
PACIFIC JOURNAL OF MATHEMATICS
Vol. 46, No. 2, 1973

PROXIMITY CONVERGENCE STRUCTURES

ELLEN E. REED

In this paper the notion of proximity convergence
structures is introduced. These constitute a layer between
Cauchy structures and uniform convergence structures (in
the sense of Cook and Fischer [1]). They are a natural gen-
eralization of proximity structures. A study of the relations
among these various structures constitutes §§2 and 3. In §4,
compact extensions for a special class of proximity conver-
gence spaces are constructed, and a characterization of these
is obtained. They satisfy a mapping property with respect
to compact T2 proximity convergence spaces which satisfy a
strong regularity condition. One problem left open is the
obtaining of a more reasonable definition of regularity for
these spaces.

1* Proximity convergence structures* A proximity convergence

structure is the natural analogue, in the context of convergence
spaces, of a proximity structure. Here convergence space is used in
the sense of Fischer [3], and proximity in the sense of Efremovic
and Smirnov. A proximity convergence structure is a filter of pro-
ximity-like orders on a set X, and satisfies a composition property. If
the filter is principal then it corresponds to an ordinary proximity.

The notation used is largely that in Cook and Fischer [1]. By
#{X) is meant the set of all symmetric topogenous orders on X.

So a relation < on the subsets of X is in έ?(X) iff it satisfies
the following:

(ST 1) φ<A<X tor A^ X;
(ST2) A<B=>ASB;
(ST 3) if A! s A < B s Έf then A! < B'\
(ST 4) if A < C and B < C then Aϋ B <C; also if C < A and

C < B then C < Af] B;
(ST 5) A < B then X\B < X\A.

DEFINITION 1. A proximity convergence structure on a set X is
a family & S έ?(X) satisfying

(PI) if < x, < 2 e ^ then < 1 ( Ί < 2 6 ^ ;
(P 2) if < G & then < o < e &
(P3) if < € ^ and < S <'e ^(X) then <'e&*.
We will call (X, έ?) a proximity convergence space. Both concepts

will be abbreviated by p.c.s.

REMARK AND DEFINITION 2. We say one p.c.s. on X is less than
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another if it contains it. Under this ordering the set of all p.c.s.'s
on X is a complete lattice. The largest member is {ϋ} and corres-
ponds to the discrete topology on X The smallest is <^(X), which
yields the indiscrete topology. (See Definition 30.) The intersection
of any family of p.c.s.'s on X is also a p.c.s., so that suprema are
easily described.

DEFINITION 3. If & is a nonempty subset of έ?(X) then clearly
there is a smallest p.c.s. \^\ containing G. We will call ^ a base,
provided [2^] consists of refinements of orders in 2 .̂ In case [5^]
consists of refinements of finite intersections of orders in ĝ , we call
^ a subbase for \&\.

As in the uniform case, ordinary proximity relations on X cor-
respond to "principal" p.c.s's.; i.e., those which have a single element
as base.

THEOREM 4. Let < e έ?{X). Then <C is a proximity on X iff
{<} is a base for a p.c.s. on X.

Proof. Let £f denote the set of refinements (in &(X)) of <.
If < is a proximity relation then < = < © < and hence Sf satisfies
(P2). The other properties are clearly satisfied. Conversely, if Sf
is a p.c.s. then < o < e &> and so < is dense. Clearly then < is
a proximity relation.

DEFINITION 5. If c c is a proximity on X we will call [ c c ] a
proximity structure.

2. Relation with uniform convergence structure* As with
ordinary proximities, each uniform convergence structure (abbreviated
u.c.s.) gives rise to a p.c.s. This allows us to divide the uniform
convergence structures into proximity classes. Each class contains a
smallest member, which is strongly bounded. This last is a condition
stronger than total boundedness, and more satisfying in that every
proximity class contains a unique strongly bounded member. (A class
can contain more than one totally bounded member.) Moreover if the
p.c.s. is a proximity structure than the strongly bounded member in
its class is a uniform structure; the other totally bounded uniform
convergence structures in the class will not be uniform structures.

DEFINITION 6. A standard filter on X x X is a symmetric filter
<P g [ 4 the filter generated by the diagonal on X. For Φ a standard
filter we define
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A <φ B iff H{A) s B for some He Φ .

This imitates the usual way a proximity is obtained from a uniformity.
Notice that if Φ is standard, <φeέ?(X).

If ^J? is a uniform convergence structure (abbreviated u.c.s.) we
define

&j — {<φ: φ is a standard filter in

It turns out that &^ is a base for a p.c.s. ^ ^ on X.

LEMMA 7. Let Φ and Ψ be standard filters on X x X.
( i ) If Θ = ΦΓ\Ψ then <θ = <φf] <Ψ

(ii) If gf = Φ o φ then < ^ = <φ o < φ .

