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PEANO MODELS WITH MANY GENERIC CLASSES

JAMES H. SCHMERL

The famous theorem of MacDowell and Specker asserts
that every model of Peano arithmetic has a proper elemen-
tary end-extension. A consequence of their theorem (and its
proof) is that every model of Peano arithmetic of cardinality
less than « has a x-like elementary end-extension, and, in
addition, if « is regular, then there is such a x-like model
in which all classes are definable. However, under the
assumption of the existence of a «-Kurepa tree, each model
of Peano arithmetic of cardinality less than r» does have a
t-like elementary end-extension in which there are more than
£ generic classes.

Introduction. We assume that we have some fixed countable
similarity type which includes symbols denoting the usual arithmetic
operations and relations: 4+, -, <, 0, 1. Then Peano arithmetic,
denoted by P, is the theory which, besides the sentences describing
the trivial arithmetic properties, includes all the instances of the
induction scheme. Thus, if ¢(z,, + -+, #,_;, %) is an (z + 1)-ary formula,
then the universal closure of

7@, 0) A Vy(PE, y) — 2@, y + 1)l — VyP(@, v)

is in P.

Henceforth, all models considered are models of Peano arithmetic.
We denote these models by .+~ and _# with universes of N and
M respectively.

For any set X we denote by X" the set of n-tuples of elements
of X. If @e X" (the bar being only for emphasis), we let a; be the
ith coordinate of @. Thus if e X", then = <a,, +++, a,_,>. If X=
(X, +++, X,_> we occasionally write Ze X for e X, X «++ X X,_..

For any .+~ a set RC N" is definable (in _#") if it is defined
in .4 by a formula in which parameters from N are allowed. A
set X N is # -finite iff X is bounded and definable. If X is
A"-finite and Rc N is definable, then {Q c N™ {a} x Q R for
some x€ X} is an _#<finite collection of sets. We choose some
binary formula, say ®(z,y), which indexes finite sets. That is, for
any model _# let F* be a function such that if a € M, then F“(a) =
{be M: . # & ®(a, b)}. Then F-* is a bijection from M to the set of
-finite sets. We define the binary relation <] by x <y iff F(x)
is a proper initial segment of F(y). Notice that (M, <) is treelike
in the sense that <] is a partial ordering of M such that the set of
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predecessors of any element is linearly ordered. In general, (M, <))
is not well-founded although every nonempty definable set has a
<]-minimal element. If Z = <@, ¢+, %, and 7 = <Yy, +++, Y.y, We
set ¥ <y iff x; <{y; for each < n.

We say that _# is an end-extemsion of .+~ iff 4" _# and
N is a <-initial segment of M. The model 7+~ is k-like iff card (N) =
k but every _#-finite set has cardinality < «.

In proving the MacDowell-Specker Theorem one shows that an
ultrafilter can be defined in any model and that the ultrapower is
then a proper elementary end-extension. Of course, the ultrafilter
is not over the set of all subsets of the model but only over the
Boolean algebra of the definable sets. Then in constructing the
ultrapower one only considers the definable functions. This type of
construction originated with Skolem [6], who used it to get non-
standard models of arithmetic.

We use a slightly more general type of construction. Suppose
that .7~ is a model and U an ultrafilter over the Boolean algebra
of all definable n-ary relations of _#. Then let _# be the ultra-
power of _y¢~ restricted to definable n-ary functions. It is routine
to verify in such a setting that f.os§’ Theorem (see, for example, [1,
Theorem 2.2]) still remains true; in particular, .+~ is elementarily
embeddable in _# in a canonical way. We call such an _# a
Skolem ultrapower of _#7, and denote it by #77.

In §1 we give a proof of the MacDowell-Specker Theorem. It
is then shown that the construction results in models with few
classes. In particular, if & is regular, then in any &k-like model
constructed by their method all the classes are definable.

We discuss generic classes in §2. Whenever ¢f(x) > @, then in
any k-like model constructed by the MacDowell-Specker method there
are no generic classes. This is in contrast with Theorem 2.7
which asserts that in any model with cofinality @ there are a host of
generic classes.

