6 is the formation of abelian groups

of exponent dividing 6

where ^f = {G: G/F(G) has order

prime to 7}.

For p ̂  2, 5, 7,11 let Q(p) = g(p) = @p. Then £ and g satisfy the
general conditions imposed in this section, and S^^? since
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It follows that H is an ^-projector of G; thus dϋ(H, G) = 1. Fur-
ther, M is an g-crucial maximal subgroup of G because M/Core (M) =
M/V~EPQe%\^(5). Hence M contains an g-projector of G ([2],
5.4). If L is the largest normal 11-nilpotent subgroup of M, then
M/L = M/V~ EPQ $%(11), so that ikf<£g ([2], 2.5). It now follows
that M must contain an g-projector F of G as a proper subgroup.
Therefore d%{F, G) ^ 2 > 1 = (̂Jff, G). It is obvious that F does not
contain a conjugate of H.

We give still another example to demonstrate the complex rela-
tionship between g-depth and φ-depth. In particular, we display-
two chains of f$-abnormal maximal subgroups of different lengths
which terminate with a given Carter subgroup.

EXAMPLE 4.4. Let % be the class of 3-nilpotent groups and let
$ = %l. Then 9̂  can be induced by the local formations Jϊ(p) = ®p,
for each prime p, and % by the local formations %(S) = ©3 and %(p) =
% for p=^=3.

Let G be the group of all semi-linear transformations over GJF(33)

of the form x ι-» ax1 + δ, where a, be GF(33) with α ^ O and where
ί belongs to the Galois group of GF(33) over its prime field. Then
\G\ = 27 26 3. Let F be those transformations in which 6 = 0, C
those in which 6 = 0 and a = ± 1, P those in which a — 1, and A those
in which a = 1 and £ = 1.

Certainly ί7 is 3-nilpotent and maximal in G, hence ί7 is an g-
projector of G and <Zg(F, G) = 1. Also C < -F because \F: C\ = 13.
Since P is the 3-Sylow subgroup of G it has a central series 1 <| Bλ <\
B2<\ A <\P with factors of order 3; consequently the series 1 <\ Bt<\
B2 0 A is C-invariant. Because the Galois group fixes the prime field ele-
mentwise (here identified with a — ± 1), C is nilpotent. It now follows
that C < CBλ< -CB2< -CA< . G is an 9ΐ-crucial chain in G. There-
fore C contains a Carter subgroup of G ([2], 5.4). However, since C
is nilpotent it must be a Carter subgroup of G.

Finally, note the numerical relations: <4(G, G) — 4, d,Ά(C, F) — 1
and 4(F, G) - 1. In particular, d*(C, F) + eZ5(F, G) ̂  4(C, G).

In the previous example it was seen that the equality d^(H, G) =
dz(H, F) + d%(F, G) failed even though H^F. We now give a rather
strong sufficient condition for this equality to obtain.

THEOREM 4.5. / / G e 9ί£

(a) i ί is contained in a conjugate of F, and
(b) dϋ(H, G) - d,(H, F) + d,{F, G).

Proof. Note that G also belongs to 9̂ g since £>£iS.
(a) Every g-cru<πal link above F is ^-abnormal since
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for each prime p; thus ([2], 4.2) implies that F contains an
^-normalizer of G. As G e 31$ it follows that H is an $-normalizer
of G, whereupon H is contained in a conjugate of F.

(b) Consider an %-cΐutial chain from F to G. Again, because
&(p) Ss %(p) for each prime p, each g-crucial link is ^-critical. Because
GeΉlίQ every ^-critical link above H is also ^-crucial. Thus by-
adjoining an g-crucial chain from F to G to an ^-crucial chain from
H to F we obtain an ξ>-crucial chain from H to (?. This is (b).

Since the derived group of a supersolvable group is nilpotent, we
have

COROLLARY 4.6. If G is supersolvable, then
(a) H is contained in a conjugate of F, and
(b) d,(H, G) = d,(H, F) + d,(F, G).

THEOREM 4.7. If H^F and d$(H, G) = dd(F, G), then H= F.

We remark that if (b) of (4.5) held for all groups G, then a proof
of (4.7) would proceed as follows. Combine the equalities dϋ(H, G) =
ds(F, G) and dϋ(H, G) = d^(H9 F) + ds(F, G) to obtain that dϋ(H,
F) = 0, and hence infer that H = F. Because the restrictions on G
in (4.5) are quite strong, it is surprising that (4.7) holds in general.

Proof of (4.7). Let G be a minimal counter-example and let A
be a minimal normal subgroup of G. Then HA ^ FA and (4.2) implies
that d%(F, FA) ^ d^(H, HA). Since dd(F, G) = d^(H, G), the equality
dd(F, FA) + cZ5CFA, (?) = d,(fl, iϊA) + d^(HA9 G) and (4.1) imply that
dd(F, FA) = dδ(iϊ, iL4) and ^(JTA, G) - d%(FA, G). By the choice of
G we can conclude that FA = ilA.

If A ^ F, then dδ(F, FA) = 0, so that dϋ(H, HA) = 0; hence A ^
H. But then, F = FA = iL4 = if, a contradiction. Therefore A^F.

If FA < (?, then because of the choice of G, we have that F =
H since d^(H9 HA) = d%(F, FA). Thus G = FA and F f] A = 1. But
then F=Ff]FA = Ff]HA = H(F Π A) = H, the final contradiction.
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