Proof. Straightforward.

THEOREM 8. 1/ ^ is a u.c.s. cm X ZAew &j> is a base for a
p.c.s. gfij? on X. If ^JF is generated by a uniformity % then &jr
is a proximity structure generated by <r.

Proof. From the preceding lemma it is clear that && is a base
for a p.c.s. on X. Suppose JΓ is a uniformity which generates ^ .
Then for < e ̂ ^ we have < ^ g <. Hence {<^} is a base for ^ ^ .

DEFINITION 9. If ^ is a cover of X we define £Γ̂  = (J {C x C:
Ce ^}. If <& is finite then any entourage which contains H# is said
to be strongly bounded. A filter Φ on X x X is strongly bounded iff
it consists of strongly bounded entourages. A u.c.s. is strongly
bounded iff it has a base of strongly bounded filters.

REMARK 10. Notice that for uniform structures strongly bounded
is equivalent to totally bounded. However, in the case of a u.c.s.
total-boundedness is a weaker condition.

THEOREM 11. Every strongly bounded u.c.s. is totally bounded.

Proof. Let ^ be a strongly bounded u.c.s. on X, and let
be an ultrafilter on X. Let Φ be any strongly bounded filter in
We claim that Φ g ^ x ^ ,

Let HeΦ, and let ^ be a finite cover of X such that H& £ H.
Since ^ is an ultrafilter, ^ n ̂  Φ 0 . But if Ce ̂  n ̂  then

THEOREM 12. Let ^ be a u.c.s. on X. The following conditions
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are equivalent:
( i ) ^J? is strongly bounded;
(ii) ^JF has at least one strongly bounded member;
(iii) The filter [AY of all strongly bounded entourages is in

Proof. Since ^ Φ 0 , clearly (i) => (ii). Now suppose (ii) holds.
Note \Δ\* is a filter. If Φ is any strongly bounded filter in ̂  then
Φ £ [AY.

Finally, assume [AY e^. If Φ e ^ f then Φ Π [AY is a strongly
bounded filter in Jf, and is contained in Φ.

LEMMA 13. A strongly bounded u.c.s. is the smallest member of
its proximity class.

Proof. Let ^JF and 3ίΓ be u.c.s.'s on X and suppose J? is
strongly bounded, with ^^ = ̂ ^. We wish to show 3ίΓ S ^ Let
Φ e ^ Γ and let Ψ = Φ n Φ"1 Π [4] Then < rG ̂ V = ̂ ^ , so we can
choose Θe ̂  so that <<? S <y. Let θ* = θ Π [AY. We claim that
#* o θ* s Φ.

Let Heθ*, and let ^ be a finite cover of X with iϊ^ £ ίΓ. Then
for Ce £f we have C <θ H{C). Let Kce Ψ such that ίΓσ(C) ε J5T(C),
and define iΓ to be the intersection of the Kc's Then KeΦ. We
claim K ^ H o H.

Let (aj, 2/) G if. Choose C e i f so . α? G C. Then ?/ e ̂ ( C ) £ H(C).
Set ceC with (c, y) e H. Then fec)GCxCgE Hence (x, y) e ίίo Jϊ.

THEOREM 14. Lei ^ 6e a p.c.s. cm X, ami define

&& = {Φ: Φ is standard and <φe

Then && is a base for a strongly bounded u.c.s. ^^ in the proximity
class of &.

Proof. If Φ = [A] then <Φ = £ , so [zί] G ^ , . From Lemma 7 it
is clear that &<? is a base for a u.c.s. ^ / i .

(1) ^^ is strongly bounded.
Let θ = [J]*. We will show <* = £ , so that θ z ^ . Let A £

B, and define ΐ f - {B, X\A}. Then iϊ^ G \Δ\* and fl^(A) £ B. Thus
A<ΘB.

(2) ^ ^ is in the proximity class of &>.
Clearly the p.c.s. determined by ̂ & is contained in &. Now let

< G &*. We define

= { ί f g ! x I : A < H(A) if A £ X}

= {Hv . 3 i , ΰ g l with A < 2 B and ̂  = {B, X\A} .
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Notice & £ [J], so & is a subbase for a proper filter Φ o n l x
X. Since each member of & is symmetric, clearly Φ is symmetric;
hence Φ is standard. We will show < 2 ϋ <Φ S < . If this holds,
then Φz^z* and hence < is in the p.c.s. induced \>y J?&.

If A < 2 J5 we define £f - {5, X\A}. Then H* e Φ, and fl^(A) £
5. Thus < 2 £ <φ. To show that < φ £ < it is sufficient to establish
that ΦS A.