In §3 we show how to construct elementary end-extensions
which have many classes. Theorem 8.1 extends the MacDowell-
Specker Theorem. If .27 is an _#<“generic collection of classes, then
(#; ) has an elementary end-extension in which each Xe .7 is
properly extended. From this we can deduce one of the main
results of this paper: If there exists a £-Kurepa tree and if ./~ is
a model such that card (N) < k, then .7~ has a k-like elementary
end-extension with at least £+ classes. The methods used for con-
structing such models owe much to similar methods developed by
Keisler [3]. In fact, he constructed such models in the case ¥ = w..
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He also did so in the case that £ = \*, card (N) =\, and /" is
saturated.

1. The MacDowell-Specker Theorem. In this section we sketch
a proof of the MacDowell-Specker Theorem. We do this in order to
show that if £ is regular and .4~ is a k-like model constructed
according to their prescription, then all classes are definable. This
fact, which is Theorem 1.5, was pointed out to me by S. Simpson.

THEOREM 1.1. (MacDowell-Specker). Every model of P has a
proper elementary end-extension.

Proof. Let {(®i(z,y):i<w) be a list of all formulas of two
variables. Then, using the fact that induction holds, we can find
formulas +;(x) such that for each n < w the following is a theorem
of P:

@y > (V2 < w) A @i(5, 1) — 9i(@) -
Let .+ be a model of P and and let
U={{beN: + = @i(a, b) — y(@)}: a€e N and 7 < @} .

Then U is an ultrafilter over the Boolean algebra of definable subsets
of _#. Clearly _#U is a proper elementary end-extension of _#7

In the proof of Theorem 1.1 the ultrafilter U and, consequently,
also the extension .#°V are completely determined by the sequences
Pz, y):t < w) and {y;(x): 1 <w). We call any such extension .+
of 4+~ a MacDowell-Specker extension of _+. A MacDowell-Specker
chain is a sequence {_7;: v < a) such that each _77,, is a MacDowell-
Specker extension of _#7, and for ¢ a limit ordinal .#; = | {_#;:
y < 0}.

DeriNITION 1.2. If _/” is a model of P and XC N, then X ig
a class (of _#7) iff X is not _/~finite but the intersection of X with
each _7/~finite set is _#~finite.

Every class is unbounded, and every unbounded, definable set is
a class. A class can be thought of as a branch of the treelike
structure (&, <{) which has the same length as (&, <]). Thus B is
such a branch iff | {F'(b): be B} is a class.

LemMmA 1.8, If # is an elementary end-extension of 4 and
X is a class of _+#, then X N N is a class of 7
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Proof. One need only notice that a subset of N is _#<“finite iff
it is _#-finite.

LemmaA 1.4. If # is a MacDowell-Specker ewstension of 4~
and X is a class of _#, then XN N is definable in 47

Proof. Let XC M be a class of _# and let be X — N. Then
there is ¢e M such that F(c) = {x e X: x < b}. But in the construction
of _#, the element ¢ corresponds to a function definable in _#. Hence
clearly {a# € N:ae F(¢)} = XN N is definable in .47

THEOREM 1.5. If (47:v=<k) is a MacDowell-Specker chain,
where k is regular and card (N,) < k, then _1; is a k-like elementary
end-extension of 4, im which every class is definable.

Proof. It is clear that _#; is a k-like elementary end-extension
of 4. Now let X be a class of _#;. Then using the regularity of
£ there is vy < £ such that (7}, XN N,) < (#;, X). By Lemma 1.3,
XN N, is a class of _#7,,; then by Lemma 1.4, X N N, is definable
in _#;. But then X is definable in _77.

Let .2 be a collection of classes of .#. We denote the structure
(A, X)xewr by (A, 2). We say 27 satisfies replacement iff for
each (n + 2)-ary formula ®(Z, u,v) in the language of (7] .2°) the
following is true in (7] 2°):

Vyaz(Vu < y)[IveZ, u, v) — Qv < 2)P(Z, u, v)] .

Similarly, we say that 2 satisfies induction iff for each (n + 1)-ary
formula @(Z, y), the following is true in (_#; 2°):

2@, 0) A Vy(P(, y) — P(Z, y + 1))] — VyP(Z, v) .

We say that X satisfies replacement or induction whenever {X} does.
It is well-known that .2° satisfies replacement whenever it satisfies
induction. In light of the fact that for regular £ the collection of
all classes of a k-like model satisfies replacement, the next theorem
extends the previous one.

THEOREM 1.6. If {4y =a) is a MacDowell-Specker chain,
where ¢f (@) > w, then 1, is an elementary end-extension of A5 in
which every class satisfying replacement is definable.