Let Hi e ^ for 1 <: i ^ w and suppose Π; -H* £ #"• F o r e a c h ^
let A< < 2 £ 4 such that H{ = i?^., where <Ŝ  == {5*, X\Λ }. Choose A
so A, < A < A, and define ^ = {A, X\A}. Set J T = IL ̂ > and
for &e_$r let Cfc - ΓiiHϋ Note the C^s cover X.

Now let E g l We must show E < H{E). This holds, provided
Ef]Ck< H(E) for ke ^Γ. we will actually show that if E Π Ck Φ 0
then Cfc < H(E).

Let fee j r ; with En Ck Φ 0. Define h(i) to be B< if k(i) = A,
and -X"\A< otherwise. Then Z?(ί) < h(i) for 1 ^ i ^ ^, and so C& <
Πi A(i). We claim f] h(i) £ ^(ί/).

Let a;GΠi^)> a n ( i P^k xo^ί7ΓlCfc. We will show (xo,x)eH.
Choose i, and suppose Λ(i) = A Then h(i) = Bi9 and so (α?0, a?) € A x
B< £ A . Similarly if k(i) = X\A then α?0 and α? are both in X\Ai9

and hence (a;0, x) 6 ίZ*.

THEOREM 15. If 0* is a proximity structure then^f^ is a uni-
form structure.

Proof. Suppose < generates ^ . Let Φ e ^ so <φ £ < and Φ
is strongly bounded. We claim Φ2 generates ̂ f&.

Let Ψe^^ and assume Ψ is standard. Then < ^ e ^ , so < φ £
<ψ. Let HeΦ. Then we can choose ^ a finite cover of Xsuch that
ZZV SH. For Ce ̂  we have C <Ψ H(C). Pick iΓe y so K{C) £ fί(C)
for all C in <ef. Then K £ ίί2, so ί ί 2 e ?F. This establishes that

EXAMPLE 16. We conclude this section with an example to show
that a totally bounded u.c.s. need not be strongly bounded. Let τ
be a compact T2 convergence structure on a set X, and suppose that
every finite intersection of convergent filters has a member with an
infinite complement. For example, we would let τ be the usual
topology on the closed unit interval. Let ^JF be the u.c.s. generated
by {ά^ x &~\ J^ is convergent}. Clearly ^ is totally bounded. We
claim it is not strongly bounded.

Let Φ e^C We will exhibit a member of Φ which is not strongly
bounded. Let J^7, , ̂ n be convergent filters with (Πί ̂ i x -^Q Π
[A] £ Φ. Pick Fe f|i J^7 so that X JP is infinite. Define H = (F x
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F) U Δ. Note He Φ.
Now let i f be any cover X with H^ £ H. For α? e X\JP let Cx e

ΐT such that x e Cx. Since Cxx CΛS H, clearly Cx = {#} for a? $ F.
Thus ^ is infinite, and H is not strongly bounded.

3* Relation with Cauchy structures* In contrast to the classical
case, a totally bounded Cauchy structure & can be induced by several
different p.c.s.'s. However there always exist a smallest and a largest
p.c.s. which induce <g*. If ^ is uniform, the smallest p.c.s. associated
with it is a proximity structure, but the largest need not be. We call
the smallest p.c.s. yielding <g* a saturated p.c.s.

DEFINITION 17. A Cauchy structure on X is a family ^ of proper
filters on X such that

(Cl) if xeX then xe^;
(C2) if J?" is a proper filter which contains a member of ^

then ^'e<Sf;
(C 3) if jF; gf 6 9f with J ^ V 5f ^ [0] then ^ Π ̂  e <&.
Keller [4] has shown that & is a Cauchy structure on X iff it

is the set of Cauchy filters for some u.c.s. on X. If ^ is induced
by a uniformity we call ^ a uniform Cauchy structure. We say ^
is totally bounded iff every ultrafilter on X is in ^ .

DEFINITION 18. For ^ a filter on X we define a relation
on X by A < p- S iff i g β and ΰ or X\A is in

REMARK 19. Notice that < ^ is in έ?(X). Also if Φ = ( ^ x
n[Λ] then < φ - < ^ .

THEOREM 20. Lei <ĝ  = {^Ί < ^ e ^ } , w/iere ^ is α p.c.s. o?i
X. /f ^ is α ^ totally bounded u.c.s. m ίΛe proximity class of
& then <ĝ  is ί/̂ e sβί of ̂ -Cauchy filters.