Proof. The proof is like that of the previous theorem; how-
ever, we use replacement as a substitute for regularity. Let X be
a class of _7; which satisfies replacement. Then we need only note
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that, due to the fact that ¢f(a) > @, there is v < a such that
(7., XN N,) < (A2, X).

2. Generic classes. A property that a class can have is that
of being generic. In this section we consider generic classes. More
generally, we consider generic collections of classes.

DEerFINITION 2.1. If Rc N", then R is dense (in _#") iff for each
@ c N* there is be R such that @ <] b.

DEFINITION 2.2. Let .4+~ be a model of P. A collection .27 of
subsets of N is .#<generic iff whenever Xec 2" and RcC N" is a
definable dense relation, then there is @€ R such that each F(a,) is
an initial segment of X;. Also, Xc N is _#<generic iff {X} is .#<
generic.

LemMA 2.3. If 2 1is _4<generic, then each Xe . Z 1is a non-
definable class.

Proof. Let Xe 22 Clearly {a € N: F(a) is not an initial segment
of X} is dense, so that X is not definable. To show X is a class,
for each be N let Y, = {aec N: there is ce F(a) for some ¢ > b}.
(Think of Y, as the set of finite sets which have an element > b.)
It is clear that Y, is a definable dense set. Thus, for any be N
there is a e Y, such that F(a) is an initial segment of X. Thus, since
{ae X:a < b} is a proper subset of F(a), it follows that X is a class.

LEMMA 2.4. Let {(4,:v <0y be such that if v< pu <o then
N s an elementary end-extension of A,. Let A4~ = {47 v <0} and
let 2 be a collection of subsets of N such that whenever vy < 0, then
{XN N,: Xe #} its A,-generic. Then 2 ts _+F-generic.

Proof. Let Rc N be a definable dense relation, and let
Xe 2". There is some v < 6 such that RN N* is a definable dense
relation in _#;. Then there is @ RN N* such that each F(a;) is
an initial segment of X; N N;. But then @e R and each F(a;) is an
initial segment of X,.

The next two lemmas can be proved by forcing. We use as
conditions the sets which are finite in the sense of the model, and
p extends ¢ when ¢ <|p. Then standard forcing techniques are
used. See, for example, [5].

LEMMA 2.5. If 2 is A“generic, then 2 satisfies induction.
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LEMMA 2.6. If _# is an elementary end-extension of 4~ and
Z and 2 are respectively _+V-generic and _#Z-generic where Z° =
{YNN:Ye 2z}, then (A, 2) < (A4, Z).

The existence of generic classes in certain models is shown in
the next theorem. For any model _#~ we let ¢f(_#") be the cofinality
of the order type of .47

THEOREM 2.7. If ¢f(4") = w, then there is an _+-generic 2
such that each A -finite set is an initial segment of some X e 2

Proof. The proof consists of showing that working inside of
.~ we can find generic clagsses. For each j <o let {pi(x, #):1 < w)
be a list of all formulas with the j + 1 free variables x, y,, «+-, ¥j_i.
For each xe N, let Ri,c N’ be such that .+~ & R .(¥) — Pi=, ¥).

Let us assume that in some definable way there is an enumera-
tion of all _#<finite sequences of elements of N. We denote by (a) the
sequence enumerated by a, and denote the length of (a) by «(a). We
say (a) <] (b) iff #(a) = #(b) and whenever ¢ < #(a), then (a), <] (b)..

Then for each # < w it is easily seen that the following is a
theorem of P:

(*,) For every sequence (a) there is (b) [> (@) such that for all
1,J < m, whenever x < 7(a), Ri, is dense and ¢, ---, ¢;_, < Z(a), then
A E Bl (O o0y By

Now let {e,: m<®) be an increasing cofinal sequence in 4.
By induction we get, for each n < w, sequences (a,) and (b,) where
/(a,) = 7(b,) =c¢,. Let (a,) be the identity sequence of length c,.
Now suppose that we have (a,). In (x,) take (a) to be (a,) and set
(b,) = (b). Now let (a,.,) be the sequence of length ¢,., such that
(@ns)) ¢ = (b,). when ¢ < c¢,, and (a,,). = ¢ when ¢, < ¢ < Cyuyue

For each ce N there is n < @ such that ¢, < ¢ < ¢, Let

X(0) = U {F((@)):m <i < w}.

Clearly ¢ = (@p11)e <] (@ns2)s <] --+, so that F(c) is an initial segment
of X(c). It is clear, because of sentences (x,), that .27 = {X(c): c€ N}
is generic.

In Theorem 2.7 suppose that card (N) = k. Then it is possible
to get such an 2° for which each _#<finite set is an initial segment
of £ different Xe .27 This is the best to expect since there are
only k¢ distinct classes.

In summary, let .4~ be a model of cardinality < £. We know
that it has a «-like elementary end-extension _, and, if « is regular
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then in any such k-like _# the collection of all classes satisfies
replacement; however, according to Theorem 1.5 there is even such
an . in which all the classes are definable. More generally, if
¢f(k) > @ then by Theorem 1.6 we can choose .# so that each class
satisfying replacement is definable, and thus _# has no generic
classes. This is in contrast to the case when ¢f(k) = w; then
Theorem 2.7 tells us that _# must have many generic classes. In
the next section we show that, even if ¢f(k) > ®w, we can get a k-
like _# with many generic classes.

3. Extending generic classes. We show in this section how to
construct elementary end-extensions which extend generic -classes.
Iterations of these extensions result in x-like models which have
many classes. The next theorem generalizes the MacDowell-Specker
Theorem and Lemma 1.4.

THEOREM 3.1. If 2 1is ._+4<generic, then there is a proper
elementary end-extension (#, %) of (AN, Z) such that for any
class Y of _#, YN N is definable in (.4, 2&).

Proof. We first describe the plan of attack. By Lemma 2.5
we know that the model (.#;.2°) satisfies induction. Thus, for
each finite subset 27 of .2° there is a proper elementary end-extension
of (#;2). However, we want to construct these extensions in
some uniform way so that they all cohere. That is, we want to be
able to form their direct limit using Tarski’s Union Theorem (Theorem
1.9 of [5]) so as to get a proper elementary end-extension of
(A, Z).

We use the following piece of notation. If e:n—j and @ =
(@, +++, a;_>, then we set P,(a@) = b, where b, = a,, for each k < n.
If R is a set of j-tuples, then we also set P,(R) = {P,(@): @< R}.
Our aim is to form a directed system {( #(X): Xe D), where D is
the set of all finite sequences of distinct elements of .25 and X < Y
whenever there is some (necessarily unique) function e:n—j such
that P,(Y) = X. Each _#(X) is to be an elementary end-extension
of _#" such that each X; is an initial segment of an _#(Y)-finite set.
Furthermore, whenever X < Y, there is an elementary embedding
fzv: #(X) — _#(Y) which fixes the elements of ._#7; and if
X< Y<Z then fz7z = fv.zofz7. Then the direct limit of
{(#(X): Xe D) is the desired model. As in the proof of Theorem
1.1, the models _#(X) are constructed by getting a certain ultrafilter
V(X), and then letting _#(X) be the Skolem ultrapower .47,
The problem of the coherence of all the _#(X) is then transferred
to that of the coherence of all the ultrafilters V(X).



530 JAMES H. SCHMERL

To proceed with the proof, let <®,(t, %, %o, ***, Yu): # < @) be a
list of all formulas with the free variables ¢, , %o, ¥;, +++. Our first
goal is to get formulas +,(2,s) with certain properties. Think of
Jra(2, 8) in the following way: For each » < w and each ae N, let
S* be the set of _7~finite sequences » such that » = (s) for some s
for which +,(a,s) holds in .#7 (Recall that (s) denotes the _#<
finite sequence enumerated by s.) Then the sets S should have the
following properties (all of which can be formulated as theorems
of P):

(1) Sr is a nonempty set of sequences each of length a.

(2) If peS» and b < a, then b <] p;.

(8) If peSr and p <]q, then there exists reS* such that
q <|r (that is, S? is dense in itself).

(4) Suppose that pe Sf, and that f is a definable function such
that ¢<df(c) < b for each ¢ <a. Then geS? where q, = ps, for
each ¢ < a.

(5) For each n < w and each t, let f* be the (definable) n-ary
function such that (¢, « -+, ¥._,) is the least & for which @,(¢, z, 7) V
% =t holdsin .#7 Whenever ¢t < a and a, < -+ a,_, < a, then there
is b such that for any pe Sy, (Do, ***, D, ) = b

(6) Src S whenever n < m < ®.

To show the existence of the formulas (2, s) satisfying pro-
perties (1)-(6), one uses induction on 7, and then uses induction on
the variable z inside of the model. The essence of the formal induction
is the following lemma.