Proof. Let ^ be a filter on X and define Φ = ( ^ x ^ " ) Π
If ^ * is ̂ -Cauchy then Φe^, and so < ̂  = < Φ e ^ . Hence

Conversely, suppose ^ " 6 <ĝ ,. Then < φ = < ^ e ^ = ^ ^ and
so we can choose ^ e ^ with <^ s <Φ- Let ^ be an ultrafilter
containing ^*. Then ^ is ^-Cauchy, and therefore ^C^) is also
^-Cauchy. (By ?Γ(<g/) is meant the filter generated by all sets of
the form H(U), where He Ψ and Ue <%/. It is easy to check that
[Ψ Π ( ^ x ^ ) ] 3 s y ( ^ ) x Ψ{<&).)

We claim that Ψ{&f) £ ^ 7 Let H G F and C/G ^ . Then 17 <ΨH(U),
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and since <Ψ ϋ <φ we can choose KeΦ with K(U) £ H(U). Now
pick F e ^ s o f x f g ί Γ . Then since ^ £ ^ we have ί7 Π ?7 =£
0 , and so F g K{U). This establishes that H(U)eJ^, as desired.

REMARK 21. This theorem tells us that the totally bounded u.c.s.'s
in the same proximity class all induce the same Cauchy structure.

DEFINITION 22. A p.c.s. & is compatible with a totally bounded
Cauchy structure ^ iff ^ = <g .̂

NOTATION 23. Let / ' b e a filter on X and let < eέ?(X). Then

r<(JO = {A: F < A for some Fe ^} .

Notice r < ( ^ ) is a filter contained in

DEFINITION 24. Let ^ be a totally bounded Cauchy structure
on C.

(1) ^ C i f ) = [{<^
( 2) ^ ( ί T ) = {< e

THEOREM 25. If cέ? is a totally bounded Cauchy structure on X
then &L{^) is the largest p.c.s on X compatible with ^ , and
is the smallest. Moreover, 6^ — {<^: J^ e^}isa subbase for

Proof.
(1) Sf is a subbase for ^L(^).

Let & be the set of refinements of finite intersections of orders in
£f. We need & = ^ L ( c ^ 7 ) . It is sufficient to show that & is a p.c.s.
Clearly ^ satisfies (PI) and (P3).

Let ^7, , ̂  G ̂  with << - <^.. Suppose f|ί <» S < e ^(X).
We wish to show < o < G ̂ . We may assume the ^Ys are pairwise
disjoint; i.e., ^ 7 V ^ 7 == [0] f° r i ^ i This follows by induction
from (C 3), since if ^ V ^ 7 ^ [0] we replace <i Π <, by <^ , where
ά^ — ̂ 7 Π ^ > Choose ^ G ^ 7 so that the F/s are pairwise disjoint.

Suppose now that A <{ B for 1 ^ i ^ n. We will show A < 2 B.
For each i, define

= (F 4 ΠB if

Note A € ̂ t for all i. Let H = ((J* A x A) U A We claim A <
H(A) < 5.

Clearly A £ iϊ(A). To see that iϊ(A) g J5, let α G A with (α, a?) G
ίί. If x = α then xe B. \ϊ x Φ a then for some i, α and α; are both
in Di. Since α ί ^\A, clearly Όi = Ft Π -B, and so a e E .
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Now fix i. We wish to show A <iH(A) <iB. It is sufficient to
show that either H{A) or X\H(A) or B\A is in J ^ . If D4 = F\A it
is not difficult to prove that A Π J?(̂ 4.) = 0 , so that X\H{A) e ^ 7 .
(Recall the D/s are pairwise disjoint.) If Dt — Ft Π B and 1 ) ^ 4 =
0 then clearly 5\A e ̂ \. If A i l 4 ^ 0 then A S H{A) and so
iJ(A) e j * ; .

(2) ^ ( C ) is a p.c.s.
If < = < x n < 2 and jre<ϊf then r<(F) = r ^ n ^ ί / Ί .

Using this and (C3), we conclude ^ s ( ^ ) is closed under finite inter-
sections. Similarly r<2(^") = r<(r<(^-)), so ^s{^) is closed under
"squaring". Since r<(^^) £ r < , ( ^ ' ) whenever < £ < ' clearly (P3) holds.

(3) ^(^)s^esf).
It is sufficient to show that < j r e ^ ( g ? ) for ^ £<jf. Let < =

<jr and let gf e <£f. If gf V J ^ = [0] then r<(gf) = gf; and if
gf V J "̂" ̂  [0] then r<(gf) 3 &* Π ^ . Thus in either case r<(^) 6 9f.

(4) ^ ( ^ ) and ̂ L{^) are both compatible with <ĝ . Let ^
denote the Cauchy structure induced by &s{^)\ and similarly for
^L. Suppose ^ ' e ^ Then by definition of ^ ( ^ ) we have <^-€
^ x ( ^ ) and hence ^ e <^L. Therefore 9Γ S ^ S ^ .

Now suppose ^ e <ĝ . Then < ^ G ^ ( ^ ) . Let < = <^ and let
^ be an ultrafilter containing ^ . Then ^ e ^ and so by definition
of ^ ( ^ ) we have r<(^) 6 ̂ . But r<(^) S ^ , and so ^ s ^

(5) If ^ is a p.c.s. compatible with ^ then

For ^ e^T =• <&<? we have < ^ e ̂ . Thus ^ ( 9 f ) £ ^ . Now
let < G ^ and choose ^ e ^ . Let ^ = r<(^~). We must show
S ^ e ^ ; i.e., < ^ G ^ . It is straightforward to check that ( < ^ Π

REMARK 26. This theorem tells us that each totally bounded
Cauchy structure has a largest and smallest p.c.s. compatible with
it. Since an intersection of proximity convergence structures is also
a p.c.s., we see that the set of proximity convergence structures
compatible with a given totally bounded Cauchy structure is a complete
lattice.

THEOREM 27. If ^ is a totally bounded Cauchy structure and
& is a proximity structure compatible with <g* then & =

Proof. Let & be a p.c.s. compatible with ^ and suppose {<}
is a base for &>. We will show &s{&) £ ̂ *.

Let < G ^ s ( ^ ) and suppose A < B. We wish to show A </< B.
For this it is sufficient to produce a filter ^ in ^ with A <$t ̂  JS.
(Recall if J^'G'if then < ^ G ^ and so < £ < j r . )
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Set S? = {D: A < D) (j {X\E: E < B}. Then since A < B, SS has
the finite intersection property. Let ^ be an ultrafilter containing
Sf. Then ^ e ^ . Since < e^(<ef) we have r<(^) e 9T. Clearly
neither B nor X\A is in

REMARK AND DEFINITION 28. From this theorem it follows easily
that if ^ is uniform (and totally bounded) then 3PS(^) is the unique
proximity structure compatible with <&. We will call 0*s{^) a
saturated p.c.s. (whether or nor ^ is uniform). Obviously then every
proximity structure is saturated.

EXAMPLE 29. Even if ^ is uniform, &L{^) need not be a
proximity structure. For example let J be a totally bounded uni-
formity with Cauchy family <&. Assume that no finite intersection
of Cauchy filters equals {X}. This is the case as long a s ^ ^ { X x X},
but the proof is somewhat involved and will not be given. Certainly
it is true for the usual uniformity on the closed unit interval. Assume
also that if A < x A then A = 0 or X. This is true if the associated
topology is connected, for example.

Suppose <X£&L{^). By Theorem 25, there are Cauchy filters
J^ί, , ̂ l such that Πi <3-i S <*-. Therefore if Fe Γϊi^l then
F<^F, and so F = X. Hence f\i^ — {X}, which is impossible.
Therefore < ^ £ ^ C i O , and so ^L{^) Φ &*8{&). By Theorem 27,

is not a proximity structure.

4* The J-compactification* A p.c.s. is compact, provided the
associated convergence structure is compact. A compactification of
p.c.s. is a compact p.c.s. in which the given space can be densely
embedded. In general a p.c.s has many compactifications. We will
confine ourselves to one, called the J-compactification. This works
at least for relatively round spaces, and has a nice characterization.
Using it we can obtain a generalization of the classical one-to-one
correspondence between proximity structures and T2 compactifications
of a given topological space.

Continuous maps to compact T2 spaces can be extended to this
compactification, provided the range spaces satisfy a strong regularity
condition. We leave open the problem of obtaining the "right" defini-
tion of regularity for a p.c.s.

DEFINITION 30. Let ^ be a p.c.s. on X. For a e l w e define
τ&(x) to be the intersection ideal generated by the filters of the form
r<(x), where < 6 ^ .

THEOREM 31. If ^ is in the proximity class of & then τj- — τ&.
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Proof. Notice that {r<(ί): < ε ^ } is a base for τ&{x). Thus if
eτ&(x) then for some < e & we have r<(x) S ^ Let F G ^ /

with < ^ S <• Now, ΨSxx W(x), so ?Γ(4) e τ>(α;). But Γ(ί)gr<(4),
since for i ϊ e ?F we have {&} <Ψ H(x).

Now suppose ^ e τ>(α?). Let & = ̂  Π * and let Φ = g? x ^ Π
[J]. Then Φ e / and so < Φ e ^ . Set < = <Φ = < y . Then r<(*)

REMARK 32. We can also describe z> as follows: . / " G Γ ^ ) iff
for some ^ 6 J ^ Π * we have < y e ^ .

Next we will describe the construction of the J-extension of a
p.c.s.

DEFINITION 33. Let ̂  be a Cauchy structure on X. Two filters
in <& are equivalent iff their intersection is in <g*. We denote the
associated partition by X*(^), or just X*. The map which assigns
to a point a; in I the equivalence class of x is denoted by j . If (X,
^ ) is T2 then j" is an injection of X into X*.