LEMMA. For each n let T, be a set of finite sequences all of
the same length such that T, is dense in itself. Furthermore, suppose
that T,D T, whenever m < mn, and that P is a finite partition of
Ty Then there is T T, such that TC E for some Eec P, and for
each », TN T, is dense in itself.

This lemma is easily proved. In fact it can easily be formulated
and proved as a theorem scheme of P. Using this lemma we prove
the existence of sets S™ This proof can of course be given in P so
that we actually show the existence of formulas +,.(z, s).

Let us suppose that o,(t, ) is a universally valid formula so
that we can set

S? = {p: p is a sequence of length a such that b < p,
for each b < a} .

Also set S = {®} for each m < w. As an inductive hypothesis,
suppose that S™ has been defined for each m < n and each #, and
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that Sy+, ..., S**' have also been defined. We define S?{!. For
every ¢ > a, let T, be the set of sequences p such that p =¢|(a@ + 1)
for some qeS” and p|aeSr*. Each T, is dense in itself, and
c< d implies T,> Ty. Partition T,,, as follows: If p,qe T,,,, then p
is equivalent to ¢q iff whenever m<n+1,t<a+land g, <+ <@p, <
a+1, then [f"(Dup ***s Da,_) = F"(@ap ***5 Qa,_,)- This partition is
clearly _#~finite. The hypotheses of the lemma are now met. Hence,
there is Tc T,,, such that T c E for some E e P and, for each ¢>a,
TN T, is dense in itself. Let S»! = T. One easily checks that the
S so defined satisfy the properties (1)-(6).

Next, we give the construction of the model _Z Let T =
{&y, +++, %,y be an (n+ 1)-tuple of elements of N. For each ae N and
m < w, define

RM®) = Doy * =+ P2, PEST}
U™x) = {Rc N**: R is definable and R > R(Z) for some a€ N},

Uz = U{U"@):m < v}
The following properties hold:

™ U@ + o.

@2*) If SODRe U@) and Se N** is definable, then Se U(%).

8*) If R, Se U@), then RN Se UZ).

4*) If z %, then U@) < U¥).

5*) {ge N~z <] y}e U@).

(6*) If Rc N**' is definable, then for some m < @ the set

{Te N**: Re U&) or (N** — R)e U™(®)}

is dense. More generally, if f: N*"*'— N is definable with bounded
range, then for some m the set {xe N"*: f(b)e U™(Z) for some
be N} is dense.

Property (1*) follows immediately from (1), property (2*) is
trivial, and (8*) can easily be proved from (4) and (6). Property (5*)
is immediate from (2), and (6*) is a consequence of (5). Property
(4*) follows from (4). For, suppose that Z <|4¥ and Re U(x). Then
R = R™X) for some m and a. Let b be sufficiently large: choose
b > max (Yo, **+, Y, ). Now let f be the definable function such
that

f@) =y, fori < m,

f(x) = » otherwise .
Then using (4) we see that R#%)c R™(X). Hence Re U(¥%), so that
(4*) holds.

Now let X =<(X,, -+, X,_.> be a sequence of distinct classes of
4. Define
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V(X) ={Rc N Re U®) and z¢ X} .

Properties (1*)-(4*) imply that V(X) is a filter in the Boolean algebra
of definable n-ary relations. (5*) implies that this filter is non-
principal. Suppose, furthermore, that each X, is a member of the
generic collection 27 Hence it follows from (6*) (more accurately,
from the formalization of (6*) as a theorem scheme of P) that V(X)
is an ultrafilter. More generally, (6*) implies that some member of
each _/“finite collection whose union is N* is a member of V(X).

We can now form the Skolem ultrapower _#(X) = .+ ® of 4%
Since V(X) is closed under . #~finite intersections, the model . #(X) is
an elementary end-extension of _#. We wish to show that each X is
an initial segment of an _Z(X)-finite set. It suffices to show that
there is fe _~(X) such that for all acX;,, Z(X)=a<f. By
(56*) the function f defined by f(@) = a; clearly has this property.

The ultrafilters V(X) have a certain property which guarantees
that the models _#(X) cohere. Suppose that e:n—j, Ye .2 and
X =P(Y)e.z". We easily get from (4) that

V(X) = {P(R): Re V(Y)} .

Thus there is an elementary embedding fz,z: A (X) — _#(Y) which
fixes the elements of /7 If g: N*— N is definable in _7/; then let

Fxw(9) = goP, .