We define Σ to be the set of all maps σ which assign to each
equivalence class p in X* a filter in p; we further require for x e X
and σe Σ that σ(j(x)) — x.

For each σ in Σw e obtain a map from &{X) to <^(X*); namely,

Aσ = {peX*:Aeσ(p)}.

This allows us to define a map from ^(X) to the set of rela-
tions on X*. For < e ^(X) we define A <° B iff there are subsets
C and D of X with A S Cσ, Dσ £ 5, and C < D.

Now suppose ^ is totally bounded, and let & be a compatible
p.c.s. We define ^ = {<' e ^(X*): for σ e Σ, 3 < e & with < σ £ <'}.
It is easy to check that &Σ is a p.c.s. on X. We will call (j, (X*,
^ ) ) the Σ-extension of (X, ̂ ) . It is closely related to the Kowalsky
completion of (X, ̂ ) , described in [5] and in [7].

DEFINITION 34. Let k: (X, ̂ *) -> (F, έ?). For < € έ?(X) we define
e έ?(Y) by A ife«) B iff A £ 5 and k~\A) < k~ι{B). We say k

is a dense embedding of (X, ̂ ) into (F, <^), provided A: is one-to-one
and for < e έ?(X) we have < e & iff ft«) e ̂ .

Next we will establish that j is a dense embedding of (X,
into (X*,

LEMMA 35. Le£ (X, &) be T2 and let z' denote the convergence
structure induced by ^ Σ .

(i) If peX* and jTep then j(jT) e τ'(p).
(ii) If & e τ'(p) and σeΣ then the filter 5fσ = {A: A° e ^} is in p.
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Proof. Suppose &~ e p and define Sf = iC-^Q Π ϊ>. To show
+p it is sufficient to establish <^ is in &Σ.

Pick σ e Σ and set ^ = &~ Π σ(j>). Now ̂  is Cauchy, and so
<^e^. Observe that ^ £ 2̂ σ> so that <i* S <&•

Now assume ^ e τ'(p), and let σ e Σ. Pick < 6 ̂  with r<(p) £
^ , and choose <xe ^ so that <? £ <. Then r<ι{σ{p)) £ ^α For
if A e φ ) and A <XB then A° <\Ba and hence Aσ < βσ. Since pe
A° we have J5σ e r < ( p ) S ^ .

Now cr(p) e p and <1 e &*. Therefore r<1(σ(p)) e p. (Use Theorem
25 and (C 3)).

THEOREM 36. Let (X, &) be T2. Then (X*, &*Σ) is T2 and j is
a dense embedding of (X, &*) into (X*,

Proof. Suppose Ŝ 7 converges to both p and q. Let σe Σ. By
the preceding lemma &σe p f) q. Thus p = q, and &Σ is T2.

Notice that for σ e Σ and A £ X we have i^ί-A") = A. Here
strong use is made of the fact that σ(j(x)) = 4 for x e X. From this
it is easy to see that for < e &* and σ e Σ we have < σ £ i (<) . Thus

Now suppose < e <^(X) and i ( < ) e ^ . Let σ e J and choose
<L€ ^ with <? S i « ) Using the same fact as before, we see that
<i £ <• This establishes that j is an embedding.

It is easy to check that j(X) is dense in X*, since for J^ep
we have j(^) —* p. (Lemma 35).

Next we will give conditions under which the J-extension is
actually a compactification.

DEFINITION 37. Let (X, &) be a p.c.s. For σe Σ we define

<o = Π {<J-> ^ = σ (3>) for some pe X*}

Then & is relatively round iff each < σ is in 0>.
Notice that every proximity structure is relatively round. In fact

if c c is a proximity on X then c c = f | {<^: ̂ ' e

THEOREM 38. JΓf (X, &) is relatively round and T2 then (j, (X*,
is a compactification of (X,

Proof. In view of Theorem 36, we need only establish that &Σ

is compact. Let ^ be an ultrafilter on X*.
Notice that for σeΣ, if A<σB then (X*\J3σ) £ (X\A)σ; thus

either B° or (X\A)σ is in ^ . This yields < σ £ <^σ. Since & is
relatively round, we conclude ^ σ is Cauchy for σe Σ.

Moreover, the ̂ </s are all in the same equivalence class. To see
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this, suppose σ and μ are in Σ and let η(p) = σ(p) Π μ(p) for pe X*.
Then ηe Σ, and also ^ ϋ ^ Γ) %Sμ Thus ^ and <&μ are equivalent.