By the use of Lo§’ Theorem for Skolem ultrapowers, it is easily
verified that f%,; is an elementary embedding.

We form a directed system of structures. Recall that D is the
set of finite sequences of distinct elements of -2 Thus (D, <) is a
directed set such that whenever X < Y, then f37: 2 (X)— _#Z(Y)
is an elementary embedding. Also it is clear that if X< Y < Z,
then f37 = fr.zofx.yr. Thus, (#Z(X): Xe D) is a directed system of
structures, so that now applying Tarski’s Union Theorem we get
the direct limit _;, which is an elementary end-extension of ._#;
and each Xe .77 is an initial segment of some _/-finite set.

We want, however, a proper elementary end-extension of (77 ..Z°).
To this end, let { Z: 1 < w) be a MacDowell-Specker chain, and set
A = _#, Since each Xe 27 is an initial segment of an _/Zfinite
set and ¢f(_#) = w, then according to Theorem 2.7 there is an _#-
generic 27 such that (] .¢°) C (., 7). But then (] &) < (%, %)
by Lemma 2.6.

Finally we must show that for any class Y of _#, YN N is
definable in (7] s#"). Let Y be a class of _Z From Lemmas 1.3
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and 1.4 it is clear that Y N M, is definable in _#,. We now proceed
as in the proof of Lemma 1.4. Let be (YN M) — N. Then there
is ce M such that F(c) = {xe Y: x < b}. Let XeD be such that
ce _(X). Then, in the construction of _#(X), the element ¢
corresponds to a function definable in .#. Now the ultrafilter V(X)
is definable in (.77 X); hence, it is clear that F(c) N N = YN N is
definable in (_#; X).

We use Theorem 3.1 along with the existence of certain trees
to build models with special properties. The method is based on [3].

We say (T, <) is a tree iff < is a partial ordering of T such
that the set of predecessors of any element is well-ordered. We let
T, be the set of elements whose set of predecessors has order type
a. A tree (T, <) is a k-tree iff both (1) T, = @ iff £ < «a, and (ii)
for a < k, card (U{T,: v < a}) < k. A branch of a tree is a maximal,
linearly ordered subset of the tree. We consider k-trees which have
exactly \ branches of length £. Such a tree with A > £ is a k-Kurepa
tree. 1t is known that under the assumption of Godel’s Axiom of
Constructibility V = L, there exist k-Kurepa trees for each £ = w.
(See [2].) Notice that whenever 1 < A < k, there are trivial x-trees
with exactly N branches of length k.

Suppose that » = 0,1 or A is an infinite cardinal. We say that
" has generic dimension )\ iff there is an _7/~-generic 22~ such that
each class of _/” is definable in (_7] ) and card (:#°) = \. The
generic dimension, if it exists, is unique. For, suppose that 2 and
2/ are _J-generic such that each class of _7~ is definable in (_#] :2°)
and (/] 2). If o < card () < card (z), then there is z,cC 2z
such that card (:#") = card (2,) and each Xe.z” is definable in
(.7, #), so that each Y e 27 is definable in (_77%,). Hence z,= 2z
and so card (&) = card (/). Argue similarly for finite generic
dimension. Theorem 1.5 asserts the existence of x-like models with
generic dimension 0 for each regular £ > ®; the next theorem
generalizes this assertion. Notice that if N = £ and _#~ is k-like with
generic dimension A\, then ./~ has exactly A classes.

THEOREM 3.2. Suppose that & is regular, = w or =1, and
that there is a k-tree with exactly N branches of length k. Then for
each model 4~ of cardinality < k there is a k-like elementary end-
extension _7 with generic dimension \.

Proof. Let (T, <) be a k-tree with exactly N branches of length
k. Without loss of generality we can assume that each element
of T is contained in some branch of length k. By induction we get
{Aivy < £y and (X,;:te T) as follows.
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Suppose v = 0. Let & = card (T,)-® (ordinal multiplication). Let
{A#: & < a) be a MacDowell-Specker chain such that 7 = 4. We
set ¥, = _#.. According to Theorem 2.7 there is an _#;-generic 2
such that card (2°) = card (T,). So we let {X,:te T} be .7/;-generic,
and X, and X, are distinct whenever s and ¢ are.