Let q be the equivalence class of the ̂ Vs. We claim <%/ —* g.
Let (76l and define ^ = ^ σ Π # Then ^ e g , so < ^ e ^ .
Let Γ = ̂  Π g. Then it is simple to check that < ^ ϋ <^.

Next we wish to characterize the ^-compactification of (X, &)
as its unique relatively round T2 compactification. This will be done
by using the corresponding fact for uniform convergence spaces,
established in [7].

DEFINITION 39. Let /: (X, &) —> {Y, &). Then / is p-continuous
iff / (<) e & whenever < e &*.

LEMMA 40. Let f: (X, ^ ) -> (Γ, )

(i) f is p-continuous iff it is uniformly continuous with respect
to Jg^ and Jfa.

(ii) / is an embedding of (X, ̂ ) into (Y, &) iff it embeds (X,
in (

Proof. Notice that if Φ is a standard filter on X x X and Ψ =
(/ x f){Φ) Π [Δ] then <Ψ = /(<*). Clearly then (i) holds. Also if
F e ^ and / is a p-embedding then Φ e ^ . Therefore every p-
embedding is a uniform embedding.

Now assume / is a uniform embedding. Suppose < e ̂ (X) with
/(<) e ^ . Pick 0 e ^ with <θ £ / ( < ) . Set ̂  = (/ x / Γ 1 ^ ) . We
claim θte^^ and < ^ S <•

Since <θ is defined, θ is standard; therefore 0X is standard, and in
particular it is proper. Note θ ϋ (/ x /)(#i), so that θ^^^. Now
if A <θlB then /(A) <, Γ\/(X\5). Since <θ s / « ) we conclude

DEFINITION 41. Let / : (X, ̂ *) — (Γ, ^ ) . By Σ(f) we mean the
set of all maps σ which assign to each point y in Y a filter converging
to y. We further require that for y € /(-X") and σ e Σ(f) we have
σ{y) = ̂ .

We define (/, (Y, ̂ ) ) to be relatively round provided <σe & for
each <7 in Σ(f). We say (/, (Γ, ^ ) ) is relatively round iff for σe
Σ(f) the filter Γl{σ{y) x σ(y):ye Y) is in

LEMMA 42. /f (&, (Y, ̂ g)) is α relatively round compactification
of (X, &) then (k, (Y, ̂ J)) is a relatively round completion of

Proof. From the preceding lemma we know that k is an embedd-
ing of (X, d^>) into (Y, ̂ f*). Since < ; ^ and £? induce the same
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convergence structure τ', clearly this embedding is dense. Since τf

is compact, ^ a is complete.
Now let σ e Σ(f). Then <σ e&. Set θ = Γ\ {σ(y) x σ(y): y e Y).

We claim <θ = <σ, so that ^ G / ^ . TO see that < σ £ <Θ notice
that if A <σ B then (5 x B) Π (X\A x X\A) e θ.

THEOREM 43. If (X, &) is relatively round and T2 then {j, (X*
) is the unique relatively round Γ2 compactification of (X,

Proof. In [7], Theorem 19, it was shown that any two relatively
round T2 completions of a u.c.s. are equivalent. From this, and from
the two preceding lemmas, it follows that (X, &) can have at most
one relatively round T2 compactification.

By Theorem 38 we know (j, (X*, &Σ)) is a compactification of (X,
&). To see that it is relatively round pick σeΣ(j) and let μeΣ.
Set η{p) = σ(p)μ for p e l * . By Lemma 35, η(p)ep for p e l * . It
is easy to check that if p = j(x) then (p)μ = x. Thus ηe Σ, and <ve
&. Notice that <μ

η £ <σ, so that <σe&*Σ.

THEOREM 44. If (X, &) is a relatively round saturated T2 p.c.s.
then (X*, &*Σ) is saturated.

Proof. Suppose < ' 6 ^ ( X * ) , and r<#(^~) is Cauchy whenever
is. Let σ e Σ and define

A<B iff X*\(X\A) σ <'5 σ .

Then < e έ?{X) and < σ £ <'. We claim < e &*.
Let ^ " e <g .̂, and let j> be its equivalence class. Then j{^) —>

p (Lemma 35). Define μeΣ(j) by q—+j(σ(q))Γ[Q. Since & is rela-
tively round, so is (j,(X*9&*8)) (Theorem 43). Thus <μe&*Σ, and
^ = r<μ{j{^)) converges to p. Let 5f = r < ( ^ ) . Then & ->p, and
SO ^ 6 ] ) .

It is not difficult to check that 5f σ £ r<GJH so that r < ( J θ is
Cauchy. Since & is saturated we conclude < 6 ̂ , and < ' e ^Σ.

REMARK 45. There is a one-to-one correspondence between
certain T2 compactifications of a given T2 convergence space (X, τ) and
certain of its compatible p.c.s.'s. If & is relatively round then
(j, (X*, τ(g*Σ))) is a Γ2 compactification of (X, τj). It is also a rβία-
ίiveẐ / round compactification meaning that if JF' —* p and σ e 2*0")
then r< σ(^^) —• p. Thus the map & -* (i, (X*, τ{&*Σ))) takes relatively
round p.c.s.'s on (X, τ) to relatively round T2 compactifications of (X, τ).

This map is one-to-one, provided we limit ourselves to saturated
structures. This follows from the preceding theorem and from the
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fact that a homeomorphism is p-continuous with respect to the largest
compatible saturated structures.

The above map is also a surjection. Given a relatively round T2

compactification (k9 (Y, τ')) we define 0*' to be the (unique) compatible
saturated p.c.s. Set & — {<: k{<) e £?'}. Then & is relatively round,
saturated and compatible with τ. Moreover, (k, (Y, &')) is a compactifi-
cation of (X, &). Using Theorem 43, we can establish that the given
compactification is equivalent to (j, (X*, τ{^Σ))).

If «̂ i S 3^2 then κγ ̂  tc2. (κ{ is the compactification associated
with ^ . ) However it is not clear the converse holds.

In the final part of this section we will show that a certain class
of p-continuous functions on (X, &) extend to its I'-compactification.

DEFINITION 46. For any convergence space (X, τ) we define an
order < c on I by 4 < c β iff l e f t A compatible p.c.s. & is
c-regular iff < c e ^ . A compatible u.c.s. ^ is c-regular iff it is
regular in the sense of Pervin and Biesterfeldt [6]. In their notation,
this means if Φ e ̂  then Φc e

REMARK 47. Both these definitions of regularity seem too strong.
If & is c-regular then τ& is a regular topological structure. The
same is true if ^f is c-regular and strongly bounded. Finding a
better definition of regularity has proved unexpectedly difficult.

THEOREM 48. Let ̂  be the strongly bounded u.c.s. in the 'prox-
imity class of &*. Then &> ιs c-regular iff ^ is c-regular.

Proof. Let Φ be a standard, strongly bounded member of
and set Ψ = Φc 0 (Φ0)"1- We will establish that < c e &> iff i ί € / .
Since the standard strongly bounded members of ̂  are a base for
^ this is sufficient to establish the desired equivalence.

(l) «cn<,)2g<^.
This is established by the following observations,
(i) I f i ί g l x l then Hΰ(A) S H(A)~ for i g l
If (α, x) e Hc with a e A then x e H(a)~ S H(A)~.
(ii) If H= H~ι then (H9)'1^) S H(A). Let aeA1 with (x, a) e

Hc. Then ae H(x)~ and so Af]H(x) Φ 0. For ze Af)H(x) we have

(2) < | S < C .
We will show first that if K is strongly bounded then A~ £ KC(A)

for A £ X. Let ^ be a finite cover of X such that if•<* £ if. Pick
a?G A". Then there is a set C in ^ with α? 6 C~ and C ΓΊ A φ 0 . To
see this, let &~-+x such that i e ^ and let ̂  be an ultrafilter
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containing J^. Then ^/ D ̂  Φ 0 , and for C in ^ Π ̂  the desired
conditions hold.

Now pick ueC f]A. Then C £ if(V) and so xe K(u)~. This means
(u, x) e Kc and thus x e KC(A).

From this it follows that if A <Ψ B then A~ ϋ B. Moreover,
A £ Bι) note X\£ <Ψ X\A, so that (X\J5)~ £ X\A. Therefore if A <2

ΨB
then A' £ £ \

THEOREM 49. Lβ£ (X, ^ ) be T2. Every p-continuous function
from (X, &) to a c-regular compact T2 p.c.s. has a unique extension
to (X*, &>Σ).

Proof. Let / be a p-continuous function from (X, &>) to a
c-regular compact T2 space (Y, &). It is easy to check that / is
Cauchy-continuous. Since Y is compact and T2, the image of a
filter in <g^ has a unique limit in F. Moreover, the images of equi-
valent filters have the same limit. This defines a map h: X* —> Y;
namely, h(p) is the limit of the /-image of any filter in p. Notice
hj = / . We need to establish that h is p-continuous. This is where
c-regularity is used.

Let < e &Σ and select σ e Σ. Choose < 1 e ^ ί so < ' g < and set
< 2 = / « 1 ) n < c . We claim <\ £ h«). This is based on the
following observations.

( i ) If A £ B* then hr\A) £ fι(B)σ.
(ii) If C- S D then /^(C)' £ A'^D).
(iii) If B f«d C then f~\B) < f~\Q°.
Note h is unique, since every continuous extension of / must

agree with h on the dense subset i(X).
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