Now suppose v < £ and that we have _#; and {X,:te T,} which
is _#;-generic, and X, and that X, are distinct whenever s and
t are. We use Theorem 3.1 with .+ = _#; and 2 = {X:teT}
to get .# as in the theorem. Furthermore, we can get _# such
that ¢f(_#) = ® and card (M) = card (N,) + card (7,). Set 4., =
#. Now using Theorem 2.7 again we can find _#,,-generic 2
such that card () = card (T,,,). Actually we can get {X,:te T..,}
which, besides having distinct elements and being _7#7,,-generic, has
the property that whenever se T,, te T,,,, s <t, then X, is a proper
initial segment of X,.

For the case of limit ordinals, let 6 < £ be a limit ordinal. Then
let 4;=U{A42:a<d}, and for each teT;, let X, = U {X;:s <t}
By Lemma 2.4 {X,:te T;} is .#;-generic.

Now let 7 = U {#;:v < k}. We claim that _# has the desired
properties. Clearly _# is a k-like elementary end-extension of .77
Now let

7z = {U{X.: te B}: B is a branch of length &} .

By the construction, card (z7) = . We continue as in the proof of
Theorem 1.5. Let X be a class of _#. By constructing an elementary
tower of models, we easily see that there is a vy < £ and a sequence
(Y;:te T, of elements of 2 such that

(A, XNt Xt)teTv < (A4 X, Yt)teT,, .

By Lemma 1.8, XN N,,, is a class of _#7,, so that X N N, is definable
in (77, X\)ser,» But then X is definable in (.7 2).

Theorem 3.2 is the best possible in the following sense: if & is
regular, A = w, and there is a x-like model .+~ with generic dimen-
sion A, then there is a k-tree with exactly N branches. We need
only consider the case that A > k. Let _#~ be such a k-like model
and let 2 be the collection of all classes of .47 Now choose
CC N to have order type k. Let T={(c, A):ceC and A={xec X:z<c}
for some Xe 27}, and let (¢, A)<(d, B) iff ¢ < d and A={xe B: x<c}.
Then (T, <) is the desired x-tree, each branch of length £ correspond-
ing to a unique element of 2%

The next theorems can be proved with a construction like that
in the proof of Theorem 3.2.
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THEOREM 3.3. Suppose that there is a k-tree with at least )
branches of length £. Then for each model ¥~ of cardinality < k
there is a k-like elementary end-extemsion _Z and an _#Z-generic 2/
of cardinality .

THEOREM 3.4. Suppose that c¢f(k) > w and that there is a k-tree
with exactly N branches of length k. Then for each model A4~ of
cardinality < k& there is a k-like elementary end-entemsion _Z and
an _zZ-generic Z of cardinality N such that each class of _# which
satisfies replacement is definable in (_#, Z/).

If we do not require that the models we get be k-like but merely
that they have cardinality #, then we can do better. Let D(x) be
the least cardinal A such that every tree with at most £ nodes has
fewer than A branches having length the length of the tree. It is
easily shown that &* < D(k) for all k. The following theorem can
be proved by the same construction as in Theorem 3.2.

THEOREM 3.5. For each model 4+~ such that card (N) < & and
A < D(K), there is an elementary end-extension _# and an _#Z-
generic 27 of cardinality .

Theorem 3.5 is the best possible for, in general, if 2 is .#*-
generic, then card (.#°) < D (card (N)).

We can apply these results to models of ZF set theory. For
models of ZF a generic collection of classes is simply a collection of
mutually Cohen-generic reals. The theory ZF does not, however,
fall into the general scheme of Peano arithmetic described at the
beginning of the Introduction. But this is easily remedied by
collapsing the universe onto w. In a model _#Z of ZF, consider
the notion of forcing in which the forcing conditions are one-to-one
functions with natural number domains and which are ordered by
inclusion. If G is a generic filter, then F = |J G is a one-to-one
function from @ onto M. Then the structure (.~ F') still satisfies
(finite) induction and can be considered (essentially) as a model of
some theory P. Since generic filters always exist in countable
models, we get the following theorems:

THEOREM 3.6. Suppose that there is a k-tree with at least N
branches of length k. Then any model of ZF of cardinality < k has
an elementary extension _# such that

(i) each _#-finite set has cardinality < k;

(ii) there are exactly £ natural numbers in 7

(iii) _Z has N mutually Cohen-generic reals.
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THEOREM 3.7. If N < D(k), then any model of ZF of cardinality
=< k£ has an elementary extension of cardinality k which has » mutually
Cohen-generic reals.
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